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Liquefaction is one of the disasters caused due to earthquake. 

In 1999, Chi-Chi, Taiwan, earthquake is an example of 

liquefaction prone disasters induced due to Mw 7.6 

earthquake. This becomes major cause for prediction of the 

liquefaction in the soil with respect to geotechnical property. 

In this paper, we have use Artificial Neural Networks (ANN) 

model based on Resilient Back propagation (Rprop), 

Decision tree model (DT) and classifier are C 4.5 and 

Random Forest is done for comparing the performance and 

evaluation of liquefaction potential based on the obtained 

field CPT data (Juang et al. [1]) consisting 125 datasets over 

the simplified procedures that are being traditionally use for 

the classification of liquefaction of the soil by different 

researchers. It is observe that Resilient Back propagation 

Algorithm prediction is 100% whereas C 4.5 algorithm and 

Random forest Algorithm are 97.6% and 98.4% accurate for 

the evaluation of seismic soil liquefaction potential. 

Keywords: 

Resilient back propagation 

(Rprop); 

C4.5 Algorithm; 
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Liquefaction. 

 

1. Introduction 

Liquefaction is a phenomenon, the shear strength of soil becomes too low or zero that makes the 

soil is unable to support the structures (Kramer 1996). This causes failure of civil engineering 
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structures during the earthquake and loss of lives and property [1–5]. Hence, this becomes 

important to monitor the liquefaction in the seismic zone area. Simplified procedures based on 

empirical and semi-empirical [6] are used to assess liquefaction potential hazards. Many of 

among them are based on extension of the ‘simplified procedure’ developed by Seed and Idris 

[4]. Methods use are based on the in-situ data. One of the liquefaction evaluations based on in-

situ CPT (Cone Penetration Test) data methods used by Juang et al. and youd are widely used by 

different researchers in their research work. CPT test offers clear observation of subsurface 

profile of soil strata and penetration resistance than other in-situ test. 

Artificial Neural Networks (ANN) models gain a lot of popularity [1–5] in the mid early of 2011 

and successfully proved with promising results [5] but with the ANN machine learning methods 

‘Black Box’ is a problem in the research [7–9] because ‘Black Box’ term in the ANN machine 

learning approaches means that we usually ignore how we are getting results by giving input and 

getting output. Simply we don’t get idea what actually is happening in the process with inputs 

which is the limitation with all ANN studies. But also the results obtained by the ANN are quite 

good and to increase the accuracy for the model Resilient Back Propagation (Rprop) is used in 

this paper. To best of our knowledge, it is believe that Rprop machine learning used by the 

authors in this paper is first of its own kind in the assessment of the liquefaction analysis of soil. 

Also some other methods like support vector machine (SVM) [10,11]., patient rule induction 

method (PRIM) [12] Bayesian belief Network [13] have also help in the prediction of the soil 

liquefaction. Resilient back propagation (Rprop) algorithm is use due to its advantage of direct 

adaptation of weight based on local gradient information [8] to increase the accuracy. Also in this 

paper use of C 4.5 decision tree is the extended use of the seismic soil liquefaction potential [13] 

. Classifiers like; Random Forests gain popularity in the recent years [14] have proved promising 

results [1–5,13]. Random Forest Algorithm performed well if we compare to many other 

classifiers like Support Vector Machine(SVM) [1,10], C 4.5 decision tree [13]. 

After generating a correlation matrix between the input variables by the authors it is found that 

parameters like; Friction ratio Rf, peak horizontal acceleration (PGA) amax (g), vertical effective 

stress σvo (kPa), cone penetration resistance qc, frictional resistance fs are very important 

parameters in the use of liquefaction assessment of soil. 

We have split the paper into different sections (1) Introduction, (2) Research Methodology, (3) 

Data Collection and Testing, (4) Conclusions. Section 2, deals with the methods and principle of 

algorithms used given by their inventers traditionally, Section 3 its data collection and testing, 

section 4 with the conclusions, scope of further study and limitations. 

2. Research methodology 

2.1. Working principle of algorithm 

2.1.1. Artificial neural network (ANN) 

In this paper, we have trained Artificial Neural Network (ANN) based on multi-layer perceptron 

(MLP) trained with Resilient back propagation (Rprop) algorithm [8] (Reidmiller) is used under 

the ‘neuralnet’ package provided by R language. The neuron’s developed is having 5 inputs p = 
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(Rf, amax, σvo , qc, fs) and weighted by elements (w1, w2, w3, w4, w5) of the weight matrix W 

respectively with six hidden layers. 

Perceptron was invented by Frank Rosenblatt. Perceptron is the building block of the neural 

network. The used perceptron architecture consists of input values, weights, bias and an 

activation function. A single perceptron with n-inputs, n-weights, bias and with activation 

function shown in the Fig 1. 

In the process, all the weights are multiplied with inputs they are taken and sum up to create 

weighted sum and then applied to the activation function producing perceptron output. The 

activation function is use for surety that the output must lies between the recorded values (0,1) in 

the perceptron architecture. Weight is referred as the strength of a node. An inputs bias function 

shifts the curve up or down. There are different types of activation function. In our neural 

network model, we have used Logistic function for the hidden layers. This function is used to 

output a number from 0 to 1. Logistical functions have the formula:  

𝑙𝑜𝑔𝑠𝑖𝑔(𝑥) =
1

1+exp⁡(−𝑥)
 (1) 

 
Fig. 1. A Single Perceptron. 

2.1.2. Back propagation learning 

Backpropagation algorithm is use for supervised learning with multi-layered feed-forward 

networks [8]. The algorithm forms a chain which is recall to calculate the effect of each weight 

in the network with respect of an arbitrary function (E): 

𝜕𝐸

𝜕𝑤𝑒𝑓
=⁡

𝜕𝐸

𝜕𝑠𝑒

𝜕𝑠𝑒

𝜕𝑛𝑒𝑡𝑒
⁡
𝜕𝑛𝑒𝑡𝑒

𝜕𝑤𝑒𝑓
 (2) 

Where, 𝑤𝑒𝑓 is the weight for the neuron f to neuron e, 𝑠𝑒 the output, 𝑛𝑒𝑡𝑒 the weighted sum of 

the input neuron’s e. The partial derivative of each weight is called, minimizing error function 

obtained by performing simple gradient descent: 

𝑤𝑒𝑓(𝑡 + 1) = 𝑤𝑒𝑓(𝑡) −∈1
𝜕𝐸

𝜕𝑤𝑒𝑓
(𝑡) (3) 
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The rate of learning ∈1, which scales the derivative, has an important effect on the time needed 

until convergence is gained. If ⁡∈1,is very small a number of many steps will require to obtain 

solution and a large learning rate will possibly lead to oscillation, preventing the error to fall 

below a definite value. 

For solving the above mention problem, a momentum term is use-  

∆𝑤𝑒𝑓(𝑡) = ⁡−∈1
𝜕𝐸

𝜕𝑤𝑒𝑓
(𝑡) + 𝜇∆𝑤𝑒𝑓(𝑡 − 1) (4) 

Where, 𝜇 is momentum parameter. It renders the learning process makes more stable and to 

stimulate convergence in shallow regions of the error function. But practice have shown that 

optimum value of the momentum parameter is equally problem dependent as the learning rate 

∈1and hence no general progress is achieved. Various modifications have been proposed to the 

back propagation algorithm. RROP is one of the modifications to this algorithm to solve some 

adaptation problems.  

Resilient backpropagation change the size of the weight-update ∆𝑤𝑒𝑓 directly, i.e. without taking 

the size of the partial derivative. 

2.1.3. Resilient backpropagation (RPROP) algorithm 

RPROP stands for Resilient backpropagation. This algorithm is use for supervise learning in the 

feed-forward ANN networks. This algorithm is of first-order optimization algorithm. This 

algorithm was invented by Martin Reidmiller and Heinrich Braun in 1992 [8]. It adopts a direct 

adaptation of the weight step depend on the local gradient information and its adaptation not fade 

by gradient behavior. For every particular weight single update value ∆𝑒𝑓, this recognize the size 

of the weight update. The adaptive update value updates during the session of learning process 

based on its local sight on the error function (E), to the following learning-rule: 

   ,∆𝑒𝑓
(𝑡)=     𝜂+ ∗ ∆𝑒𝑓

(𝑡−1), 𝑖𝑓⁡
𝜕𝐸

𝜕𝑤𝑒𝑓

(𝑡−1)

∗
𝜕𝐸

𝜕𝑤𝑒𝑓

(𝑡)

> 0 

    𝜂− ∗ ∆𝑒𝑓
(𝑡−1), 𝑖𝑓⁡

𝜕𝐸

𝜕𝑤𝑒𝑓

(𝑡−1)

∗
𝜕𝐸

𝜕𝑤𝑒𝑓
< 0 (5) 

⁡⁡⁡⁡⁡⁡⁡∆𝑒𝑓
(𝑡−1)

, else 

      0 < 𝜂− < 1 < 𝜂+ 

On every iteration, partial derivative of the weight changes its sign. The difference in sign 

indicates that the last update was very large and the algorithm has propped over a local 

minimum, the update-value ∆𝑒𝑓 reduced by the factor⁡𝜂− . In addition, the sign if remains 

constant and does not change, the updated value get little bit increased in order to rate up the 

convergence in the surface of error. 
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Now update value of the each weight is taken and weight updated follow simple rule. If the 

derivative is positive this refers to the increase in error, the weight decreases by the update value 

whereas, if derivative is found negative the update value is added. 

       ⁡∆𝑤𝑒𝑓
(𝑡) =    −∆𝑒𝑓

(𝑡), 𝑖𝑓⁡
𝜕𝐸

𝜕𝑤𝑒𝑓

(𝑡)

> 0 

       +∆𝑒𝑓
(𝑡), 𝑖𝑓⁡

𝜕𝐸

𝜕𝑤𝑒𝑓

(𝑡)

< 0 (6) 

0, else 

Further more: 

𝑤𝑒𝑓
(𝑡+1) = 𝑤𝑒𝑓

(𝑡) + Δ𝑤𝑒𝑓
(𝑡)

  (7) 

𝑤𝑒𝑓
(𝑡) is the weighting between e and f neurons in two successive layers on the iteration t, 

𝑤𝑒𝑓
(𝑡+1)is the new weight. 

2.2. Decision trees (DTs) and its working principle 

Nature is one of the best teacher and we have lot of things to learn from nature. In this machine 

learning approach, we use both classifications and regression problems in our real life and 

liquefaction analysis is one of the best examples to understand this. Decision trees [9,13] are 

non-parametric supervised learning technique that uses tree like model. The model is able to 

predict the value of the aimed variable by learning simple decision rules work out from the data 

features. This model follows rules that are generally in form of if-then-else statements. As long 

we go at depths the tree becomes more complex the rules and best is the model.  

2.2.1. Entropy  

Let us consider the probability distribution, P equals to (p1, p2 ….pn) and a sample S, the 

information taken over by this distribution, also called the entropy of P calculated as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑒(𝑃) = ⁡−∑ 𝑝𝑖 × log 𝑝𝑖
𝑛
𝑖=1 ⁡⁡ (8) 

2.2.2. The gain information  

For all instances, the functions we use enable us to measure the degree of mixing classes and any 

position of the tree in construction. It stays to define a function to choose the test that must mark 

the current node. It states the gain for a test T and a position p as: 

𝐺𝑎𝑖𝑛(𝑝, 𝑇) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑒(𝑝) − ∑ (𝑝𝑗 × 𝐸𝑛𝑡𝑟𝑜𝑝𝑖𝑒(𝑝𝑗))
𝑛
𝑗=1  (9) 

Where, values (𝑝𝑗) is the all possible set for attribute T. We can use this measure to rank 

attributes, construct the model, at each node is located the attribute with the highest information 

gain. 
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2.2.3. C 4.5 algorithm 

C4.5 is the successor of the ID3 algorithm [9,14]. Not using ID3 algorithm in this paper is that it 

has a several disadvantages like if we use a small sample of data for testing there will be problem 

of data over-classification. Hence using C4.5 algorithm is a good choice over ID3 algorithm. The 

algorithm was given by Ross Quinlan (1993) to overcome the limitation of ID3 algorithm. 

The algorithm uses “Gain Ratio” which is a modification of information gain. Gain Ratio given 

as follows: 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝑝, 𝑇) =
𝐺𝑎𝑖𝑛(𝑝,𝑇)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑝,𝑇)
 (10) 

Split Info is: 

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝑝, 𝑡𝑒𝑠𝑡) = ⁡−∑ 𝑝′ (
𝑗

𝑝
)𝑛

𝑗=1 × log (𝑝′ (
𝑗

𝑝
)) (11) 

the proportion of elements present at the position- p is p’(j/p), taking the value of j-th test. 

C4.5 chooses one attribute of the data at each node of the tree that most effectively separate its 

set of samples into subsets full within one class or the other. Its eligibility based on the 

normalized information gain that is outcome from choosing an attribute for separating the data. 

The attribute with the high-normalized information gain chosen to make the decision. 

2.2.4. Random forest algorithm  

Random Forest Algorithm is very popular in machine learning [15] as it performed well if we 

compare to many other classifiers, including discriminant analysis, support vector machines 

(SVM) and some traditional neural networks (NN), and is powerful against overfitting (Breiman, 

2001). Random Forest is a supervised machine learning technique and concept of ensemble 

learning. Ensemble learning combines variety of classifiers to solve a very complex problem and 

to upgrade the efficiency of the model. Classifier contains number trees on several subsets of 

datasets and takes the average to upgrade the predictive accuracy of that dataset. 

Keeping the above straight forward simply, “instead of depending on single tree, algorithm gains 

the prediction from each tree and based on the higher number of votes prediction, it predicts the 

final result”. As mentioned in above paragraph it is robust against overfitting , the number of 

trees i.e. “greater number of trees in the forest leads to higher accuracy and prevents the problem 

of overfitting”. If there is any missing values of data it can handle very efficiently. 

Random forest algorithm works in the two phase creation. In the first phase by aggregating N 

decision trees and in second stage predicting for every decision trees created in first phase. The 

working of the algorithm given below in following steps: 

In the first step, the algorithm selects random K data points from the training set. Stepping to the 

next the algorithm construct the decision trees model related with the selected data points known 

as subsets. After that, it chooses the N number for decision trees that we want to construct. The 

process keeps on going by selecting the random K data points and constructing the decision tree 

with selected subsets. In the final step based on the higher votes for new data points, it finds the 

prediction for every decision tree and assigns new data points to the each section. 
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3. Data collection and testing 

In this paper we have used actual field data of CPT-based liquefaction case history in 1999, Chi-

Chi Taiwan earthquake is used (Juang et al., [1]) shown in Table 1 and compared the predicted 

results with the actual ones. The database have total 125 instances, 41 are liquefied and other 84 

are non-liquefied based on the field test values. 

For the Artificial Neural Network (ANN) testing and modeling we have used ‘neuralnet’ package 

provided in R language using R studio version 1.1.463. C 4.5 Algorithm and Random Forest 

Algorithm are designed and tested using the open source software “Waikato Environment for 

Knowledge Analysis (WEKA)”, Java based programming language developed at the University 

of Waikato, New Zealand. This is open source and free to use software dedicated to the machine 

learning. 

The correlation matrix has been generated between the input variables Depth D (m), Friction 

ratio Rf , peak horizontal acceleration (PGA) amax (g), total vertical stress σ’vo (kPa), vertical 

effective stress σvo (kPa), cone penetration resistance qc , frictional resistance fs. In the 

correlation matrix it can be seen in the Fig 2, that the Depth D (m) is highly correlated to the 

variables total vertical stress σ’vo (kPa), vertical effective stress σvo (kPa). Also, total vertical 

stress σ’vo (kPa), vertical effective stress σvo (kPa) are highly correlated to each other which will 

affect the model. It is observe that (i) if we use higher number of parameters in the regression 

model it will increases the chances of error. (ii) On the other hand, it is also observe that higher 

number of correlation among the chosen input variables increases error in the model respectively. 

The first case is not problem for us but the second case will affect the model and the accuracy 

hence the important variables are pointed out and used in the model precisely. 

Table 1 

CPT Data for prediction of the Liquefaction Index (Juang et al. [1]). 
Depth (m) qc(MPa)  fs(kPa) Rf(%) σ'0(kPa) σ 0(kPa) amax(g) Liq 

12.5 7.52 30.9 0.42 231.3 121.3 0.21 No 

13.5 7.02 24.3 0.36 249.8 129.8 0.19 No 

14.5 16.89 44 0.27 268.3 138.3 0.19 No 

3.5 1.5 24.4 2.16 66.6 43 0.12 Yes 

7.5 7.04 30 0.43 138.6 75 0.12 No 

5 6.61 41.5 0.62 93.6 55 0.12 No 

3.5 2.45 17.1 0.72 64.8 44.8 0.19 Yes 

14.5 17.08 69.1 0.37 268.3 138.3 0.19 No 

7.4 5.46 45.9 0.84 136.8 74.2 0.12 No 

5 2.96 21.1 0.71 92.5 57.5 0.19 Yes 

3.5 2.09 8.2 0.39 64.8 39.8 0.19 Yes 

3.2 2.66 19.2 0.73 59.2 42.2 0.19 Yes 

8 5.77 25 0.45 148 83 0.43 Yes 

16.5 13.65 17.6 0.13 305.3 150.3 0.19 No 

7.5 7.57 41.4 0.55 142.5 78.8 0.12 No 

13.5 14.67 9.8 0.07 249.8 124.8 0.19 No 

3.1 1.41 4.9 0.39 57.4 46.4 0.43 Yes 

10.1 7.72 15.5 0.2 186.9 100.9 0.19 No 

10.5 6.08 31.7 0.52 192.6 99 0.12 No 

6.5 7.03 36.1 0.51 120.6 67 0.12 No 
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14.5 8.01 20.9 0.26 268.3 138.3 0.19 No 

18.5 10.05 46.1 0.45 346 172.3 0.19 No 

12.5 9.19 33 0.4 231.3 121.3 0.19 No 

12.5 8.3 12.7 0.15 231.3 121.3 0.19 No 

6.5 7.12 50.7 0.71 120.6 67 0.12 No 

2.5 3.26 9.5 0.29 48.6 35 0.12 Yes 

2.5 2.54 23 0.97 46.3 36.3 0.19 Yes 

6.5 2.69 28.8 1.09 120.3 65.3 0.19 Yes 

2.5 3 7.4 0.25 46.3 31.3 0.19 Yes 

8.5 7.47 34.8 0.47 156.6 83 0.12 No 

4.05 2.61 23.5 0.95 74.9 49.4 0.19 Yes 

12.5 5.47 63.3 1.17 228.6 115 0.12 No 

3.1 2.54 11.9 0.57 57.4 41.4 0.19 Yes 

12.5 7.38 42.9 0.57 228.6 115 0.12 No 

14 13.65 21.8 0.16 259 134 0.19 No 

2.5 0.23 0.9 0.42 50 36.3 0.12 Yes 

6.5 7.94 45.1 0.57 124 70.3 0.12 No 

17 7.68 60.8 0.81 314.5 159.5 0.19 No 

3.5 2.49 10 0.41 68.5 44.8 0.12 Yes 

11.8 8.15 37 0.46 218.3 115.3 0.19 No 

18.5 9.48 86.1 0.79 336.6 163 0.12 No 

2.5 0.92 18.9 2.54 48.6 35 0.12 Yes 

9 6.67 14.2 0.21 166.5 91.5 0.19 No 

10.35 11.32 114 0.73 191.5 108 0.43 No 

9.5 6.76 64.9 0.96 174.6 91 0.12 No 

15.5 8.74 41 0.46 286.8 146.8 0.19 No 

11.6 7.72 62.6 0.81 218.3 113.6 0.12 No 

8.5 5.38 26.1 0.48 156.6 83 0.12 No 

8.5 6.73 49.2 0.73 156.6 83 0.12 No 

10.5 7.46 35.8 0.48 189 99 0.19 No 

10 11.96 162.2 1.35 185 105 0.43 No 

4.5 6.01 27.2 0.46 83.3 58.3 0.43 Yes 

10.5 8.25 70.6 0.86 194.3 104.3 0.19 No 

3.5 2.65 9.3 0.36 66.6 43 0.12 Yes 

3.5 11.56 170 1.51 68.5 49.8 0.43 No 

12.5 8.27 0.2 0.24 231.3 121.3 0.19 No 

4.5 1.73 25.8 1.59 83.3 53.3 0.21 Yes 

5 2.22 23.4 1.06 92.5 57.5 0.19 Yes 

5.5 1.89 6.7 0.37 105.5 61.8 0.12 Yes 

4.5 0.64 9.9 1.91 84.6 51 0.12 Yes 

3.7 2.7 32.4 1.24 68.5 46.5 0.19 Yes 

11.5 7.62 27.9 0.36 207 107 0.19 No 

11.5 6.83 24.5 0.35 212.8 112.8 0.21 No 

3.5 3.86 24.3 0.78 64.8 49.8 0.43 Yes 

3.5 2.62 11 0.41 64.8 44.8 0.19 Yes 

14 12.77 22.8 0.18 259 134 0.19 No 

9.5 7.43 57.7 0.77 179.5 95.8 0.12 No 

14.5 10.61 19.2 0.18 268.3 133.3 0.19 No 

2.6 1.18 11.4 0.79 48.1 37.1 0.19 Yes 

7.5 6.23 1.7 0.27 138.8 78.8 0.19 No 

6.5 7.4 30.3 0.4 120.6 67 0.12 No 

3.5 0.2 3.7 1.96 68.5 44.8 0.12 Yes 

10.5 6.49 55.2 0.86 192.6 99 0.12 No 



100 R.B. Bhardwaj, S.R. Chaurasia/ Journal of Soft Computing in Civil Engineering 6-2 (2022) 92-106 

9.5 6.62 37 0.57 174.6 91 0.12 No 

9 12.89 138.8 1.08 170.2 96.5 0.43 No 

5 2.54 13.8 0.54 92.5 57.5 0.19 Yes 

12.5 6.8 37.2 0.55 231.3 121.3 0.19 No 

13.5 6.85 59.1 0.87 246.6 123 0.12 No 

13.5 16.3 130.1 0.8 249.8 134.8 0.43 No 

7.9 6.05 43.3 0.71 145.8 78.2 0.12 No 

7.5 8.03 2.6 0.32 138.8 78.8 0.19 No 

11.5 7.41 55.5 0.76 212.8 112.8 0.19 No 

6.5 1.54 5.8 0.41 124 70.3 0.12 Yes 

12.5 7.76 53.9 0.7 228.6 115 0.12 No 

13.5 8.3 43.3 0.53 249.8 129.8 0.19 No 

4.1 0.9 9 0.59 75.9 54.9 0.43 Yes 

14 12.43 28.2 0.23 259 134 0.19 No 

3.5 1.28 8.8 1 63 43 0.12 Yes 

6.5 6.68 41.2 0.62 124 70.3 0.12 No 

7.5 5.91 28 0.47 138.6 75 0.12 No 

6 6.64 36.9 0.55 111.6 63 0.12 No 

2.5 0.94 22.4 2.54 46.3 41.3 0.43 Yes 

3.5 1.47 24.6 1.94 64.8 49.8 0.43 Yes 

12.5 10.08 22 0.23 231.3 121.3 0.19 No 

2.5 1.62 15.5 1 46.3 36.3 0.19 Yes 

4 1.87 23.6 1.3 74 49 0.43 Yes 

12.5 7.58 44.6 0.6 228.6 115 0.12 No 

13.5 8 26.8 0.36 249.8 129.8 0.19 No 

11.5 8.32 27.1 0.34 216.5 112.8 0.19 No 

3.5 0.18 0.6 0.37 68.5 44.8 0.12 Yes 

19.5 11.26 35.5 0.32 364.5 180.8 0.19 No 

12.5 7.68 58.7 0.77 228.6 115 0.12 No 

6.1 7.24 41.4 0.57 116.6 66.9 0.12 No 

11.5 7.99 43.3 0.54 210.6 107 0.12 No 

13.5 6.54 49.8 0.76 246.6 123 0.12 No 

5 5.93 54.4 0.92 96.2 57.5 0.12 No 

4.5 2.78 20.7 0.74 96.2 48.3 0.19 Yes 

8 6.61 26 0.4 148 83 0.19 No 

7.5 5.59 21.8 0.4 138.6 75 0.12 No 

8.5 6.12 30.6 0.51 161 87.3 0.12 No 

13.5 7.41 58.9 0.79 246.6 123 0.12 No 

13.9 11.58 29.5 0.28 257.2 133.2 0.19 No 

9.5 7.18 45.5 0.64 179.5 95.8 0.12 No 

4.5 2.01 5.1 0.25 87 53.3 0.12 Yes 

13.5 6.32 61.5 0.98 246.6 123 0.12 No 

7.5 5.21 28.8 0.55 142.5 78.8 0.12 No 

4.5 1.82 22.8 1.25 83.3 53.3 0.19 Yes 

8.5 6.21 24.8 0.4 161 87.3 0.12 No 

15.5 14.74 26.2 0.2 286.8 141.8 0.19 No 

7.5 3.05 32.5 1.07 138.8 73.8 0.19 Yes 

11.1 6.7 46.9 0.72 205.4 109.4 0.19 No 

12.5 8.83 57.7 0.66 235 121.3 0.12 No 

13 5.16 62 1.21 237.6 119 0.12 No 

14 12.15 0.3 0.25 259 134 0.19 No 

4.5 0.64 27.5 4.2 84.6 51 0.12 Yes 
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Fig. 2. Correlation between the input variables used in the prediction (note: v = σv0, v1= σ

’
v0). 

3.1. Artificial neural network (ANN) 

Training and testing performance (%) has been calculated by using the following formula: 

Training performance (%) or Testing performance (%) 

(
𝑁𝑜. 𝑜𝑓⁡𝑑𝑎𝑡𝑎⁡𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦⁡𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑⁡𝑏𝑦⁡𝐴𝑁𝑁

𝑇𝑜𝑡𝑎𝑙⁡𝑑𝑎𝑡𝑎
) × 100 

The R “neuralet” package allows resilient back propagation algorithm and error function use sum 

of square error (sse). 

(1) 125 out of 88 data is used for training NN. 

(2) 125 out of 37 data is used for testing only. 

The developed neural model shown in Fig 3, is introduced with the 37 data sets that are purely 

unknown and new data for the model, and 88 data sets are use for training purpose. Probability 

of liquefaction index, LI is taken “0” for non liquefied cases and LI “0.5 – 1” for the liquefied 

cases, if the value is between “0 - 0.5” it is considered as least criterion for susceptibility of soil. 

In the test the variables like Depth D (m) and total vertical stress σ’vo (kPa) because of their high 

correlation coefficients are excluded. And the input variables used are Friction ratio Rf, peak 

horizontal acceleration (PGA) amax (g), vertical effective stress σvo (kPa), cone penetration 

resistance qc , frictional resistance fs. The results observe has accuracy of 100 % as shown in the 

Table 2.  

Table 2 

Predictive Results obtained by ANN. 
Input Variable Error Steps Total Accuracy (%) 

Rf, amax, σv0 , qc, fs  0.00033 156 100 
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Fig. 3. Generated ANN model with the input variables (Rf, amax, σv0 , qc, fs) (note: v = σv0). 

3.2. C 4.5 algorithm 

The size of tree generated is 7 and the number of leaves is 4 in the model. 10 fold cross 

validation as a test mode is used. The confusion matrix generated by the program correctly 

classified 122 instances and 3 instances incorrectly out of 125 instances thus 97.6% accuracy is 

found for the C4.5 DT. The preprocess statics of variable used in the model are shown in the 

Table 3. With the performance measure, AUC of ROC, MCC, precision, recall, and F-measure 

are use to select optimal model performance for liquefaction and non-liquefaction instances.  

Table 3 

Preprocess statics of variable used in the model. 
Parameters Minimum  Maximum  Mean Standard Deviation  

Cone Penetration Resistance, qc (MPa) 0.18 17.08 6.376 3.807 

Frictional Resistance, fs (kPa) 0.2 170 34.991 28.776 

Friction ratio, Rf (%) 0.07 4.2 0.702 0.557 

Vertical effective stress, σv0 (kPa) 46.3 364.5 162.49 80.128 

Peak horizontal acceleration, amax (g) 0.12 0.43 0.185 0.091 

The summary of stratified cross validation shown below in the Table 4. In the table, mean 

absolute error, root mean squared error, relative absolute error, and root relative squared error 

calculated by the program and based on the results correctly and incorrectly classified instances 

are shown. 

Table 4 
Summary of stratified cross validation for C 4. 

Correctly Classified Instances 122 97.6 % 

Incorrectly Classified Instances 3 2.4 % 

Kappa statistic 0.9445  

Mean absolute error 0.0254  

Root mean squared error 0.153  

Relative absolute error 5.7355 %  

Root relative squared error % 32.5743  

Total Number of Instances 125  
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The confusion matrix generated by the algorithm and it classified -  

a  b   <-- classified 

as 

84  0 a = No 

b = Yes 3   38 
 

In the confusion matrix it is observed that the algorithm has classified 3 instances wrong. The 

detailed accuracy by class is made on the TP Rate, FP Rate, Precision, Recall, F-Measure MCC, 

ROC Area, PRC Area. For the performance measure, AUC (area under curve) of ROC, MCC 

(Matthews correlation coefficient), precision, recall, and F-measureare, OA overall accuracy use 

to select optimal model performance separately for liquefaction and non-liquefaction instances 

shown in Table 5. 

Table 5 
Predictive results by C4.5 DT model. 

 
Fig. 4. Decision Tree Visualization. 

3.3. Random forest algorithm 

The confusion matrix generated by program correctly classified instances 123 and incorrectly 

classified instances 2 out of 125 instances thus the accuracy found 98.4% shown in Table 7. A 10 

fold cross validation as a test mode is used. In the model, bagging with 100 iterations and base 

learner is used. In Table 6 Summary of stratified cross validation for Random Forest is shown. 

Table 6 

Summary of stratified cross validation for Random Forest. 
Correctly Classified Instances 123 98.4 % 

Incorrectly Classified Instances 2 1.6    % 

Kappa statistic 0.9632  

Mean absolute error 0.0293  

Root mean squared error 0.1144  

Relative absolute error 6.6245 %  

Root relative squared error 24.3573 %  

Total Number of Instances 125  

Model OA AUC MCC Recall Precision F-Measure Liquefaction 

C4.5 DT 0.976 0.993 0.946 1.000 0.966 0.982 No 

0.979 0.946 0.927 1.00 0.962 Yes 
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Table 7 

Predictive Results by Random Forest Algorithm. 
Model OA AUC MCC Recall Precision F-Measure Liquefaction 

RF 0.984 0.999 0.964 1.000 0.977 0.988 No 

0.997 0.964 0.951 1.000 0.975 Yes 

 

The confusion matrix generated by the algorithm and it classified -  

a  b   <-- classified 

as 

84  0 a = No 

b = Yes 2   39 
 

3.4. Comparison between C 4.5 and random forest 

On the basis of the performance measure, AUC of ROC, MCC, precision, recall, and F-measure 

is shown below for the both C 4.5 and Random Forest in the Table 8. From the table AUC, MCC 

and F-Measure of Random Forest are higher in comparison with C4.5 this shows that results 

obtained from the Random Forest model is an ideal one. 

C4.5 DT model 97.6 % accurate and Random Forest model 98.4% accurately predicted the 

liquefaction and non-liquefaction cases. 

Table 8 
Comparison between C4.5 and Random Forest. 

Model OA AUC MCC Liquefaction No Liquefaction 

Recall Precision F-Measure Recall Precision F-Measure 

C4.5 0.976 0.989 0.946 0.927 1.000 0.962 1.000 0.966 0.982 

RF 0.984 0.999 0.964 0.951 1.000 0.975 1.000 0.977 0.988 

 

4. Conclusions 

Resilient Backpropagation algorithm is easier to implement and robust against the input 

parameters and found very effective than the traditional back propagation algorithm used by 

other researchers [1–5] in predicting the liquefied and non-liquefied cases in the neural networks. 

The model classified 37 cases correctly and the accuracy is found 100 % which is accurate in 

comparison with other two algorithms and has shown good results in comparison with other 

implementations done by researchers in AI technique [1–5]. C4.5 and Random Forest Algorithm 

are 97.6% and 98.4% accurate in prediction of liquefied and non-liquefied cases. The C4.5 took 

only 0.05 seconds if we compare to the random forest, which took 0.16 seconds to build the 

model. C4.5 incorrectly classified 3 cases whereas as Random forest classified 2 cases 

incorrectly. This is found that Friction ratio Rf, peak horizontal acceleration (PGA) amax (g), 

vertical effective stress σvo (kPa), cone penetration resistance qc , frictional resistance fs are very 

important variable and helps in getting good results for all three algorithms used in the paper. 
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The Resilient Back propagation algorithm (Rprop) is very effective and must be implementing in 

monitoring the liquefaction susceptibility of saturated soils. However, neural network has its own 

limitation like ‘Black Box’ in which we mainly get only output results via input variables 

without knowing what actually is happening in the model whereas in C 4.5 and Random Forest 

Algorithm we can see what actually is happening with the models inputs and output variables by 

parameters discussed in tables above. We can use further more field data like; Standard 

Penetration Test (SPT) data can be implement with the model to increase the accuracy and 

working of the model for future predictions of liquefaction in the particular area. Finally, this 

paper encourages the use of the Resilient Back propagation algorithm (Rprop) in prediction of 

the Liquefaction cases.  
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