Fuzzy Vibration Suppression of a Smart Elastic Plate Using Graphical Computing Environment

Document Type : Regular Article


School of Production Engineering and Management, Technical University of Crete, Chania, Greece


A nonlinear model for the vibration suppression of a smart composite elastic plate using graphical representation involving fuzzy control is presented. The plate follows the von Kármán and Kirchhoff plate bending theories and the oscillations are caused by external transversal loading forces, which are applied directly on it. Two different control forces, one continuous and one located at discrete points, are considered. The mechanical model is spatially discretized by using the time spectral Galerkin and collocation methods. The aim is to suppress vibrations through a simulation process within a modern graphical computing environment. Here we use MATLAB/SIMULINK, while other similar packages can be used as well. The nonlinear controller is designed, based on an application of a Mamdani-type fuzzy inference system. A computational algorithm, proposed and tested here is not only effective but robust as well. Furthermore, all elements of the study can be replaced or extended, due to the flexibility of the used SIMULINK environment.


Google Scholar


Main Subjects

[1]     Tairidis GK, Stavroulakis GE, Marinova DG, Zacharenakis EC. Classical and soft robust active control of smart beams. Papadrakakis, M., Charmpis, DC, Lagaros, ND, Tsompanakis, Y. Comput. Struct. Dyn. Earthq. Eng., CRC Press/Balkema and Taylor & Francis Group, London, UK: 2008, p. 165–78.
[2]     Tavakolpour AR, Mailah M, Mat Darus IZ, Tokhi O. Self-learning active vibration control of a flexible plate structure with piezoelectric actuator. Simul Model Pract Theory 2010;18:516–32. doi:10.1016/j.simpat.2009.12.007.
[3]     Fisco NR, Adeli H. Smart structures: Part II — Hybrid control systems and control strategies. Sci Iran 2011;18:285–95. doi:10.1016/j.scient.2011.05.035.
[4]     Precup R-E, Hellendoorn H. A survey on industrial applications of fuzzy control. Comput Ind 2011;62:213–26. doi:10.1016/j.compind.2010.10.001.
[5]     Korkmaz S. A review of active structural control: challenges for engineering informatics. Comput Struct 2011;89:2113–32. doi:10.1016/j.compstruc.2011.07.010.
[6]     Preumont A. Vibration Control of Active Structures. vol. 246. Cham: Springer International Publishing; 2018. doi:10.1007/978-3-319-72296-2.
[7]     Driankov D, Hellendoorn H, Reinfrank M. An Introduction to Fuzzy Control. Berlin, Heidelberg: Springer Berlin Heidelberg; 1993. doi:10.1007/978-3-662-11131-4.
[8]     Zeinoun IJ, Khorrami F. An adaptive control scheme based on fuzzy logic and its application to smart structures. Smart Mater Struct 1994;3:266–76.
[9]     Wenzhong Q, Jincai S, Yang Q. Active control of vibration using a fuzzy control method. J Sound Vib 2004;275:917–30. doi:10.1016/S0022-460X(03)00795-8.
[10]    Shirazi AHN, Owji HR, Rafeeyan M. Active Vibration Control of an FGM Rectangular Plate using Fuzzy Logic Controllers. Procedia Eng 2011;14:3019–26. doi:10.1016/j.proeng.2011.07.380.
[11]    Ciarlet PG. Mathematical elasticity, vol. II: Theory of plates. vol. 27. Elsevier; 1997.
[12]    Ciarlet PG, Rabier P. Les Equations de von Kármán. vol. 826. Berlin, Heidelberg: Springer Berlin Heidelberg; 1980. doi:10.1007/BFb0091528.
[13]    Duvaut G, Lions JL. Les inequations en mecaniques et en physiques, Dunod 1972.
[14]    Muradova AD. A time spectral method for solving the nonlinear dynamic equations of a rectangular elastic plate. J Eng Math 2015;92:83–101. doi:10.1007/s10665-014-9752-z.
[15]    Muradova AD, Stavroulakis GE. Hybrid control of vibrations of a smart von Kármán plate. Acta Mech 2015;226:3463–75. doi:10.1007/s00707-015-1387-2.
[16]    Muradova AD, Stavroulakis GE. Fuzzy Vibration Control of a Smart Plate. Int J Comput Methods Eng Sci Mech 2013;14:212–20. doi:10.1080/15502287.2012.711427.
[17]    Tairidis G, Foutsitzi G, Koutsianitis P, Stavroulakis GE. Fine tuning of a fuzzy controller for vibration suppression of smart plates using genetic algorithms. Adv Eng Softw 2016;101:123–35. doi:10.1016/j.advengsoft.2016.01.019.
[18]    Marinaki M, Marinakis Y, Stavroulakis GE. Fuzzy control optimized by a Multi-Objective Particle Swarm Optimization algorithm for vibration suppression of smart structures. Struct Multidiscip Optim 2011;43:29–42. doi:10.1007/s00158-010-0552-4.
[19]    Koutsianitis P, Tairidis GK, Drosopoulos GA, Foutsitzi GA, Stavroulakis GE. Effectiveness of optimized fuzzy controllers on partially delaminated piezocomposites. Acta Mech 2017;228:1373–92. doi:10.1007/s00707-016-1771-6.
[20]    Muradova AD, Tairidis GK, Stavroulakis GT. Adaptive Neuro-Fuzzy vibration control of a smart plate. Numer Algebr Control Optim 2017;7:251–71.
[21]    Destuynder P, Salaun M. Mathematical Analysis of Thin Plate Models. Berlin, Heidelberg: Springer Berlin Heidelberg; 1996. doi:10.1007/978-3-642-51761-7.
[22]    Reddy JN. Theory and analysis of elastic plates and shells. CRC press, Taylor & Francis; 2006.