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In water infrastructures design problems, small changes in 

their geometries lead to a major variation in the construction 

time and costs. Dams are such important water 

infrastructures, which have different types regarding their 

materials and their behavior to endure loads. In the current 

paper, invasive weed optimization (IWO) algorithm is 

employed to find the best shape of a concrete gravity dam 

(Tilari Dam, India). Stress and stability were considered as 

design constraints, based on the following models: Model I 

(M1): upstream dam face is inclined and Model II (M2): 

upstream dam face is vertical. Optimization using IWO for 

M1 showed 20% reduction in cross-sectional area as 

compared to prototype. Although results obtained using IWO 

showed no changes in comparison with the algorithms in the 

literature (i.e., differential evolution, charged system search, 

colliding bodies optimization, and enhanced colliding bodies 

optimization), it converged faster. But results for M2 

revealed 26% reduction in cross-sectional area. 
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1. Introduction 

Dams are essential infrastructures, which are built all over the world for meeting various water 

demands, including flood control, water supply (urban, domestic, industrial etc.), electricity 

generation, recreational activities, navigation, groundwater recharge etc. 

It is estimated that the gravity dams are the first water barriers in the history of human lives. A 

gravity dam is a heavy structure, which is made of concrete or masonry materials across the river 

to increase the volume and height of water. In fact, gravity dams are among the most common 

types of concrete dams that have received special attention because of their simple design and 

their applications in different types of valleys. The stability of a concrete gravity dam entirely 

depends on its mass. Normally, the weight of a gravity dam suffices for stability against all 

design loads. Although gravity dams have been constructed in different shapes, they are 

generally made with roughly triangular cross-sections [1]. They had been built with masonry 

materials before the 1800s [2]. Nowadays, they are mostly constructed with concrete. 

Trapezoidal and rectangular profiles were used to build the first samples of gravity dams’ cross-

sections. Although the recent dams’ shapes have emerged by the development of new materials 

and design techniques, which aim to find more optimal shapes by researches and civil engineers. 

Optimization is an interesting technique in hydraulic structures design, which aims to find the 

best solution by searching the design variables in the search space [3]. Many studies in water 

engineering have been performed using various intelligent techniques, including spillways [3–7], 

reservoirs [8–10], earth dams [11], evaporation [12]. 

Generally, the structural optimization problems can be divided into three categories:(I) size 

optimization, (II) shape optimization, and (III) topology optimization [13]. Optimal design of 

dams can be done using mathematical methods or intelligent techniques like nature-inspired 

algorithms. The nature-inspired algorithms or in general metaheuristics tend to be better than the 

traditional methods on challenging, real-world problems due to the following reasons: 

 As traditional algorithms are mostly local search and gradient-based, so there is no 

guarantee for finding the global optimum due to the existence of a large number of local 

solutions in real-world problems. Consequently, the final solution will often depend on the 

initial starting points. 

 As traditional algorithms normally employ some information like derivatives about the 

local objective, they tend to be problem-specific. 

 Traditional algorithms are not able to solve highly nonlinear, multimodal problems 

efficiently, and they struggle to cope with problems with discontinuity, especially when 

gradients are needed. 

Different techniques have been employed to optimize gravity dams. Salmasi [14] optimized a 

gravity dam section using the genetic algorithm. Khatibinia and Khosravi [15] solved shape 

optimization problem of a concrete gravity dam using an improved gravitational search 

algorithm. Deepika and Suribabu [16] used Differential Evolution (DE) algorithm in order to 

find the best optimal shape of a gravity dam. The best solution was compared with an analytical 
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model and the results showed about 20% reduction in concrete usage of dam. Kaveh and Zakian 

[13] optimized a concrete gravity dam section using Charged System Search (CSS), Colliding 

Bodies Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO) algorithms. 

The results were compared to DEA results of Deepika and Suribabu [16]. All three used 

algorithms had superior results to DEA. Chiti et al. [17] optimized a gravity dam shape subjected 

to earthquake load based on reliability–based design optimization. Khatibinia et al. [18] used the 

hybrid of an improved gravitational search algorithm and the orthogonal crossover to optimum 

design of concrete gravity dams. Memarian and Shahbazi [19] used DE algorithm in 

optimization of some gravity dams’ prototypes under various constraints. Zhang et al. [20] 

studied shape optimization of high RCC gravity dams regarding hydraulic fracturing. Apart from 

the aforementioned works, numerous problems in civil engineering have been solved using 

intelligent methods or, in general, soft computing methods [21–24]. 

Considering the No Free Lunch theorem [25] in optimization, which logically proves that there is 

no optimization algorithm to solve all optimization problems, designers need to evaluate various 

algorithms on a specific problem to see if it is better than others or not. Therefore, in the present 

study, a nature-inspired algorithm (i.e., invasive weed optimization algorithm) is employed to 

solve shape optimization problem of a concrete gravity dam based on two models geometry, 

considering a real benchmark design problem (i.e., Tilari Dam in Maharashtra, India). The 

selected gravity dam was optimized using some evolutionary algorithms in the previous works, 

which their results are compared to the current findings. Besides, in the present research, design 

variables bounds are changed to find better solutions for shape optimization problem of the 

concrete gravity dam. 

2. Methodology 

Nature-inspired approach, as a branch of artificial intelligence (AI), was chosen in the present 

study because intelligent methods are far faster and more precise than traditional methods and 

have viable results in the previous works. Optimization algorithms have different parameters, 

which should be determined at first step of optimization. These parameters are calculated using 

sensitivity analysis. The mathematical model of the problem is built considering the major 

factors and all design parameters. This model includes objective function of the problem (i.e., the 

area of gravity dam cross-section), design variables, and constraints. Penalty function technique 

is employed to consider them into objective function. 

2.1. Invasive weed optimization 

Invasive Weed Optimization (IWO) algorithm is one of the nature-inspired algorithms, which 

inspired by colonizing weeds and was introduced by Mehrabian and Lucas [26]. Comparison of 

the results of the IWO with four types of Evolutionary Algorithms (EAs) such as Genetic 

Algorithms (GAs), Memetic Algorithms (MAs), Particle Swarm Optimization (PSO) and 

Shuffled Frog Leaping Algorithms (SFLA) showed superior performance and convergence rate 

etc. [26]. Efficiency of IWO in optimization has been proved in different studies in water 

engineering [27–30]. 
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The process of achieving the optimal solution in the IWO is as follows: 

I. Initializing a population 

The implementation of this algorithm begins with the distribution of a certain number of seeds 

(initial population) in the search space. 

II. Reproduction 

Each seed grows according to its merits and produces new seeds. The number of seeds produced 

by each plant increases linearly from the lowest possible number of seeds to the highest possible 

number. 

III.  Spatial dispersal 

In this section, the generated seeds are randomly dispersed in the multidimensional search space 

by the normal random distribution. Its average value is zero and its standard deviation varies at 

different stages. This step is similar to the random propagation of the seeds around the parent 

plant. At each step, the value of the standard deviation σ corresponding to the random function is 

reduced from the initial value of σinitial to the final value of σfinal. In the simulations, the nonlinear 

change expressed in Eq. (1) has shown a performance: 

max

max

( )
( )

( )

n

iter initial final finaln

iter iter

iter
   


    (1) 

In Eq. (1), itermax represents the maximum number of iterations, σiter the standard deviation in the 

current time step, and n the nonlinear modulation index. 

IV. Competitive exclusion 

If the plant produces no seed, it will become extinct and otherwise, it can spread throughout the 

world. Therefore, some competition is needed to limit the maximum number of plants. After 

several iterations, the number of plants will reach their maximum. At this stage, it is expected 

that the more competent plants will proliferate than the other plants. When the number of plants 

reached its maximum (Pmax), the process of removing plants begins with less fitness [26]. 

On the other hand, in the current study, IWO performance is compared to four algorithms in the 

literature i.e., Differential Evolution (DE), Charged System Search (CSS), Colliding Bodies 

Optimization (CBO), and Enhanced Colliding Bodies Optimization (ECBO). DE is one of the 

widely used metaheuristics, which can be categorized as a population based optimization 

algorithm. DE was developed by Storn and Price [31] and has been used in many real 

engineering complex problems by employing mutation, crossover, and selection operators' 

techniques. CSS is a population based algorithm, which was developed by Kaveh and Talatahari 

[32] and was inspired from Coulomb law from electrostatics and the Newtonian laws of classic 

mechanics. CBO algorithm is a metaheuristic, which was presented by Kaveh and Mahdavi [33]. 

Unlike the most of optimization algorithms, CBO works simply and does not depend on any 
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internal parameter. ECBO is an improved version of CBO, which was proposed by Kaveh and 

Ilchi Ghazaan [34]. Colliding memory was employed in this algorithm in order to collect the best 

solutions. Techniques in harmony search algorithm were used to improve CBO. 

2.2. Gravity dam optimum design model 

Figure 1 shows the schematic of a gravity dam (plan and section). The purpose of shape 

optimizing of a structure is to find the most appropriate dimensions and shape so that it can 

withstand all loads and pressures. The loads in the gravity dam models are divided into two 

major categories including vertical and horizontal loads. The vertical loads include self-weight, 

uplift pressure force, silt pressure force, and seismic force. In addition, the vertical loads include 

water force, silt pressure force, wave pressure force, and seismic forces. Sliding and shear failure 

occur when the horizontal forces on each horizontal plane of a dam exceed its shear strength. 

Overturning of the dam and additional compressive stresses (and possibly tensile) can be 

prevented by selecting the appropriate cross-section. Normally, a gravity dam may be failed due 

to one or all of these reasons: 

1) sliding on a horizontal plane 

2) overturning on toe 

3) weakness in material (stress > allowable stress) 

Design constraints are normally related to safety consideration according to the nature of the 

engineering problems and design codes. The architectural and usability issues may be also 

considered as design constraints, but these issues are generally considered as the solution ranges 

of design variables to constrain the generation of possible optimum solutions. An optimization 

problem requires objective function(s) or cost function(s), which is widely related to the cost of 

the design, but safety, usability and architectural problems can be added into the formulation 

[35]. The design variables directly affect the objective function, which their values are unknown 

at the beginning of solving problems. Evolutionary algorithms based on the optimization process 

obtain their values. The calculated values of design variables must be within a desired range. The 

optimal solution is acceptable in case it contains all constraints and limitations in design 

problem. To apply constraints, penalty function is usually employed to consider them into an 

objective function [3,36,37]. 

The objective function in optimization of the gravity dam’s shape is formulated as follows: 

1 2 3 4  0.5 0.5damMinimize A x x BH x x  
 (2) 

where Adam is the area of gravity dam cross-section (m2) and other parameters are shown in Fig. 

1. The fitness function is formulated as Eq. (3) to include penalty functions (constraints) into the 

objective function (Eq. (2)). 

1

 =
m

dam p

i

Fitness Function A f


   (3) 
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where fp = penalty values; ψ = a large integer number which makes the objective function 

unacceptable (in the case of penalty ≠ 0); and m = number of constraints. 

 
Fig. 1. A gravity dam schematic including geometric parameters. 

Various loads affect gravity dams design. They can be categories into two major group: vertical 

and horizontal loads. The forces in the gravity dam design can be presented as follows: 

A. Vertical forces 

1) Self-weight: force × (liver arm about toe) 
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2) Uplift pressure force: force × (liver arm about toe) 
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3) Silt pressure force: force × (liver arm about toe) 
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4) Seismic force: force × (liver arm about toe) 
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B. Horizontal forces 

1) Water force: force × (liver arm about toe) 
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2) Silt pressure force: force × (liver arm about toe) 

21
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3) Wave pressure force: force × (liver arm about toe) 
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4) Seismic forces: force × (liver arm about toe) 
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In optimization and design of structures, values of some parameters are fixed. In fact, they have 

been chosen by the experience or using previous experiments, design, and experiences, codes 

and by designer judgment. These fixed parameters in the gravity dam problem of Tilari Dam are 

as follows: 

1. Dam height ( H )= 38.55 m 

2. Maximum (upstream) water level ( h )= 36.2 (m) 

3. Maximum (downstream) water level ( 'h )= 3 (m) 

4. Silt deposit level ( sh )= 13 (m) 

5. Specific weight density of water ( w )= 9.81 (kN/m3) 

6. Specific weight density of concrete ( c )= 2.4 w  

7. Friction coefficient of (  )= 0.75 

8. Permissible shear stress at foundation (q )= 1200 (kPa) 

9. Permissible compressive strength of concrete ( c )= 3000 (kPa) 
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10. Crest width ( B )= 4.9 (m) 

11. Downstream face height ( 4x )= 33.35 (m) 

12. Fetch ( f )= 10 (km) 

13. Wind velocity ( wv )= 80 (km/h) 

14. Centre of drainage gallery from axis (
gd )= 1 (m) 

Five variables are selected as design variables. These variables and their upper and lower bounds 

are represented in Eq. (30). Two models are considered in present paper. Normally, the upstream 

and downstream slopes (n and m) are considered between 0–0.2, and 0.6–0.8, respectively [2] . 

These parameters in model I (M1) were chosen as 0.1-0.2 and 0.6-0.9 according to studies of 

[13] and [16]. In model II (M2) the upper face of gravity dam is considered perpendicular (n=0). 

1
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Stability (overturning and sliding), stress, and geometry constraints are applied in shape 

optimization in the current study. The stability and stress constraints are shown in Eqs. (31) and 

(32). The geometry constraints are applied to the problem using upper and lower bounds on 

design variables. 
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where 
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3. Results and discussions 

Sensitivity analysis for choosing the IWO parameters was conducted and its results are shown in 

Table 1. In fact, sensitivity analysis is necessary to gain the best value of the objective function. 

Considering Table 1, eight parameters should be evaluated prior to employing the IWO in real 

engineering problems. Some algorithms have more parameters to tune than others such as the 

IWO. Different values were examined to determine initial population, maximum number of 

plants population, minimum number of seeds, maximum number of seeds, nonlinear modulation 

index, initial value of standard deviation, final value of standard deviation, and maximum 

number of iterations, but the most appropriate ones in solving the concrete gravity dam problem 

are shown in Table 1. 

In Fig. 2, the convergence of the objective function for M1 using the IWO is shown. As it is 

obvious, the objective function of shape optimization problem converged in 50 iterations. 

 
Fig. 2. Convergence for IWO. 

Optimization results of two studied models and algorithms in previous works i.e., Differential 

Evolution (DE), Charged System Search (CSS), Colliding Bodies Optimization (CBO), and 

Enhanced Colliding Bodies Optimization (ECBO) are shown in Table 2. In addition, Tilari Dam 

parameters are shown in aforementioned table. The cross-sectional area of this dam, which was 

constructed in India, is 709.493 (m2). As dams are normally constructed in wide valleys, small 

changes in their cross-sectional area lead to high-cost saving. M1 has the same upper and lower 

bounds as studies of [13] and [16]. According to the results, IWO with same conditions of DE, 

CSS, CBO, and ECBO could find the same objective function of them. In other words, IWO 

(M1), DE, CSS, CBO, and ECBO were succeeded in reducing total cross sectional area on Tilari 

Dam more than 20% i.e., decrease from 709.493 (m2) to 564.496. The upstream and downstream 

slope faces and parameter x1 in these optimal models were 0.1, 0.6, and 28.96, respectively. 
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Table 1 
Parameters of IWO. 

Value Symbol Parameter 

10 N0 Number of initial population 

100 pmax Maximum number of plant population 

2 Smin Minimum number of seeds 

5 Smax Maximum number of seeds 

3 n Nonlinear modulation index 

1 initial  Initial value of standard deviation 

0.001 final  Final value of standard deviation 

50 itmax Maximum number of iterations 

 

In M2, gravity dam model had vertical upstream face. This situation can reduce dam's mass and 

water weight in upstream (resisting moments), and cross-sectional area. The results showed the 

gravity dam with perpendicular upstream face could lead to a far more economical design. Total 

cross-sectional area in M2 was calculated 522.56 (m2), which had about 26% reduction in 

comparison with prototype model (Tilari Dam). In M2 the calculated values of the parameters av 

and ah were more than other optimal models. It is worth mentioning that these two parameters 

are chosen based on seismicity of dam’s zone. This issue was mentioned in [13], too. In fact, the 

more seismicity in dam’s site causes the more increase in the value of ah. In some studies is 

proposed to choose parameter av value of 1/2 or 2/3 of ah. Generally, the magnitude of an 

earthquake depends on various parameters such as dam’s weight and type, dam's material 

behavior, and earthquake magnitude. Stability, stress, and geometry constraints (Eq. (31)) were 

applied in the current problem to ensure real-dam-design conditions. These constraints were 

between desired limits, which are shown in Eqs. (30) and (31). 

Table 2 

Parameters of prototype and optimal models. 

Design variable Tilari Dam 
Algorithm 

IWO (M1) IWO (M2) DE 
[16] 

 CSS 
[13] 

 CBO 
[13] 

 ECBO 
[13] 

 

n 0.1 0.1 0 0.1 0.1 0.1 0.1 

m 0.85 0.6 0.6 0.6 0.6 0.6 0.6 

x1 (m) 30.95 28.96 - 28.96 28.96 28.96 28.96 

av - 0.05 0.2 0.053 0.0589 0.0502 0.05 

ah - 0.05 0.1491 0.064 0.0558 0.0514 0.05 

Cross-sectional 

area (m
2
) 709.493 564.49583 522.56175 564.496 564.49583 564.49583 564.49583 
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4. Conclusions 

Without any doubt, optimization techniques could reduce the construction time and costs. 

Among all infrastructures, gravity dams consume the sheer volume of materials. Accordingly, 

small changes in their geometries cause a major variation in the construction time and costs. In 

the current study, a nature-inspired algorithm, namely invasive weed optimization (IWO) was 

employed to optimize the shape of a concrete gravity dam. A real benchmark design problem 

(i.e., Tilari Dam, which is built in the India, with 709.493 m2 cross-sectional area) is used as a 

case study. The current framework can also be used in the future designs of other gravity dams. 

The performance of IWO was also compared to four algorithms in the literature: differential 

evolution (DE), charged system search (CSS), colliding bodies optimization (CBO), and 

enhanced colliding bodies optimization (ECBO). Various vertical and horizontal loads (i.e., 

water, seismic, wave, uplift, silt and so on) affect design of dams so the programming model 

should contain all of them. Two models were presented and their results were compared to four 

aforementioned algorithms. First model (M1) had the same conditions as the previous works. 

While the IWO had the same result compared to DE, CSS, CBO, and ECBO, convergence graph 

showed that the IWO converges faster than them. M1 and those four models in the literature 

reduced cross-sectional area of Tilari Dam approximately 20 percent. It is worth mentioning that 

in the gravity dams design, like any real design problem, there are different methods and codes 

and their consequent certain coefficients and considerations, which must be considered as well in 

order to compare the results obtained by different works. In addition, model 2 (M2) was 

proposed to evaluate a different condition i.e., a concrete gravity dam with perpendicular 

upstream face. According to the results, the cross-sectional area which was optimized with this 

assumption needed 26 percent less amount of concrete than real design. In summary, IWO could 

design a cross section for the gravity dam with a better vertical upstream face which endures all 

vertical and horizontal loads and had less concrete volume. 
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