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As massive tunneling projects become more and more 

popular, predicting the performance of Tunnel Boring 

Machine (TBM) has been a problem that arose recently. A 

TBM is a modern piece of machinery that is specially 

assembled to excavate a tunnel more efficiently and safely. 

However, the performance of TBM is very difficult to 

estimate due to the different geological formations and 

geotechnical factors. This research aims to predict the 

penetration rate (PR) of TBM utilizing statistical and 

artificial intelligence methods that are based on the rock 

mass and rock material properties: rock mass rating, rock 

quality designation, and rock strength. To achieve this goal, 

we used two neural network-based models: artificial neural 

network (ANN) and group method of data handling 

(GMDH), to forecast the TBM PR values. Then, we 

compared the performance of these two models using the 

well-known indices and a ranking system and selected the 

model with the highest degree of performance. As a result, 

an ANN model with one hidden layer and seven neurons 

showed the highest level of capability in predicting TBM PR. 

Correlation coefficient values of 0.947 and 0.921 for the 

training and testing phases, respectively, were obtained for 

the best model in this study. Our research can serve as a 

fundamental study for future geotechnical engineers or 

researchers who would like to predict TBM performance 

with similar rock mass and material properties to this study. 
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1. Introduction 

Mechanized tunneling encompasses any tunneling methods that use mechanical excavation tools 

such as teeth, picks, or discs. Using tunnel boring machines (TBMs) to excavate and build 

support structures is the best example of mechanized tunneling. However, shaft builders (vertical 

boring machines) and boom-type roadheaders are also employed for mechanized tunneling. 

Using a TBM can reduce the amount of caving in a tunnel, reduce disturbance to the surrounding 

area, and require fewer workers compared to conventional methods [1,2]. Therefore, accurate 

prediction of TBM performance can significantly reduce the likelihood associated with the high 

capital cost and tunneling excavation time or schedule [3]. During the past decades, many 

researchers have employed different techniques to predict TBM performance. These techniques 

mainly involve three categories, i.e., 1) theoretical, 2) empirical or statistical, and 3) artificial 

intelligence (AI). 

In terms of theoretical analysis, different approaches have been introduced to solve problems of 

TBM performance (e.g., [4–8]). In general, the theoretical approaches achieve predicting PR by 

analyzing the cutting forces acting on disc cutters with the help of force equilibrium equations 

(Laboratory cutting tests). Since TBM disc cutters confront rock mass conditions in the field, 

theoretical models are hampered by the absence of this information. In addition, the equipment 

needed for these experiments may not be accessible at every research facility around the globe 

[9]. It may be necessary to make modifications to TBM performance data if such equipment is 

not available to accurately estimate the TBM's performance in the absence of such equipment. 

As for the empirical or statistical models, they predominantly use predictors (inputs) to forecast 

the TBM performance (output) using mathematical relationships. A linear multiple regression 

(LMR) equation was introduced in research by Hamidi et al. [10] to forecast the boreability of 

TBM in 8.5 km of Zagros long tunnel in which the construction was taking place in sedimentary 

rock. In another regression analysis, Hassanpour et al. [11] proposed a multiple regression 

analysis to establish the relationship between the field penetration index (FPI) and geological 

parameters. The study was based on the Manapouri tunnel in New Zealand and three other 

projects in Iran. Yagiz [12] performed a series of simple regressions to find the best correlation 

parameters for FPI. Jing et al. [13] developed a statistical model to correlate the penetration rate 

(PR) with rock mass parameters. The study was performed based on the data from the Songhua 

River Water Supply Project in China where 7.3 km of a tunnel in a limestone region was 

excavated using TBM. Although statistical models are known for their simplicity and efficiency, 

their performance capacities are low, especially when encountering extreme values in the data 

[14]. They also do not demonstrate the capability and robustness to solve non-linear and complex 

relationships [15]. 

The last group of models available for TBM performance prediction is AI and machine learning 

(ML) [16–21]. Many researchers have proved that these techniques can effectively solve science 

and engineering problems [22–26]. For example, Salimi et al. [27] developed models for 

predicting the FPI of TBM using genetic programming (GP) and classification and regression 

tree (CART) techniques. The model generated by CART demonstrated a higher superiority over 
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the GP model with a coefficient of determination (R
2
) = 0.91 over 0.86. Mahdevari et al. [28] 

proposed a support vector regression (SVR) model to predict the PR of TBM. The study was 

conducted on 150 datasets from the Queens Tunnel using rock mass, rock material, and machine 

properties. The results of the SVR showed that this AI technique can provide a high model 

capability (R
2
 = 0.949). In another investigation, a gene expression programming equation was 

suggested by Armaghani et al. [15] for solving TBM performance. They reported an easy-to-use 

equation as well as an acceptable performance for predicting TBM PR values. Yagiz et al. [29] 

conducted a study to propose a PR prediction model using an artificial neural network (ANN) 

methodology. Yagiz and Karahan [30] performed another study with good results to estimate the 

TBM performance using a particle swarm optimization system. Yang et al. proposed a hybrid 

tree-based technique: the improved sparrow search algorithm-gradient boosting regression tree, 

to solve the problem of predicting TBM PR. The results showed their model performed well in 

this topic [31]. Overall, AI and ML models have an acceptable capacity in predicting TBM 

performance. 

In this study, our idea is to examine the effects of rock properties (mass and material) on TBM 

performance, specifically PR values. Previous studies typically consider a component related to 

TBM machines, such as revolutions per minute or cutter force, as an input parameter. However, 

since the idea is to predict TBM performance, of course, before the construction process, there is 

no available TBM data. The only information available is from the site investigation phase, 

which includes rock or soil properties or a combination of the two [32]. Using these two 

available variables to predict PR, before the site investigation phase, is more reasonable and 

practical in tunnel construction. Therefore, we developed two predictive models: the group 

method of data handling (GMDH) and ANN, to evaluate and predict the performance of TBM. 

The most effective parameters, as predictors to forecast TBM PR, are rock mass and rock 

material. The developed models will be compared in terms of their performance indices and 

powers of prediction, and eventually, the best intelligent predictive model will be determined and 

used in the area of TBM performance prediction. 

The rest of the paper is organized as follows: 

Section 2 introduces the concept and principle of the machine learning models; Section 3 

illustrates the engineering background and data source; Section 4 describes the process of 

modeling; Section 5 discusses the results of modeling; Section 6 explains the future work; 

Section 7 summarizes the main conclusions of the paper. 

2. Model background 

2.1. Artificial neural network (ANN) 

An Artificial Neural Network (ANN) is an AI system that was designed to mimic certain 

characteristics of the human nervous system [33]. Unlike traditional AI models, ANNs can learn 

patterns and relationships from training data and can process information in a manner similar to 

the way the human brain does [34]. An ANN consists of artificial neurons, which receive signals 

and pass them through an activation function to produce an output [35]. These outputs are then 



 S. K. Eng et al./ Journal of Soft Computing in Civil Engineering 7-2 (2023) 138-154 141 

used as inputs for subsequent neurons. ANNs can be trained repeatedly to improve their 

performance and during this process, the architecture and connection weights of the network are 

modified iteratively to reduce errors in the predicted data [36]. The net weighted input (𝒏𝒆𝒕𝒋) for 

each node (e.g., neuron j) will be calculated by (Fig. 1): 

𝒏𝒆𝒕𝒋 = ∑ 𝒙𝒊𝒘𝒊𝒋
−𝜽𝒋𝒏

𝒊=𝟏  (1) 

where the two parameters 𝒙𝒊 and 𝒘𝒊𝒋 indicate each input signal and its corresponding weight, 

respectively, while n is the number of incoming signals that transmit to the processing neuron j. 

The threshold applied to neuron j is represented by the parameter j. An activation function is 

applied to this net input. This process is known as the "training approach". Subsequently, the 

output is compared with the actual value, and the resulting error passes back across the network, 

allowing the individual weights to be fine-tuned. 

 
Fig. 1. A typical neuron's architecture in ANN. 

2.2. Group method of data handling (GMDH) 

GMDH is a combination of a few algorithms to forecast the function or relationship of several 

predictors and to solve problems [37,38]. It is a neural network algorithm that allows the 

software to learn the relationship between the predictors and the desired output. The GMDH 

algorithm allows the analysis of several mathematical equations, i.e., polynomial, non-linear, and 

probabilistic, to discover the most ideal model for prediction purposes [39]. In GMDH, the 

system is run by layers of neurons, and the number of neurons in a layer is defined by the 

number of inputs inserted into the system. To elucidate, the number of neurons is denoted by x, 
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and since the system considers all pairwise combinations for input variables, the number of 

neurons is equal to (
𝒙
𝟐
) [40]. The GMDH model can be constructed to forecast the output value 

based on any inputs are given (Fig. 2): 

𝒀̂ =  𝒇̂ (𝒙𝒊𝟏, 𝒙𝒊𝟐, 𝒙𝒊𝟑, … , 𝒙𝒊𝒒) (𝒊 = 𝟏, 𝟐, 𝟑, … 𝒒) (2) 

where Ŷ is the output, f̂ is a function, x is an input vector, and i is the number of observations 

(from 1 to q
th

 observation). More details related to GMDH, its effective parameters, and the 

modeling process can be found elsewhere (e.g., [41]). 

 
Fig. 2. A GMDH model with four input variables. 

2.3. Performance indices 

To compare the accuracy of AI models, several performance indices are normally used to assess 

the precision of the models. Hence, five performance indices, including R
2
, root mean square 

error (RMSE), the variance accounted for (VAF, %), mean absolute error (MAE), and a20-index, 

are selected. R
2
 is one of the performance indices to describe the global fit of the model. R

2
 is the 

proportion of variance of the output that is forecasted by using predictors in the model. The ideal 

value of R
2
 would be 1. The RMSE is a standard deviation of estimation error at which it 

evaluates how much the error spreads from its original best fit model. The ideal RMSE would be 

0, meaning that all the predicted values are the same as the observed values. The VAF is 

described as how much variability in the data can be expressed by a model. The VAF is 

expressed in percentages, where a higher percentage indicates a better accuracy of the model. 

The MAE is the average of errors between predictions and observations over a number of 

datasets. The a20-index is a performance index that is similar to the MAE where it measures the 

deviation of a predicted value from an actual value. The ideal value of the a20-index is 1. The 

formulas for the mentioned indices are presented as follows: 

R2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

 (3) 
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RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖=1  (4) 

VAF = (1 −
𝑣𝑎𝑟(𝑦𝑖−𝑦𝑖̂)

𝑣𝑎𝑟(𝑦𝑖)
) × 100% (5) 

MAE =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1  (6) 

a20 − index =
𝑚20

𝑛
 (7) 

where 𝒚𝒊, 𝒚̂𝒊 and 𝒚̅ are measured, predicted, and mean values of TBM performance, respectively, 

n is the number of data samples, and m20 is the number of datasets that have a value of 0.8 to 1.2 

for the ratio of measured to predicted values. 

3. Study area and data samples 

Selangor is one of the states in Malaysia that has the highest population density in the country. 

As such, there exists a large demand for water supply to support the residents in the area. The 

Pahang Selangor Row Water Transfer (PSRWT) tunnel project aims to divert water supply from 

Pahang to Selangor through a tunnel excavated using three TBMs. The objective of this project is 

to transfer 1890 million liters of water diverted from the Sematan River in Pahang to the South 

Klang Valley region in Selangor. The flow of the Sematan River is extracted from the reservoir 

by the pumping station next to the intake and connected to a connecting basin at the tunnel inlet 

via a pipe. The connecting basin diverts the raw water to the outlet connecting basin with the aid 

of gravity flow. 

PSRWT tunnel project is located in a Main Range Granite region, where quartz dykes with clay 

were observed in the region. Quartz veins were also noticed at the half bottom of the tunnel. The 

route of the PSRWT tunnel is broken up into four sections based on the type of rock in each area. 

Section 1, from Ch. 0.8 km to Ch. 3.8 km, is made up of Devonian sedimentary rocks that have 

been slightly metamorphosed. It is mostly black shale to schist, but it has been folded a lot 

because granitic rocks moved in during the Triassic period. This section has the most overburden 

(cover) at 240 m. Section 2, from Ch. 3.8 km to Ch. 12.5 km, is made up of coarse-grained 

granitic rocks that the overburden is between 33 m and 483 m. Section 3, from Ch. 12.5 km and 

Ch. 27.0 km, the tunnel route is made up of coarse to medium-grained granitic rocks. This 

section has the most overburden at 1390 m. This is where the last part of the PSRWT tunnel, 

which is made of weathered granite from the Main Range, is found. It's between Ch. 27.0 km and 

Ch. 44.6 km. 

The tunnel runs through six major faults: Karak (Ch. 2.5 km), Krau (Ch. 12.45 km), Bukit Tinggi 

(Ch. 19.15 km), Lepoh (Ch. 28.6 km), Kongkoi (Ch. 31.35 km), and Tekali (Ch. 39.0 km) [42]. 

In places near faults, rocks have low strength. Weathered zones ranging moderately to highly 

have been detected in the PSRWT tunnel project's fault zones. The PSRWT tunnel project is 

mainly underlain by Main Range Granite. 
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To make this study feasible, there is a need to prepare a database consisting of rock mass and 

material properties (model inputs) as well as TBM PR (model output). Therefore, field 

observations were conducted to collect rock mass properties in the tunnel. During the field 

observations for the rock mass properties, several parameters such as the rock quality designation 

(RQD), the rock mass rating (RMR), and weathering zone (WZ) were observed. In the following, 

these rock mass properties will be described in detail. 

RQD was introduced by Deere [43] to assess the quality of rock. RQD is a more sensitive 

assessment to appraise the quality of rock when compared to total core recovery. It is emphasized 

by many engineers that a higher value of RQD does not mean the strength of the rock is as high 

as well. Note that RQD only measures the quality of the rock itself. A total of 259 RQD values 

(259 panels) were collected, with an average of 34.11%, a minimum of 8.25%, and a maximum 

of 93.75%. Through all the sample data, it was quantified that the standard deviation of the 259 

data samples is 23.1%. RMR was developed by the South African Council of Scientific and 

Industrial Research by Bieniawski [44]. There are six influencing factors that govern the RMR, 

which include uniaxial compressive strength (UCS), RQD, joint spacing, groundwater condition, 

and joint orientation. A higher RMR suggests that the rock has very good characteristics. RMR 

can be used to determine the preliminary cohesion and angle of internal friction of a certain rock 

formation. An average RMR value of 58.50 was observed from the total set of 259 data. A 

minimum rating of 45 was observed from the datasets from the PSRWT tunnel project, while a 

maximum rating of 93 was also noticed. After performing statistical analysis, a standard 

deviation of 12.12 was observed for RMR values. Rock mass weathering starts at the 

discontinuity or joint of the surface of the rock formation itself, as the joint will smoothen the 

weathering process and subsequently produce different zones for the weathering class. 

Weathering takes place when the less stable minerals break down and the discoloration of rock 

penetrates deeply inside the rock. In the collected data from the PSRWT tunnel, there are three 

weathered zones, i.e., fresh, slightly weathered, and moderately weathered in the collected data 

from the PSRWT tunnel. In the database, to give them a value, the authors decided to use a value 

of one for fresh, two for slightly weathered, and three for moderately weathered zones. It is 

important to note that in each panel, which was typically 10 m, PR values were recorded. The 

minimum, maximum, and average of the TBM PR values were recorded as 1.72 m/h, 5.06 m/h, 

and 2.96 m/h, respectively. 

Together with field observation, laboratory tests were also carried out in this study to determine 

rock material properties. Two strength-based tests, i.e., UCS and Brazilian tensile strength 

(BTS), were conducted on the samples. An average value of 88.9 MPa was obtained for UCS 

tests, while 184 MPa and 40 MPa were recorded as maximum and minimum values, respectively. 

In addition, values of 7.23MPa, 4.69MPa, and 13.75MPa were obtained for the average, 

minimum, and maximum BTS results, respectively. To achieve the designed objective, the five 

parameters mentioned above, i.e., UCS, BTS, WZ, RMR, and RQD, were set as model inputs, 

and TBM PR was considered as a model output. A database with 259 data samples was prepared 

for the PR analysis. Figure 3 shows the linear correlation (Pearson’s r) between the pairwise 

variables. 
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Fig. 3. The relationship between the pairwise variables. 

4. Methodology 

4.1. GMDH modeling 

The AI techniques in this study (GMDH and ANN) were built to forecast TBM PR. As a first 

step, the independent and dependent variables should be normalized. Normalization aims to 

derive the database into a common scale without adjusting the difference in the range of the 

original database. Equation (8) illustrates the used formula for normalization purposes: 

𝑌𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑌−𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥−𝑌𝑚𝑖𝑛
 (8) 

where Ynormalized is the normalized data, Y is the original dataset, Ymin is the minimum number in 

the dataset and Ymax is the dataset with the highest value. The next stage is to divide the whole 

database into two parts of training and testing for model construction and model assessment. 

Based on the literature, it was found that most of the researchers employed 80% of the datasets 

as training while the remaining 20% were allocated as testing data. Therefore, 80% of the entire 

dataset, including 207 data samples, were selected in the AI models to undergo training. The 

remaining 20%, including 52 data samples, were adopted to test the data. 

In the modeling of GMDH, it is necessary to first identify the influencing factors of this 

technique which are the number of neurons and the number of layers. According to results 

obtained from neuron numbers, it was found that a neuron number equal to 12 (12N) receives the 
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best performance prediction for estimating TBM PR. Therefore, the next step in modeling is to 

determine the number of layers through another parametric study. Tables 1 and 2 present the 

results of performance indices for training and testing data samples where different numbers of 

layers (L) were applied. A ranking system, which was introduced by Zorlu et al. [45], was 

applied to the results. According to this ranking system, the most accurate results will get the 

highest rank value in each category. The rank values of training and testing models are presented 

in the last column of Tables 1 and 2, respectively. A summation of the training and testing sets 

should be done to have a final rank value for these models. Therefore, final rank values were 

computed as 70, 61, 58, 40, 51, 46, 64, 62, and 39 for 2L-12N, 3L-12N, 4L-12N, 5L-12N, 6L-

12N, 7L-12N, 8L-12N, 9L-12N, and 10L-12N models, respectively. It is abundantly clear that 

the number layer of 2 has the highest accuracy in predicting the PR based on the obtained results 

of both training and testing sets. Fig. 4 shows the target and output of PR with errors procured 

from both the training and testing stages for the best GMDH model. It is important to mention 

that GMDH results are presented based on the correlation of coefficient or R
2
 in Tables 1 and 2 

while they are presented based on R
2
 in Fig. 4. 

Table 1 

Performance indices and ranking system of GMDH layer for training dataset (12 neurons). 

Model 
Performance index Rank 

R
 

RMSE VAF (%) MAE a-20 R RMSE VAF  MAE a-20 Rank Value 

2L-12N 0.9134 0.0775 80.5167 0.00344 0.70048 7 7 7 6 10 37 

3L-12N 0.9203 0.0719 81.6970 0.00386 0.69565 8 9 9 3 9 38 

4L-12N 0.9054 0.0792 77.5948 0.0018 0.66184 4 4 3 9 5 25 

5L-12N 0.9044 0.0793 78.5915 0.00249 0.66667 3 3 5 8 6 25 

6L-12N 0.8965 0.0803 75.2453 0.00387 0.64734 1 2 1 2 4 10 

7L-12N 0.9214 0.0724 81.2065 0.00386 0.67633 9 8 8 4 7 36 

8L-12N 0.9038 0.0811 78.9432 0.00373 0.68599 2 1 6 5 8 22 

9L-12N 0.9090 0.0785 77.7428 0.00302 0.68599 6 6 4 7 8 31 

10L-12N 0.9055 0.0786 77.4794 0.00387 0.66184 5 5 2 1 5 18 

Table 2 

Performance indices and ranking system of GMDH layer for testing dataset (12 neurons). 

Model 
Performance index Rank 

R
 

RMSE VAF (%) MAE a-20 R RMSE VAF  MAE a-20 Rank Value 

2L-12N 0.9055 0.0767 73.7728 0.05776 0.69231 6 7 5 5 10 33 

3L-12N 0.8854 0.0913 72.3109 0.06748 0.67308 4 3 4 3 9 23 

4L-12N 0.9111 0.0793 77.6657 0.05605 0.63462 7 6 7 6 7 33 

5L-12N 0.8781 0.0929 71.7538 0.07041 0.59615 2 2 3 2 6 15 

6L-12N 0.9428 0.0754 82.39 0.05225 0.63462 9 8 8 9 7 41 

7L-12N 0.8548 0.1027 52.5996 0.07894 0.59615 1 1 1 1 6 10 

8L-12N 0.9215 0.0737 83.8994 0.05423 0.67308 8 9 9 7 9 42 

9L-12N 0.9024 0.0799 77.473 0.05408 0.63462 5 5 6 8 7 31 

10L-12N 0.8812 0.0913 69.7066 0.06404 0.65385 3 4 2 4 8 21 
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Fig. 4. Graph of predicted PR vs actual PR for training and testing datasets of the best GMDH model. 

4.2. ANN modeling 

To create an ANN model, the number of hidden layers, the number of nodes, and the transfer 

function must all be designed. In this study, the number of hidden layers was kept to a minimum 

to avoid overfitting the results. Overfitting is defined as the creation of an interpretation that is 

too similar or precise to a specific collection of data and therefore may fail to match additional 

data or accurately forecast future findings. As the number of hidden layers increases, the 

possibility of the occurrence of overfitting of data also increases. Therefore, we decided to only 

use a single hidden layer. On the other hand, to solve non-linear problems, the sigmoid transfer 

function achieved acceptable results according to previous studies [46]. Therefore, this transfer 

function was used for the ANN modeling part. For designing neuron numbers, several ANN 

models with different neuron numbers were constructed their results for training and testing parts 

are presented in Tables 3 and 4, respectively. Like GMDH modeling, rank values for each model 

and each section (i.e., training and testing) are shown in these tables. Then, the final rank values 

of 18, 37, 46, 55, 56, 63, 72, 59, and 56 were obtained for models with 1-9 neurons, respectively. 

The model, which has the highest accuracy in predicting TBM performance, is model 7N (with 7 

numbers neurons). Therefore, we introduced this model to forecast TBM performance. In Fig. 5, 

differences between measured and predicted PR values for the testing part of the selected ANN 

model are displayed. 

Table 3 

Performance indices and ranking system of the ANN models for the training part. 

Model 
Performance index Rank 

R
 

RMSE VAF (%) MAE a-20 R RMSE VAF MAE a-20 Rank Value 

1N 0.9125 0.0776 79.7337 0.00373 0.66667 1 1 1 1 1 5 

2N 0.9219 0.0719 82.3433 0.00352 0.73913 2 2 2 2 3 11 

3N 0.9303 0.0687 84.4259 0.00271 0.74396 5 5 5 7 2 24 

4N 0.9295 0.0705 84.1871 0.00345 0.74396 4 4 4 3 6 21 

5N 0.9280 0.0712 83.8243 0.0033 0.75845 3 3 3 4 4 17 

6N 0.9347 0.0652 85.4856 0.00294 0.78261 6 6 6 6 5 29 

7N 0.9473 0.0612 88.5332 0.00322 0.78744 8 8 8 5 8 37 

8N 0.9441 0.0631 87.7911 0.00249 0.83575 7 7 7 8 7 36 

9N 0.9581 0.0523 91.0399 0.00201 0.82126 9 9 9 9 9 45 
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Table 4 

Performance indices and ranking system of the ANN models for testing part. 

Model 
Performance index Rank 

R
 

RMSE VAF (%) MAE a-20 R RMSE VAF MAE a-20 Rank Value 

1N 0.9011 0.0788 72.1582 0.06095 0.67308 2 3 2 2 4 13 

2N 0.9178 0.0780 82.964 0.05672 0.75 5 4 6 3 8 26 

3N 0.9014 0.0829 78.0805 0.05271 0.69231 3 2 5 7 5 22 

4N 0.9267 0.0729 85.7628 0.05517 0.67308 7 6 9 5 7 34 

5N 0.9311 0.0634 84.7808 0.05046 0.76923 8 9 8 8 6 39 

6N 0.9335 0.0774 83.6527 0.05625 0.71154 9 5 7 4 9 34 

7N 0.9209 0.0682 77.6562 0.04925 0.73077 6 8 4 9 8 35 

8N 0.9120 0.0698 76.7197 0.05486 0.78846 4 7 3 6 3 23 

9N 0.8395 0.1159 57.9587 0.08355 0.65385 1 1 1 1 7 11 

 

 
Fig. 5. Graph of predicted PR vs actual PR for training and testing datasets of the best ANN model. 

5. Results and discussion 

In this study, to evaluate the effects of rock mass and material properties on TBM performance, 

two AI techniques i.e., ANN and GMDH, were selected and applied. Then, the most important 

parameters in each technique were designed properly and used in a series of parametric studies. 

After that, a ranking system was used to show a good way of selecting the best model among all 

constructed models. The ranking system considers the effects of all four performance indices not 

only one or two of them. Table 5 shows the results of ANN and GMDH models using only four 

input parameters ranking systems of both train and test models for the best models developed for 

each statistical and AI method. Based on this table, it is copiously clear that ANN is the best 

model to predict the PR of TBM in comparison with GMDH. It is clear that ANN was able to 

achieve a higher accuracy level and lower system error in forecasting TBM performance. The R 

of the training dataset for an ANN model (i.e., with 1 hidden layer and 7 neurons) has a value of 

0.947, whereas, for testing, it has a value of 0.921. The value of R of ANN for both training and 

testing is higher than that of GMDH, which implies that ANN has a higher superiority. The 

RMSE obtained for the ANN model has a value of 0.061 and 0.068 for both train and test 
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models, while the value of MAE obtained is 0.003 and 0.049 for both train and test models. 

These two performance indices showed that the error for the ANN model is the lowest. Lastly, 

the VAF obtained from ANN has a value of 88.533% and 77.656% for both training and testing, 

which can be concluded that ANN will have a higher superiority over the two models developed. 

In comparison, one research done by Eftekhari et al. (2010), the proposed ANN model had a 

coefficient of determination of 0.69 where the parameters considered were rock type, quartz 

content (q), UCS, BTS, RQD, RMR, Thrust, Torque, and Rs [47]. In another research, the 

developed ANN model had a R
2
 of 0.72. The independent variables considered were primarily 

rock mass and rock material property i.e., UCS, RQD, joint per volume (Jv) as well as joint 

spacing (Js). In another year, Armaghani et al. (2017) proposed an ANN model to predict both 

PR and AR of TBM by using rock mass and rock material properties as well as machine 

parameters. It was later illustrated that the ANN model has a coefficient of 0.666 and 0.706 [48]. 

In short, it is abundantly clear that the proposed ANN in this study has a higher accuracy in 

predicting TBM performance in comparison with the past model developed by other researchers. 

The fact that ANN has a higher performance capacity in this study is most probably due to the 

nature of the ANN technique. Occasionally, a single ANN model will yield a better result than a 

hybrid model. Sada and Ikpeseni [49] used both the ANN and neuro-fuzzy models to predict 

steel machine performance, and it was noted that ANN has a higher superiority over neuro-fuzzy 

in their study. It can be highlighted that it was expected that neuro-fuzzy has a higher degree of 

performance, as neuro-fuzzy is a hybrid model of both ANN and fuzzy, but in some studies 

[49,50], it can be proven that a single model is always much better than a hybrid model. In this 

study, GMDH is an improved model of ANN; nevertheless, ANN has a higher performance 

capacity than GMDH. 

The purpose of this study is to present a practical AI and ML technique that is fully based on 

rock material and mass properties for TBM PR prediction. The models proposed in this study 

were developed according to the results of four parameters, i.e., RMR, RQD, UCS, and BTS. 

These parameters can be easily determined during the site investigation phase using field 

observation and laboratory tests. Using the developed models, TBM PR can be estimated with a 

high accuracy level or low system error. The predicted values of TBM PR can be used to select 

the best features of the TBM machine for the excavation of the purposed tunnel. In addition, the 

scheduled plan for tunneling construction can be well-organized based on the obtained results 

from the developed models. 

The limitations of the present work are the specific geological background and the low diversity 

of the dataset. The present study was carried out on the PSRWT project, in which the geological 

formation is granite. Hence, the model is only applicable for future TBM tunneling projects that 

are excavating through the granite region. On the other hand, the collected dataset only included 

information on rock mass and rock material properties, which limits the versatility of the model. 
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Table 5 

The results of best models to predict TBM performance. 

Category Model R
2
 RMSE VAF (%) MAE a-20 

Train 
ANN (1 hidden layer-7 Neurons) 0.897 0.061 88.533 0.003 0.787 

GMDH (2 Layer-12 Neurons) 0.843 0.077 80.517 0.003 0.700 

Test 
ANN (1 hidden layer-7 Neurons) 0.848 0.068 77.656 0.049 0.731 

GMDH (2 Layer-12 Neurons) 0.820 0.077 73.773 0.058 0.692 

 

6. Recommendation for future work 

In this research, the inputs considered are primarily rock mass and rock material properties, i.e., 

UCS, BTS, RMR, and RQD. It is recommended that future studies should consider the effects of 

other rock masses and material parameters. In addition, a wider range of the same parameters can 

be prepared to propose a ML model with a high level of generalization. To do this, results from 

various case studies can be gathered to establish a more comprehensive database for TBM 

performance prediction. It is advised to utilize hybrid ML/AI models to predict TBM 

performance. Many researchers [51–53] have stated that hybrid models can provide a better 

relationship in predicting TBM performance. For instance, a hybrid model integrating a support 

vector machine and some optimization algorithms, e.g., gray wolf optimization, moth flame 

optimization, and whale optimization algorithms, would provide better accuracy in terms of 

results in comparison with single models. The authors would also like to mention that ML/AI 

models should be moved to those more focused on physics relationships between inputs and 

output parameters. This would convert a pure ML model to a theory-based or physics-based ML 

model, which is more applicable in civil engineering, especially in the geomechanics and 

geotechnics fields. 

7. Conclusions 

In this study, to achieve a higher performance prediction of the PR of TBM which is the ultimate 

aim of prediction models, two ML/AI methods i.e., ANN and GMDH were proposed using four 

independent rock mass and material properties i.e., UCS, BTS, RQD, and RMR. The models 

were established on a dataset that was based on the PSRWT tunnel project in Malaysia. Several 

commonly used assessment metrics were used to examine the performance of each model. The 

results show that GMDH with two layers and 12 neurons is the best model to predict the PR with 

these four types of input. During the modeling in ANN, we found that the model with seven 

neurons is the best to forecast TBM PR. A ranking model was developed to compare the 

statistical model and these two AI methods. At the denouement, it was observed that ANN has 

the highest prediction performance, followed by GMDH. It was shown that a single ANN model 

occasionally performed much better than an improved model depending on the nature of the 

dataset. The developed ANN can be used in engineering cases that are with similar geological 

types to the current study. 
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