Prediction of Ultimate Bearing Capacity of Skirted Footing Resting on Sand Using Artificial Neural Networks

Document Type : Regular Article


Department of Civil Engineering, NIT Hamirpur, Himachal Pradesh, India


The paper presents the prediction of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network. The input parameters for the artificial neural network model were normalised skirt depth, area of the footing and the friction angle of the sand, while the output was the ultimate bearing capacity. The artificial neural network algorithm uses a back propagation model. The training of artificial neural network model has been conducted and the weights were obtained which described the relationship between the input parameters and output ultimate bearing capacity. Further, the sensitivity analysis has been performed and the parameters affecting the ultimate bearing capacity of different regular shaped skirted footing resting on sand were identified. The study shows that the prediction accuracy of ultimate bearing capacity of different regular shaped skirted footing resting on sand using artificial neural network model was quite good.


Google Scholar


Main Subjects

[1]     Al-Aghbari MY, Mohamedzein YE-A. Bearing capacity of strip foundations with structural skirts. Geotech Geol Eng 2004;22:43–57. doi:10.1023/B:GEGE.0000013997.79473.e0.
[2]     Al-Aghbari MY, Mohamedzein YE-A. Improving the performance of circular foundations using structural skirts. Proc Inst Civ Eng - Gr Improv 2006;10:125–32. doi:10.1680/grim.2006.10.3.125.
[3]     Prasanth T, Kumar PR. A Study on Load Carrying Capacity of Skirted Foundation on Sand. Int J Sci Res 2017;6.
[4]     Khatri VN, Debbarma SP, Dutta RK, Mohanty B. Pressure-settlement behavior of square and rectangular skirted footings resting on sand. Geomech Eng 2017;12:689–705.
[5]     Al-Aghbari MY, Mohamedzein YE-A. The use of skirts to improve the performance of a footing in sand. Int J Geotech Eng 2018:1–8. doi:10.1080/19386362.2018.1429702.
[6]     Villalobos F. Bearing capacity of skirted foundations in sand. VI Congr. Chil. Geotec. Valparaiso, 2007.
[7]     Al-Aghbari MY, Dutta RK. Performance of square footing with structural skirt resting on sand. Geomech Geoengin 2008;3:271–7. doi:10.1080/17486020802509393.
[8]     Eid HT, Alansari OA, Odeh AM, Nasr MN, Sadek HA. Comparative study on the behavior of square foundations resting on confined sand. Can Geotech J 2009;46:438–53. doi:10.1139/T08-134.
[9]     Eid HT. Bearing Capacity and Settlement of Skirted Shallow Foundations on Sand. Int J Geomech 2013;13:645–52. doi:10.1061/(ASCE)GM.1943-5622.0000237.
[10]    EL Wakil AZ. Bearing capacity of Skirt circular footing on sand. Alexandria Eng J 2013;52:359–64. doi:10.1016/j.aej.2013.01.007.
[11]    Golmoghani-Ebrahimi S, Rowshanzamir MA. Experimental evaluation of bearing capacity of skirted footings. Civ Eng Archit 2013;1:103–8. doi:10.13189/cea.2013.010401.
[12]    Chandrawanshi S, Kumar R, Kaur DS, Jain DPK. Effect of Skirt on Pressure Settlement Behaviour of Model Circular Footing in Medium Dense Sand. Int J Adv Eng Technol 2014;5:1–5.
[13]    Krishna A, Viswanath B, Keshav N. Performance of square footing resting on laterally confined sand. Int J Res Eng Technol 2014;3.
[14]    Behrens T, Förster H, Scholten T, Steinrücken U, Spies E-D, Goldschmitt M. Digital soil mapping using artificial neural networks. J Plant Nutr Soil Sci 2005;168:21–33. doi:10.1002/jpln.200421414.
[15]    Banimahd M, Yasrobi SS, P.K.Woodward. Artificial neural network for stress–strain behavior of sandy soils: Knowledge based verification. Comput Geotech 2005;32:377–86. doi:10.1016/j.compgeo.2005.06.002.
[16]    Yilmaz I, Kaynar O. Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils. Expert Syst Appl 2011;38:5958–66. doi:10.1016/j.eswa.2010.11.027.
[17]    Edincliler A, Cabalar AF, Cagatay A, Cevik A. Triaxial compression behavior of sand and tire wastes using neural networks. Neural Comput Appl 2012;21:441–52. doi:10.1007/s00521-010-0430-4.
[18]    Ismeik M, Al-Rawi O. Modeling Soil Specific Surface Area with Artificial Neural Networks. Geotech Test J 2014;37:20130146. doi:10.1520/GTJ20130146.
[19]    Kolay E, Baser T. Estimating of the Dry Unit Weight of Compacted Soils Using General Linear Model and Multi-layer Perceptron Neural Networks. Appl Soft Comput 2014;18:223–31. doi:10.1016/j.asoc.2014.01.033.
[20]    Dutta RK, Dutta K, Jeevanandham S. Prediction of Deviator Stress of Sand Reinforced with Waste Plastic Strips Using Neural Network. Int J Geosynth Gr Eng 2015;1:11. doi:10.1007/s40891-015-0013-7.
[21]    Khademi F, Akbari M, Jamal SM. Prediction of concrete compressive strength using ultrasonic pulse velocity test and artificial neural network modeling. Rom J Mater 2016;46:343–50.
[22]    Khademi F, Jamal SM. Predicting the 28 days compressive strength of concrete using artificial neural network. I-Manager’s J Civ Eng 2016;6:1–7.
[23]    Das SK, Basudhar PK. Undrained lateral load capacity of piles in clay using artificial neural network. Comput Geotech 2006;33:454–9. doi:10.1016/j.compgeo.2006.08.006.
[24]    Sarmadian F, Taghizadeh Mehrjardi R. Modeling of some soil properties using artificial neural network and multivariate regression in Gorgan Province, North of Iran. Glob J Environ Res 2008;2:30–5.
[25]    Kayadelen C. Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int J Numer Anal Methods Geomech 2008;32:1087–106. doi:10.1002/nag.660.
[26]    Cho SE. Probabilistic stability analyses of slopes using the ANN-based response surface. Comput Geotech 2009;36:787–97. doi:10.1016/j.compgeo.2009.01.003.
[27]    Obrzud RF. Numerical modeling and neural networks to identify constitutive parameters from in situ tests. EPFL, 2009.
[28]    Ikizler SB, Aytekin M, Vekli M, KocabaƟ F. Prediction of swelling pressures of expansive soils using artificial neural networks. Adv Eng Softw 2010;41:647–55. doi:10.1016/j.advengsoft.2009.12.005.
[29]    Ahangar-Asr A, Faramarzi A, Mottaghifard N, Javadi AA. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput Geosci 2011;37:1860–9. doi:10.1016/j.cageo.2011.04.015.
[30]    Park HI. Development of Neural Network Model to Estimate the Permeability Coefficient of Soils. Mar Georesources Geotechnol 2011;29:267–78. doi:10.1080/1064119X.2011.554963.
[31]    Ornek M, Laman M, Demir A, Yildiz A. Prediction of bearing capacity of circular footings on soft clay stabilized with granular soil. Soils Found 2012;52:69–80. doi:10.1016/j.sandf.2012.01.002.
[32]    Kuo YL, Jaksa MB, Lyamin AV, Kaggwa WS. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput Geotech 2009;36:503–16. doi:10.1016/j.compgeo.2008.07.002.
[33]    Ornek M. Estimation of ultimate loads of eccentric-inclined loaded strip footings rested on sandy soils. Neural Comput Appl 2014;25:39–54. doi:10.1007/s00521-013-1444-5.
[34]    Nazir R, Momeni E, Marsono K, Maizir H. An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand. J Teknol 2015;72. doi:10.11113/jt.v72.4004.
[35]    Rezaei H, Nazir R, Momeni E. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J Zhejiang Univ A 2016;17:273–85. doi:10.1631/jzus.A1500033.
[36]    Nazir R, Momeni E, Marsono K. Prediction of Bearing Capacity for Thin-wall Spread Foundations Using ICA-ANN Predictive Model. Proc. Int. Conf. Civil, Struct. Transp. Eng. Ottawa, Ontario, 2015.
[37]    Momeni E, Armaghani DJ, Fatemi SA, Nazir R. Prediction of bearing capacity of thin-walled foundation: a simulation approach. Eng Comput 2018;34:319–27. doi:10.1007/s00366-017-0542-x.
[38]    Boger Z, Guterman H. Knowledge extraction from artificial neural network models. 1997 IEEE Int. Conf. Syst. Man, Cybern. Comput. Cybern. Simul., vol. 4, IEEE; n.d., p. 3030–5. doi:10.1109/ICSMC.1997.633051.
[39]    Linoff GS, Berry MJA. Data Mining Techniques. Wiley, New York; 1997.
[40]    Blum A. Neural netw in C++. Wiley, New York; 1992.
[41]    Tripathy S. Load carrying capacity of skirted foundation on sand. National Institute of Technology, Rourkela Odisha, 2013.
[42]    Olden JD, Jackson DA. Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol Modell 2002;154:135–50. doi:10.1016/S0304-3800(02)00064-9.