
Journal of Soft Computing in Civil Engineering 7-2 (2023) 155-175 

How to cite this article: Samii A, Karami H, Ghazvinian H, Safari A, Dadrasajirlou Y. Comparison of DEEP-LSTM and MLP 

models in estimation of evaporation pan for arid regions. J Soft Comput Civ Eng 2023;7(2):155–175. 

https://doi.org/10.22115/scce.2023.367948.1550 

2588-2872/ © 2023 The Authors. Published by Pouyan Press. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).  
 

 

Contents lists available at SCCE 

 

Journal of Soft Computing in Civil Engineering 

Journal homepage: www.jsoftcivil.com 

Comparison of DEEP-LSTM and MLP Models in Estimation of 

Evaporation Pan for Arid Regions 

Amirhossein Samii
1
, Hojat Karami

2*
, Hamidreza Ghazvinian

2
, Amirsaeed 

Safari
3*

, Yashar Dadras Ajirlou
2*

 

1. Advanced Robotics and Automated Systems (ARAS), Faculty of Electrical Engineering. K. N. Toosi University 
of Technology, Tehran, Iran 
2. Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, 
Semnan, Iran 
3. Ph.D. Student, Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States 
Corresponding author: hkarami@semnan.ac.ir 

 https://doi.org/10.22115/SCCE.2023.367948.1550 

ARTICLE INFO 
 

ABSTRACT 

Article history: 

Received: 31 October 2022 

Revised: 17 January 2023 

Accepted: 31 January 2023 

 

The importance of evaporation estimation in water resources and 

agricultural studies is undeniable. Evaporation pans (EP) are used 

as an indicator to determine the evaporation of lakes and reservoirs 

around the world due to the ease of interpreting its data. The 

purpose of this study is to evaluate the efficiency of the Long- 

Short Term Memory (LSTM) model to estimate evaporation from a 

pan and compare it with the Multilayer Perceptron (MLP) model in 

Semnan and Garmsar. For this purpose, daily meteorological data 

recorded between 2000 and 2018 (19 consecutive years) in Semnan 

and Garmsar synoptic stations were used. Minimum and maximum 

air temperature (Tmax, Tmin), wind speed (WS), sunshine hours 

(SH), air pressure (PA), relative humidity (RH) were selected as 

input data and evaporation data from the pan (EP) was considered 

as the output of the case. Also, in modeling both networks in the 

input section, 4 different scenarios were used. The two studied 

models were evaluated by the evaluation criteria of coefficient of 

determination (R
2
), root mean square error (RMSE) and mean 

absolute error (MAE). The results showed that among the studied 

scenarios, the fourth scenario (considering all input parameters) 

had the highest R
2
 and the lowest RMSE and MAE. In general, the 

two models performed well in predicting the rate of evaporation. 

Also, in both stations, the LSTM model had more R
2
 and less 

RMSE and MAE than the MLP model. The values of R
2
, RMSE 

and MAE for the best DEEP-LSTM model (LSTM4) for Semnan 

city were 0.9451, 1.8345 and 0.5437 and for Garmsar city 0.9204, 

1.8323 and 1.3531 respectively. 
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1. Introduction 

In recent years, climate changes and increasing water demand have caused problems in the 

sustainable management of water resources in the country [1]. This is especially important in the 

case of drinking water supply, and sometimes it has caused a tendency to supply different water 

needs from underground water sources and an excessive drop in the level of some aquifers in the 

country [2,3]. On the other hand, every year, millions of cubic meters of fresh water stored 

behind the dams, which are built and maintained at huge costs, evaporate and are wasted [4]. 

Accurate and timely estimation of evaporation has a significant and vital impact on preserving 

water resources and agriculture and hydrology, which is used to estimate the water required by 

crops for irrigation planning and drought management [5]. Evaporation is a critical phenomenon 

in hydrological studies which understanding its amount is vital for management of irrigation 

systems and water resources [6–8]. One method of estimating evaporation is using evaporation 

pans [9–14], which is well-known as a means of measuring evaporation from the free surface of 

water globally [15,16]. Given the importance of evaporation and its high impact on climate 

change and the amount of freshwater resources that lead to negative effects on water resources, 

accurate prediction of evaporation is essential in the hydrological cycle [17]. Many parameters 

affect the rate of evaporation, including relative humidity, temperature, wind speed, and sunshine 

hours [18–22]. Another method of predicting the rate of evaporation is the use of intelligent 

methods [23–26]. Intelligent methods have been welcomed due to the reduction of computation 

time, as well as the reduction of trial and error process [27,28]. 

In recent years, many intelligent models have been proposed to estimate the rate of evaporation, 

including the MLP model [12,13,29–31], SVR model [14,25,32–34], M5tree model [35–38], 

GEP model [35,39,40], ANFIS model [40–43]. Also, various hybrid models in evaporation 

simulation have been presented [12,23,30,41,44–46]. Table 1 provided some studies in 

connection with research on estimating the rate of evaporation by intelligent methods. 

Due to the fact that very few studies have been conducted to estimate evaporation using deep 

learning methods, the purpose of this study was to compare the performance of two models of 

artificial neural network and Long- Short Term Memory (LSTM) to estimate evaporation from 

the pan in Semnan and Garmsar cities from Semnan province of Iran. Considering that the 

mentioned cities are in hot and dry weather conditions, in this research we seek to investigate the 

efficiency of LSTM model in predicting evaporation in dry areas. Also, the results of the LSTM 

model of the current research were compared with the results of other researches that estimate 

evaporation from the pan with soft computing model. Meteorological parameters of Tmin, Tmax, 

WS, SH, PA, RH and EP were examined as input data. The present study also answers the 

question whether the two ANN and LSTM models are suitable methods for estimating 

evaporation in the cities of Semnan and Garmsar? 

2. Data and studied areas 

Semnan province locates in northeastern of Iran (Figure 1), where its center is Semnan city [47]. 

The area of this province is 97491 Km
2
 [48]. The cities of Semnan and Garmsar have arid and 

semi-arid climatic conditions. In this study, 19 consecutive years of daily meteorological data of 

synoptic stations of Semnan and Garmsar between 2000 and 2018 were considered. The data is 

equivalent to 6935 data, including minimum and maximum temperature, sunny hours, wind 

speed, air pressure, relative humidity and evaporation. 
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Table1 

Summery of existing models. 
Input variables R2 Methods Station Number 

of years 

study 

Previous work 

AT1, SR2, WS, RH, EP 

 

0.88 LLSVM Mersin 20 Kisi, 2015 [49] 

0.76 M5 Tree   

0.86 MARS   

0.93 LLSVM Antalya 20 

0.92 M5 Tree   

0.88 MARS   

AT, SR, PA, WS 0.93 

0.93 

0.91 

ANFIS-GP 

FG 

M5Tree 

Yangtze River Basin 

IDs 57461 

39 Wang et al., 2017 [38] 

0.89 

0.90 

0.90 

ANFIS-GP 

FG 

M5Tree 

Yangtze River Basin 

IDs 57494 

39  

0.96 

0.97 

0.95 

ANFIS-GP 

FG 

M5Tree 

 Yangtze River Basin 

IDs 57516 

39  

0.95 

0.95 

0.92 

ANFIS-GP 

FG 

M5Tree 

Yangtze River Basin 

IDs 58238 

39  

0.92 

0.90 

0.90 

ANFIS-GP 

FG 

M5Tree 

Yangtze River Basin 

IDs 58321 

39  

0.95 

0.95 

0.92 

ANFIS-GP 

FG 

M5Tree 

Yangtze River Basin 

IDs 58362 

39  

Tmin, Tmax, RHmorning, 

RHafternoon, WS, SH, EP 

0.87 

0.83 

0.81 

RBNN 

SOMNN 

MLR 

Himalayas, 

Uttarakhand  
4 Malik et al., 2017 [50] 

Tmin, Tmax, RA, RH, WS, EP 0.92 MGGP Antakya 27 Eray et al., 2018 [51] 

0.94 GP    

0.94 DENFIS    

0.95 MGGP Antalya 39  

0.95 GP    

0.93 DENFIS    

Tmin, Tmax, RA, RH, WS, 

EP, P3, SH 

0.78 

0.79 

0.74  

0.81 

SVR 

SVR-FA 

SVR 

SVR-FA 

Lahijan 

 

Rasht 

10 

 

10 

Moazenzadeh et al., 2018 

[33] 

Tmin, Tmax, RHmorning, 

RHafternoon, WS, SH, EP 

0.91 

0.88 

0.76 

0.76 

0.71 

0.70 

Deep-LSTM 

MLANN 

Deep-LSTM 

MLANN 

Deep-LSTM 

MLANN 

Raipur 

 

Jagdalpur 

 

Ambikapur 

34 

 

24 

 

16 

Majhi et al., 2019 [52] 

Tmin, Tmax, WS, RH, PA, SH 0.84 GMDH-NN Garmsar 9 Karami et al., 2021 [53] 

Tmin, Tmax, RH, WS,SH 0.80 ANN Dameghan 16 Shahi et al., 2021 [54] 

Tmin, Tmax, RH, WS,, RA, 

SH 

0.97 

0.98 

LSTM 

LSTM 

Alor Setar 

Kota Bharu 

19 Abed et al., 2021 [55] 

 

                                                 
1
 Air Temperature 

2
 Solar Radiation 

3
 Precipitation 
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The daily evaporation rate of the pan was modeled as a dependent variable and other parameters 

were modeled as independent variables. 70% of the data were used for training and 30% for data. 

30% of the data is completely random and selected by the algorithm itself. This makes the 

inherited characteristic not transmitted by the time series and the ability to check the machine 

learning towards the reality. Table 2 provides the abbreviations of the six input data and one 

output data used in this study. Also the statistical specifications of input and output data [56]. For 

better data performance in both models, the input and output data were normalized using 

Equation (1). Thus, all data are formed between 0.1 and 0.9 and then used in relationship 

development [31,53]. 

 
Fig. 1. Location of the study area. 

Table 2 

Statistical characteristics of input and output data. 

 

min

max min

(0.9 0.1) 0.1Scaled

Parameter Parameter
Parameter

Parameter Parameter

  
    

  

 (1) 

One method for measuring evaporation is using different evaporation pans. One of the most 

common types of pans is used in synoptic and meteorological stations is the Class A pan. In 

Standard deviation Maximum Minimum Mean Climatic data Dataset Station 

8.37 43.8 3.8 29.51 Maximum temperature Tmax(̊c) Semnan 

7.55 33 -1.6 17.64 Minimum temperature Tmin(̊c) 

2.98 14.2 0.00 9.36 Sunshine hours SH(Hours) 

3.03 22 0.00 6.49 Wind speed WS(m/s) 

4.58 902.70 872.53 886.62 Air pressure PA(hPa) 

15.59 91.5 6.50 31.16 Relative humidity RH (%) 

4.92 25 0.00 9.11 Evaporation EP (mm) 

9.71 47 -1.6 26.31 Maximum temperature Tmax(̊c) Garmsar 
11.08 35 -1.2 13.08 Minimum temperature Tmin(̊c) 

3.27 13.8 0.00 8.79 Sunshine hours SH(Hours) 

3.99 35 0.00 7.27 Wind speed WS(m/s) 

12.58 936.98 887.8 914.71 Air pressure PA(hPa) 

19.34 97.6 4.5 37.13 Relative humidity RH (%) 

6.69 39.1 0.00 7.37 Evaporation EP (mm) 
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Semnan and Garmsar synoptic stations, evaporation data were collected using this type of pan. 

Evaporation pans are made of galvanized iron or stainless steel with a thickness of 1.5 mm in a 

circle shape with a standard diameter (48 inches) and a height of 25.4 cm (10 inches). The 

bottom of the pan is integrated and its upper edges have a resistant fold. The water depth is 20 

cm. Class A pans are usually placed on pedestals made of wood. The height of these bases is 15 

cm from the ground. Figure 2 shows a graphical view of a standard Class A evaporator. 

 

Fig. 2. Standard Class A Evaporation Pan. 

3. Multilayer perceptron network (MLP) 

The Multilayer Perceptron network [57,58] is a forward neural network that consists of input 

(first layer), hidden (second layer) and output (third layer)[59]. The purpose of training this 

network is to achieve generalizability and learning, this means that the network is able to 

correctly identify patterns that it has not seen in the training phase, as well as correctly identify 

training patterns [60]. The training of this network is done in two stages, forward and backward 

which means that the data moves toward the output layer and after calculation of the error, the 

error comes back to the input layer [61]. The structure of this network is shown in Figure 3. In 

this study, the number of input data was 3, 4, 5 and 6. The number of neurons in the secretory 

and output layers are 5 and 1, respectively. Hyperbolic tangent (tanh) was used as the activation 

function. 

 
Fig. 3. An artificial neural network with 3 layer. 

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

OUTPUT

INPUT 1

INPUT 2

INPUT 3

INPUT 4
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4. Long short term memory (LSTM) 

LSTM is a recursive neural network architecture designed to store and access information better 

than the traditional version. The unit of LSTM was first introduced by Hochreiter and 

Schmidhuber (1997). The LSTM network uses a Ct memory at time t. ht is expressed as the 

output or activation of the LSTM unit. Γ_0 is the output gateway that controls the amount of 

content delivered through memory [63]. σ is the Softmax activation function. W0 is also an 

hermitian matrix. The Ct memory cell is also the current memory with relative forgetfulness. 

New memory content is obtained with the expression C [63]. The amount of current memory to 

be forgotten is controlled by the bf forgetfulness gateway, and the amount of new memory to be 

added to the memory cell is updated by the gateway. Improved versions, such as LSTM, show 

that this capability is provided to the network by imposing restrictions on the freedom of 

parameters (by inserting new gateways) in the optimization process. Figure 4 shows an LSTM 

network. Equations 2 to 7 are provided for the network. In this study, LSTM layer nodes, Dense 

layer-1 nodes, Dense layer-2 nodes, Batch size and Epoch were considered 32, 20, 20, 72 and 

300, respectively. 

 
Fig. 4. Internal structure of an LSTM block. 

 
^

1tanh( . . )C t t cC W h X b   (2) 

 1( . . )t f f t t fC W h X b      (3) 

 1( . . )f f t t fW h X b     (4) 

 1( . . )u u t t uW h X b     (5) 

 1( . . )o o t t oW h X b     (6) 

.tanh( )t o th C   (7) 

tanh

tanh

Ct-1

ht-1

ft it

Xt

Ot
ht

Ct

ht
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5. Evaluation criteria 

Explanation coefficient (R
2
)[64,65], root mean square error (RMSE)[66] and mean absolute error 

(MAE)[67] were used to evaluate the performance of the models [68]. Equations 8 to 10 

represent R
2
, RMSE, and MAE, respectively. The closer the R

2
 is to one, the higher the 

correspondence between the observational data and the modeling data. The closer the MAE and 

RMSE indices are to zero, the better the matching of the observed and simulated data. 

2 1

2 2

1 1

( )( )

( ) ( )

n

i i

i

n n

i i

i i

x x y y

R

x x y y



 

 
  

 
  
  



 

 (8) 

2

1

( )
n

i i

i

y x

RMSE
N








 (9) 

1

1
( )

n

i i

i

MAE y x
N 

   (10) 

In equations 8 to 10, 
ix  is the observational evaporation value at the station, 

iy  is the 

simulated evaporation value, x  is the mean observational evaporation value at the station, and 

y  is the equivalent average for the simulated values. 

6. Result and discussion 

To estimate daily evaporation, LSTM and MLP models are simulated in Python. Different input 

combinations for the two models are shown in Table 3. The lowest input is for the first 

combination. Which contains only three parameters of minimum temperature, maximum 

temperature, and relative humidity. In input combination No. 4, all data is used as input for 

modeling. The different combinations of input parameters are to check the effectiveness and 

efficiency of each meteorological data on evaporation in the study areas . In fact, by considering 

different combinations of input data and removing one or more parameters in a combination, the 

effect of that parameter on evaporation can be identified . Also, this method can show whether 

more accurate simulation results are obtained by having more input data. 

Table 3 

Input combination used in modeling. 

Number of input Input combination Models scenario 

3 Tmax, Tmin, RH LSTM1 & MLP1 1 

4 Tmax, Tmin, RH, WS LSTM2 & MLP2 2 

5 Tmax, Tmin, RH, WS, SH LSTM3 & MLP3 3 

6 Tmax, Tmin, RH, WS, SH , PA LSTM4 & MLP4 4 
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The performance of the proposed models based on the evaluation criteria is shown in Table 4. 

Overally, scenario 4 was superior for both stations and for both LSTM and MLP models. The 

best model for both stations is the LSTM4 model. Considering the performance of LSTM4 for 

Semnan station, the values of R
2
, RMSE and MAE were estimated 0.9451, 1.8345, 0.5437 

respectively, where their values for Garmsar station are 0.9255, 1.7920 and 1.3513, respectively. 

In total, the value of R
2
 for all inputs in both models is higher than 0.9, which indicates the 

proper performance of both models. Comparing the LSTM and MLP models in pairs, the results 

show that LSTM has a better performance than MLP in both stations. This obtained result is 

consistent with Majhi et al. [52]. The best prediction accuracy was obtained with models that 

used the complete meteorological data set for both stations. This showed that the prediction 

accuracy of the model increases with having more input parameters, which is consistent with the 

studies of Wang et al. [69] and Fan et al. [70]. 

Abed et al. [55] used minimum temperature, maximum temperature, average temperature, wind 

speed, relative humidity and solar radiation data as input to estimate the evaporation rate using 

XGB, Elastic Net LR and LSTM models. Also Majhi et al. [52]  have used minimum and 

maximum temperature, morning and afternoon relative humidity, wind speed and solar radiation 

data as input for LSTM and MLP models. Best results for both above research are obtained when 

all the input data were considered into the estimation process. The results of Qasem et al. [14] 

also showed that the higher the number and types of inputs, the higher the accuracy of the results 

by ANN, WANN, SVR and WSVR models. Alsumaiei [71] used the ANN for the dry area of 

Kuwait International Airport (KIA) to model the evaporation rate, the results of which are 

consistent with the obtained results in current study. Figures 5 and 6 show the time series of the 

observed and simulated data of daily evaporation from the pan for Semnan and Garmsar stations, 

respectively. In other words, these figures are a comparison of total observational and simulated 

data for LSTM and MLP models. The more the simulated values correspond to the measured 

values, the more accurate and less error the model will have. In LSTM4 and MLP4 there is less 

visual difference between the observed and simulated data. Also, this difference for Garmsar 

station is less than Semnan station. The scattering curve of the estimated values against the 

observed values for both training and testing and for both Semnan and Garmsar stations can be 

seen in Figures 7 and 8, respectively. In Singh et al. [21] a comparison between machine learning 

and ANN and statistical technique versus MLR to predict pan evaporation found that the 

correlation coefficient of SVR and ANN was higher than the MLR model for calibration and 

validation. 

In Alsumaiei [71], it was stated that the MLP model can have a relatively good performance in 

predicting evaporation in arid and very arid regions, which is confirmed by the results obtained 

in the present study. Majhi et al. [52] and Abed et al.  [55] show that the LSTM model can have 

high efficiency in estimating and modeling the rate of evaporation from the pan in humid and 

very humid climates. The current study showed that the DEEP-LSTM model for hot and dry 

areas has a good performance in estimating evaporation from the pan, which is in line with the 

results of Majhi et al. [52] and Abed et al. [55]. 
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Table 4 

Comparison of performance of LSTM and MLP models in estimating evaporation of Semnan and 

Garmsar stations. 
MAE RMSE R

2
 Models Station 

1.059 1.8923 0.9315 LSTM1 Semnan 
1.0395 2.1036 0.9004 MLP1 

1.0845 1.8887 0.9320 LSTM2 

1.0641 1.9227 0.9272 MLP2 

1.1202 1.8605 0.9359 LSTM3 

1.1230 1.8613 0.9348 MLP3 

0.5437 1.8345 0.9451 LSTM4 

1.1329 1.8544 0.9395 MLP4 

1.2402 1.9291 0.9080 LSTM1 Garmsar 

1.2671 1.9301 0.9078 MLP1 

1.2524 1.9018 0.9115 LSTM2 

1.2530 1.9133 0.9100 MLP2 

1.3420 1.8564 0.9170 LSTM3 

1.3312 1.9055 0.9111 MLP3 

1.3513 1.7920 0.9255 LSTM4 

1.3531 1.8323 0.9204 MLP4 

 

  

a b 

Fig. 5. Time series of observed and simulated values with LSTM and MLP models for Semnan 

station, a and b (scenario 4). 

  
a b 

Fig. 6. Time series of observed and simulated values with LSTM and MLP models for Garmsar 

station, a and b (scenario 4). 
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a b 

  
c d 

  
e f 

  
g h 

Fig. 7. Comparison of experimental results and simulation results of Semnan station pan evaporation, 

a to: d MLP model and e to h: LSTM model. 
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a b 

  
c d 

  
e f 

  
g h 

Fig. 8. Comparison of experimental results and simulation results of Gharmsar station pan 

evaporation, a to: d MLP model and e to h: LSTM model. 
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A radar chart is a graph that shows the status of various required variables by displaying one or 

more polygons. By looking at the radar chart, the degree of proximity and similarity of the same 

variables will be understood. One of the main applications of radar charts is to compare 

observational status with predicted status considering some criteria. Figure 9 shows the radar 

diagrams of LSTM and MLP models for different scenarios in Semnan and Garmsar stations. 

Based on these graphs, both models performed well in both stations in terms of R
2
, RMSE and 

MAE evaluation criteria, and the LSTM4 performed better for both stations. These results are in 

good agreement with the research of Yin et al. [72] and Ferreira and Da Cuna [73]. 
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b 

Fig. 9. Radar diagram of LSTM and MLP models a: Semnan and b: Garmsar. 
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The box diagram of the results obtained in the test phase for Semnan and Garmsar stations are 

shown in Figures 10 and 11. The middle line shows the difference between the average observed 

values and the estimated average daily evaporation values in millimeters. The first line and the 

last line of the boxes show the 25th and 75th percentiles respectively, and the line in the middle 

of the box shows the average. 

 

 

 

 

 

 

 

 

Fig. 10. Box diagram of MLP and LSTM models for Semnan station. 
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Fig. 11. Box diagram of MLP and LSTM models for Ghramsar station. 

Considering LSTM and MLP, Taylor Diagram [58] was drawn to investigate and analyze the 

values of RMSE, R
2
 and standard deviation between the observed evaporation data of Semnan 

and Garmsar stations with data modeled by LSTM and MLP models (Figure 12). This figure 

shows that the LSTM4 model is the most accurate prediction model for both studied cities. Also, 

by comparing the combinations of the MLP model together, the MLP4 model performed better 

for both cities. It should be noted that this diagram is presented in two forms, semicircle and 

quadrilateral (only to show positive correlations). In both types, the values of R
2
 are plotted as 

the radius of a circle on its arc, the values of standard deviation are plotted as concentric circles 
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relative to the center of the circle, and the RMSE values are plotted as concentric circles relative 

to the reference point (solid circle). The results show that the performance of both models is 

close to each other and acceptable for all scenarios. Gao et al. [74], indicating the better 

performance of the proposed LSTM model. Chia et al [75], who reported minimum MAE and 

RMSE values of 0.444 mm/d and 0.543 mm/d, respectively. These results are relatively close to 

the results of the present study. 
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Fig. 12. Taylor diagram for LSTM and MLP models, A and B: Semnan station; C and D: Garmsar station. 

7. Conclusion 

Soft computational models and statistical techniques are useful frameworks for predicting 

complex climate indicators, such as pan evaporation. This study was performed to evaluate the 

potential of Deep-LSTM structure and compare it with MLP to estimate daily evaporation under 
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hot and dry climates with the use of meteorological data. Meteorological parameters used in this 

research were Minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), 

sunshine hours (SH), air pressure (PA), relative humidity (RH). In this study 4 input 

combinations were considered for the two models. Prediction models were tested and trained 

using daily evaporation data from the existing pan from 2000 to 2018. The accuracy of the 

models was compared by calculating the statistical criteria of standard R
2
, RMSE and MAE. 

The following results were obtained in this study: 

- LSTM and MLP models can perform well in daily EP simulations. 

- The LSTM model performed better in all scenarios than the MLP model. 

- Simultaneous consideration of all inputs, in both LSTM and MLP models and for both 

Semnan and Garmsar stations showed the best performance. 

- Due to the availability of methodological data, LSTM can be used as a suitable model for 

estimating the daily evaporation rate in stations where direct evaporation measurement is 

not performed. 

- Other neural network structures based on deep learning can also be used to predict the 

process of evaporation from the pan and reference evapotranspiration. 

For future research, it is suggested to investigate the LSTM model for different weather 

conditions. For multi-stage evaporation prediction, LSTM model and other deep learning models 

such as CNN, Bi LSTM, etc. should be investigated. 
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