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To provide lateral resistance in structures as well as 

buildings, there are some types of structural systems such as 

shear walls. The utilization of lateral loads occurs on a plate 

on the wall's vertical dimension. Conventionally, these sorts 

of loads are transferred to the wall collectors. There is a 

significant resistance between concrete shear walls and 

lateral seismic loading. To guarantee the building's seismic 

security, the shear strength of the walls has to be 

prognosticated by using models. This paper aims to predict 

shear strength by using Artificial Neural Network (ANN), 

Neural Network-Based Group Method of Data Handling 

(GMDH-NN), and Gene Expression Programming (GEP). 

The concrete's compressive strength, the yield strength of 

transverse reinforcement, the yield strength of vertical 

reinforcement, the axial load, the aspect ratio of the 

dimensions, the wall length, the thickness of the reinforced 

concrete shear wall, the transverse reinforcement ratio, and 

the vertical reinforcement ratio are the input parameters for 

the neural network model. And the shear strength of the 

reinforced concrete shear wall is considered as the target 

parameter of the ANN model. The results validate the 

capability of the models predicted by ANN, GMDH-NN, and 

GEP, which are suitable for use as a tool for predicting the 

shear strength of concrete shear walls with high accuracy. 
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1. Introduction 

Physical, experimental, numerical, and statistical models have been used in different researches 

to find the shear strength capacity of reinforced concrete shear walls. The results of the 

mentioned researches have been integrated into different manuals for engineers, guidelines, and 

standards for constructors as well as building codes [1–7]. 

In addition to strut-and-tie models, a variety of other models have been proposed for estimating 

shear wall strength [8]. An investigation of the strength and behavior of low-rise shear walls 

made of high-strength concrete subjected to reversed cyclic loading [9]. Additionally, high-

strength concrete is likely to be brittle, making ductile responses in shear walls difficult [10]. 

Based on prior studies the shear strength of shear wall mainly depends on the compressive 

strength of the concrete, the yield strength of transverse reinforcement, the vertical reinforcement 

ratio, the wall length, the transverse reinforcement ratio, the thickness of the reinforced concrete 

shear wall, the yield strength of vertical reinforcement, the axial load, and the aspect ratio of the 

dimensions of the wall., studies have indicated that the peak shear strength results were subject 

to substantial variation based on these analytical/empirical/design equations [11,12]. 

Artificial neural networks (ANNs) are widely used in fields such as meteorology, hydrology, and 

engineering due to their simplicity of implementation and high accuracy in solving complex 

problems [13–16]. An artificial neural network, or ANN, uses a large set of neural units in a 

mathematical model to represent brain functions and structures to solve complex problems 

modeled as inputs and outputs. The ANN has a better prediction performance than traditional 

methods such as regression, as demonstrated by Chithra et al. [13] and Khademi et al. [17]. 

Several drawbacks exist in an ANN's implementation, such as the slow learning rate and the 

solution trap in finding the local minimum [18]. 

To overcome the disadvantages of ANN algorithms, different optimization algorithms have been 

developed such as self-optimization and hybrid optimization. Although self-optimization 

algorithms reduce computing efficiency, they cannot completely prevent premature convergence 

of the network [19]. 

Recently, developing an artificial intelligence-based formula for predicting mechanical 

characteristic based on collected experimental data have attracted researchers' interest. In this 

regard, Naderpour et al. proposed an ANN model for predicting the compressive strength of 

environmentally friendly concrete which reused recycled aggregate concrete (RAC) [20]. 

Moreover, Naderpour and Mirrashid used ANN for predicting the compressive strength of 

mortars having calcium inosilicate minerals [21]. In another study, Naderpour et al. proposed a 

GMDH-based approach for estimating the moment capacity of ferrocement members [22]. 

Further, Ilkhani et al. [23] proposed a novel approach for the torsional strength prediction of 

reinforced concrete beams. 

Chen et al. proposed a hybrid ANN-PSO model for predicting the shear strength of squat 

reinforced concrete shear walls. Moradi and Hariri-Ardebili [24] developed a library for the 

shear wall database and used ANN for models for stiffness and strength of steel and reinforced 
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concrete shear walls. Emamian and Eskandari [25] propose a compressive and flexural strength 

prediction model based on ANN and GEP for cementitious partial replacements cement mortar 

with micro and nano-silica and GEP formulation for freeze and thaw cycle [26]. Shahmansouri et 

al. proposed numerical models for eco-efficient GGBS-based geopolymer concrete compressive 

strength prediction using the GEP method [27]. Murad [28] developed uniaxial and biaxial joint 

shear strength of reinforced concrete beam and column connection models by GEP. Additionally, 

Jueyendah et al. [29] present the same procedure for cement mortar with partial replacement by a 

support vector machine. Additionally, some other researches in the realm of civil engineering 

have been performed using soft computing methods [30–38]. 

Due to the behavioral properties of concrete materials and the nature of construction and 

utilization of this type of material in the construction industry, these unique features of the neural 

network can be used to predict the shear strength of reinforced concrete more accurate. 

In soft computing, information processing is done by the possibility of extracting hidden patterns 

and relationships in scientific data, which has become possible in recent decades with the growth 

of computer science and software technology which gives researchers a new aspect of 

engineering analysis. Soft computing methods have been widely accepted by researchers due to 

the prediction and analysis of multidimensional and complex problems in recent decades, and 

therefore the advantage of using these methods in this research seems reasonable and justified. 

Within this context, this article proposes a framework based on 115 experimental datasets which 

are collected from the various articles which aim to formulate the shear strength of reinforced 

concrete shear walls by artificial intelligence-based algorithms such as Artificial Neural 

Networks (ANN), Neural Network-Based Group Method of Data Handling (GMDH-NN) and 

Genetic Algorithms (GEP). 

The article is structured as follows. Section 2 gives a brief discussion on the experimental dataset 

and corresponding features that affect the shear strength of the shear wall. In Section 3, the 

strategy of using Artificial Neural Networks is described. The Neural Network-Based Group 

Method of Data Handling is described in Section 4. In section 5, the performance and properties 

of Gene Expression Programming are described. In Section 6, the application and comparison of 

these formulations with ACI 318 and the experimental dataset are presented. Finally, the 

conclusions of this study are elucidated in Section 7. 

2. Experimental dataset and processing 

In this research, the experiment dataset of the shear walls was collected from the existing 

literature [8–10,19,39–46]. 

The effective parameters on the shear strength of shear walls are included thickness of the shear 

wall (𝑡), length of shear wall (𝐿𝑤), aspect ratio (𝑎𝑤 = 𝐻
𝐿⁄ ), axial load (𝑁𝑢), compressive 

strength of concrete (𝐴𝑠𝑤), the cross-sectional area (𝐴𝑠𝑤), area of the wall-bounded by the web 

thickness and wall length (𝐴𝑐𝑤), and ratio and yield strength of horizontal and vertical 
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reinforcements (𝜌𝑡𝑓𝑦𝑡, 𝜌𝑣𝑓𝑦𝑣). In this research, the mentioned parameters would be contemplated 

in order to evolve the prediction model of shear strength capacity. 

The dataset for predicting the shear strength of the walls is thoroughly selected from 115 

datasets. 

    
Fig. 1. Schematic view of a shear wall. 

By performing a lot of modeling and impacting the various parameters and their composition and 

relationship, the parameters were selected as inputs, which had the closest response to the 

experimental results. The statistical properties of these parameters, which have been collected 

from various laboratory papers, are presented in Table 1 (see Appendix. A for more detail). 

Table 1 

Statistical properties of the parameters in shear strength of reinforced concrete shear walls. 

Parameter Symbol Unit Min Max Mean COV 

The thickness of the shear wall t  𝑐𝑚 2 75 14.68 19.8 

Compressive strength of the cylinder concrete cf 
 𝑀𝑃𝑎 16.4 137.5 42.32 23.76 

Vertical reinforcement ratio v  -- 0 3.22 0.98 0.66 

Length of the wall wL
 𝑐𝑚 60 396 148.42 19.8 

Horizontal reinforcement ratio t  -- 0 1.38 0.65 0.293 

Yield strength of transverse reinforcement ytf
 

𝑀𝑃𝑎 0 1079 496.36 198.1 

Yield strength of vertical reinforcement yvf
 

𝑀𝑃𝑎 0 2147 544.8 297.06 

Axial load   uN
 𝑘𝑁 0 0.305 0.03 0.65 

Aspect ratio w

H
a

L


 
-- 0.24 2.39 0.98 0.46 

 

The equations for calculating the shear capacity of a concrete shear wall from ACI-318 are 

presented in Table 2. For all equations, the shear strength depends on the compressive strength of 

the concrete, the ratio of dimensions, the axial force, the vertical and horizontal reinforcement 

ratio, and the cross-section of the wall. 
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Table 2 

The shear capacity equations of a concrete shear wall. 

Models Concrete shear resistance Vc, Reinforcement shear resistance Vs 

ACI 318-14-11 [6] 
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Due to the significant range of the experimental data values and improving the stability and 

accuracy of the prediction model, all input parameters normalized using the following min-max 

normalization equation: 

 
 

 
min

,

max min

0.9 0.1 0.1
i

i nor

X X
X

X X

 
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 (1) 

where 𝑋𝑖 is the input parameters, and 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 are the minimum and maximum of each 

input parameter respectively. 

3. Artificial neural networks (ANN) 

ANNs are composed of artificial neurons that are conceptually derived from biological neurons 

structures and functions of the human brain. The neural network structure consists of three main 

layers which are the input layer, hidden layer, and output or target layer [47]. The input values of 

data are given to the input layer which in this research are parameters of shear strength of shear 

walls. The hidden layers are the layers between input layers and output layers, where artificial 

neurons take in a set of weighted inputs and produce an output through an activation function 

which maps the relationships between the input parameters and shear strength by neurons. 

Finally, the target or the output layer is the prediction result of the shear strength of the shear 

wall with a set of weighted inputs and biases. During each process of modeling, as shown in Fig. 

2, the input parameter values are processed by each neuron by taking a place two-step. First, the 

input parameters are combined linearly through weight and bias. Second, an activation function 

is applied to predict or acquire the final result of the combination. At end of the process, the 

shear capacity result of shear walls, 𝑉𝑢, obtained by linear combination output of each neuron. 
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Fig. 2. ANN Process. 

.n w x b   (2) 

 outa f n  (3) 

In this paper, the weights 𝑤, bias 𝑏, coefficient 𝑐 is termed as the mapping coefficient in the 

shear strength prediction model. The error estimation functions are: 
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For analyzing and choosing the robust neuron layers of ANN, 9 different ANN models with 

neuron layers ranging from 8 to 16 have been considered. On this basis, the robust neuron layer 

is the one that has the least mean absolute error (MSE). Table 3 demonstrates the result of the 

Train, Validation, and Test data correlation coefficient and MSE which was gained by averaging 

20 runs of each network. 
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Table 3 

Correlation coefficient and MSE values for trained networks with the number of different neurons in the 

hidden layer. 

Neurons Train Validation Test All MSE 

8 0.988 0.984 0.961 0.984 0.000922 

9 0.99 0.983 0.983 0.988 0.00108 

10 0.991 0.983 0.903 0.979 0.00936 

11 0.995 0.94 0.788 0.978 0.00157 

12 0.996 0.985 0.897 0.979 0.00679 

13 0.996 0.981 0.971 0.984 0.00158 

14 0.998 0.912 0.904 0.948 0.00353 

15 0.958 0.944 0.859 0.948 0.00255 

16 0.979 0.984 0.974 0.978 0.000536 

 

As shown in Table 3, the model created with 12 neurons with MSE 0.00679 and regression 

0.979, is shown in Fig. 3, for the main sample. For better understanding, these results are 

displayed graphically (Figs. 4-6). 

 

Fig. 3. Correlation coefficient. 
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Fig. 4. The performance and evaluation of Training state. 

 

 
Fig. 5. Regression of training, validation, and test simulated. 
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Fig. 6. Verification of simulated results against experimental data. 

3.1. Analyze the sensitivity of the input parameters 

Analysis based on weight values is based exclusively on the values stored in the static weight 

matrix to determine the relative effect of each input data on the network output data. Different 

equations based on weights are presented. One of the most practical equations is the Milne 

equation [48]. This relationship is calculated by multiplying the weights (the binding weight 

between the input neurons i and the hidden neuron j) and (the binding weight between the hidden 

neurons j and the output neuron o) for each of the hidden neurons in the network as a sum of the 

product of the multiplication Calculated is obtained. 

1
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1 1
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 (7) 

In this equation, the sum of the binding weights between the input N neurons and the secret 

neurons J is the percentage effect of the input variable 𝑥𝑖 on the output variable 𝑦𝑘. Using this 

method, the correct ratios are obtained for both positive and negative weights. 𝑖𝑤{1,1} is the 

weight of input parameters and 𝑖𝑤{2,1} is output weight. 
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As shown in Fig. 7, the results of the sensitivity analysis show that t has the highest impact 

percentage and (𝐹𝑐
′) has the least impact percentage on the target function. 

 

Fig. 7. The results of the sensitivity analysis. 

4. Neural network-based group method of data handling (GMDH-NN) 

The Group Method of Data Handling (GMDH) based on the principle of heuristic self-organizing 

and automatic optimization of mules was proposed by Ivakhnenko in 1971 [49]. 

The GMDH-NN method contains a set of neurons generated by a quadratic polynomial. By 

combining quadratic polynomials from all neurons, the network describes the approximate 
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this paper 9 parameters) and one output (i.e. the shear strength of reinforced concrete wall) the 

actual results are displayed as follows: 

( 1, 2, ..., ),1 ,2 ,3 ,( , , ,..., ) i Mi i i i i ny f x x x x   (8) 

Which the prediction with GMDH-NN is 𝑦̂ for each set of input 𝑥, so: 

( 1, 2, ..., ),1 ,2 ,3 ,( , , ,..., ) i Mi i i i i ny f x x x x   (9) 

The GMDH-NN method objective function would be to minimize the error square between the 

actual outputs and the prediction: 

2

1

( ) min
M

i i

i

y y


   (10) 

The relationship between input and output variables can be expressed using the polynomial 

function as follows: 

0 1

1 1 1 1 1 1
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n n n n n n

i i ij i j ijk i j k

i i j i j k

y a a x a x x a x x x
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        (11) 

Which is commonly known as Kolmogorov-Gober polynomial. The quadratic form and the two 

variables of this polynomial are used as follows 

2 2

0 1 2 3 4 5( , )i i j i j i j i jy G x x a a x a x a x x a x a x        (12) 

The unknown coefficients (𝑎𝑖) Eq. (9) is determined by regression techniques such that the 

difference between the actual output, (𝑦), and the calculated values (𝑦̂) are minimized for each 

pair of input variables (𝑥𝑖, 𝑥𝑗). A set of polynomials is constructed using Eq. (9), the unknown 

coefficients of all of which are obtained using the square squares method. For each function (𝐺𝑖) 

(constructed neurons) the coefficients are obtained to quantify the total error of the neurons to 

optimally match the inputs of all pairs of output-input sets. 

2
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 (13) 

In the basic methods of the GMDH algorithm, all binary compounds (neurons) are made of 𝑛 

input variable, and the unknown coefficients of all neurons are obtained using the least-squares 

method. Thus: 

( 1)

2 2

n n n  
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 
 (14) 

The neurons in the second layer are made up of the following sets: 

{( , , ) ( 1, 2,..., ) & , (1,2,..., )}i ip iqy x x i M p q M   (15) 
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By using the quadratic form of the function expressed in Eq. (9) for each 𝑀 of the triple row. 

These equations can be expressed in the form of the following matrix: 

A Ya  (16) 

In this equation, 𝐴 is the vector of the unknown coefficients of the quadratic equation shown in 

Eq. (9), i.e.: 

1 2 3

1 2 3

{ , , ,..., }

{ , , ,..., }

n

T

M

a a a a

Y y y y y





a
 (17) 

And: 

𝐴 =

[
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2

… … … … … …
1 𝑥𝑀𝑝 𝑥𝑀𝑞 𝑥𝑀𝑝𝑥𝑀𝑞 𝑥𝑀𝑝
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2

]
 
 
 
 

 (18) 

The least-squares method of multiple regression analysis solves the equations as follows: 

1( )T TA A A Ya  (19) 

This vector equation gives the coefficients of Eq. (9) for all 𝑀 sets of three. In this method, (the 

direct solution is SNE) probability of error due to rounding errors and the possibility of 

singularity in equations may be occurred [50,51]. 

4.1. Predict shear strength of shear walls using GMDH-NN algorithm: proposed method 

For trying to analyze the dimension of network input parameters using the results of the neural 

network using the 9-variable mathematical model simplification approach as the GMDH-NN. 

Variables are selective; these 9-variables are the combination of the previous neural network 

inputs with arbitrary dies and do not necessarily represent the contribution of each section to the 

shear wall shear capacity. The 9-variables and model presentation for them are as follows and the 

results of the prediction using these equations are presented in Fig. 8: 

2

1 20.0549316 0.302178 0.28247 0.97383yv yvY f f N      (20) 

2

2 4 3 4 4 3

2 2

3 4 4 4

2

4 5 5

2

5 6

2

6

0.012 1.28 3.06 2.99 0.34

0.062 1.01 0.16 0.37 0.24

0.085 0.47 0.701 0.57 0.64

0.160 1.24 1.15 0.93

0.027 0.408 0.176 0.367 0.527

t t

yt yt yt

w w c w c

N N N N N N

N N N N
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     

 (21) 
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Fig. 8. Verification of simulated results against experimental data. 

As shown in Fig. 8, the shear strength of reinforced concrete shear wall prediction with the GMDH 

algorithm has acceptable with an absolute error of 12.54%. 

5. Gene expression programming (GEP) 

Gene Expression Programming (GEP) is a developed genetic algorithm and genetic 

programming that was proposed by Ferreira in 2001 [52]. This algorithm, like genetic algorithm 

and genetic programming, first, randomly or algorithmically, several solutions for the problem 

generate. This set of answers is called the primitive population. Each answer is called a 

chromosome. Then, using the genetic algorithm operators, after choosing the best chromosomes, 

the chromosomes combined and make a jump in them. Finally, the current population with the 

new population that results from the combination and mutation in the chromosomes, combined. 

Steps for designing and implementing the GEP algorithm for resilience: 

 Definition of the fitness function 

 Definition of terminals and functions 

 Determine the structure of chromosomes (number in genus, length of genes, and their 

number) 

 Determining the Linking Function 

 Determine the characteristics of the operators and finally implement the algorithm 

The flowchart of the GEP's algorithm is based on Ferreira's opinion as follows: 
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Fig. 9. The flowchart of the GEP's algorithm. 

5.1. Predict shear strength of shear walls using GEP algorithm: proposed method 

Table 4 is the GEP parameters that were used for estimating the shear strength of reinforced 

concrete Shear Walls. Fig. 10 shows the output of the GEP software, which shows the 

comparison between the experimental model and the model obtained from the software. The data 

taken in the software is considered to be 70 to 30. 
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Fig. 10. The output of the GEP. 

Table 4 

GEP parameters were used for estimating the shear strength of concrete Shear Walls. 

Value Parameter 

8 Head Size 

25-35 Chromosomes 

3 Number of genes 

0.045 Mutation Rate 

0.1 Inversion Rate 

0.3 Rate One-Point Recombination 

0.3 Rate Tow-Point Recombination 

0.1 Gene Recombination Rate 

0.1 IS Transposition Rate 

0.1 RIS Transposition Rate 

0.1 Gene Transposition Rate 

RMSE Fitness Function Error Type 

Addition (+) Linking Function 
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Finally, the governing equation and its parameters for predicting the shear strength of reinforced 

concrete shear walls are as follows: 

       2sin sin /u w yt t t c v w t yt u w cV L t f f L f N L f t             (22) 

6. Comparison and results 

In this section, in order to evaluate the accuracy and efficiency of the model made by the Neural 

Network, GMDH-NN, and GEP to predict the shear strength, comparison of the results obtained 

from the models with the results obtained from the relationships of the valid ACI318 design code 

are presented. As can be obtained, an average absolute error of prediction for ANN, GMDH-NN, 

GEP, and ACI is 6.39%, 12.54%, 12.27%, and 22.19% respectively. It should be mentioned that 

the far difference between experimental and ACI318 design code results are generated due to 

code design reliability factor for safety and uncertainty. 

 

Fig. 11. Comparison of Experimental and ACI results with ANN, GEP, and GMDH-NN. 

7. Conclusion 

In this paper, the shear strength of the reinforced concrete shear wall is determined using 

artificial intelligence-based algorithms, including artificial neural network (ANN), group method 

of data handling (GMDH) neural network, and evolutionary algorithm gene expression 

programming (GEP). Determining the shear strength of the reinforced concrete shear wall is a 
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very vital issue from both economic and technical aspects because the behavior of the reinforced 

concrete wall can be better predicted by accurately predicting its shear capacity. Parameters 

affecting the shear capacity of reinforced concrete shear wall based on information collected 

from 115 laboratory samples available in scientific articles including aspect ratio, concrete shear 

wall thickness, concrete shear wall length, the ratio of transverse and vertical reinforcement, 

yield strength of transverse and vertical reinforcement, axial load and compressive strength of 

concrete. Comparison of the results predicted by ANN, GMDH-NN, and GEP with laboratory 

results shows high accuracy and very low data error. 

A comparison was made between the methods used in this study and according to the relevant 

graphs, the result indicates that the model is the closest to the laboratory results of the artificial 

neural network and has an error rate of 6.3 percent. 

 The Artificial Neural Network predicts the shear capacity of the concrete shear wall by 

method with an average absolute error of 6.39% and a correlation coefficient of 0.97. 

 The equation presented by the GMDH-NN algorithm showed a good mapping of the 

shear capacity of concrete shear wall and with an average absolute error of 12.54% 

showed an acceptable prediction of the shear capacity of concrete shear wall. 

 The equation presented by the GEP algorithm with the mean absolute error of 12.27% has 

shown an acceptable prediction of the shear capacity of the concrete shear wall. 

 The equation provided by the ACI regulation with an average absolute error of 22.19% 

has shown a large error concerning the relationships proposed by computational 

intelligence algorithms the shear capacity of the concrete shear wall. 
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Appendix A. Details of shear wall dataset 

Table A1 

Experimental data that affect the shear strength of shear walls. 

Reference Year t  wL  v  t  yvf
 ytf

 cf   𝑁𝑢 𝑙𝑤𝑡𝑓⁄  wa  uV  

Oesterle et al. 

[41] 
1984 

10.2 190.5 1.37 0.63 444.4 444.4 45.3 0.000 2.40 761.3 

10.2 190.5 1.37 0.63 440.9 440.9 21.8 0.022 2.40 824.4 

10.2 190.5 1.37 0.63 458.2 458.2 49.4 0.012 2.40 979.6 

10.2 190.5 1.37 1.38 447.8 447.8 42 0.015 2.40 976.9 

10.2 190.5 1.25 0.63 430.6 430.6 45.6 0.013 2.40 886.7 

Maier and 

Thurliama 

[42] 

1985 

10 118 1.16 1.03 574 574 36.9 0.010 1.02 680 

10 118 1.16 1.03 574 574 35.4 0.040 1.02 928 

10 118 2.46 1.03 530 574 36.7 0.010 1.02 977 

10 118 1.05 1.03 574 574 32.9 0.007 1.02 392 

10 118 1.16 1.03 574 574 37.3 0.009 1.02 701 

10 118 1.13 0.57 479 537 35.6 0.010 1.02 667 

10 118 1.13 1.01 555 555 34.1 0.041 1.02 836 

Kabeasawa et 

al. [43] 
1993 

10 118 0.98 0 560 0 29.2 0.008 1.02 342 

10 118 2 0.98 496 496 31 0.007 1.02 670 

8 170 0.84 0.53 1187 1001 93.6 0.014 1.76 1468 

8 170 0.65 0.25 848 1001 55.5 0.023 1.18 714 

8 170 0.88 0.25 593 753 54.6 0.018 1.76 784 

8 170 1.07 0.49 593 753 60.3 0.019 1.76 900 

8 170 1.15 0.49 1187 753 65.2 0.015 1.76 1056 

8 170 0.84 0.53 1187 753 103.3 0.011 1.76 1670 

8 170 0.84 0.53 848 1079 137.5 0.009 1.18 1719 

8 170 1.42 0.35 848 1079 70.8 0.024 1.18 1254 

8 170 1.34 0.21 339 792 65.1 0.018 1.18 1100 

8 170 1.54 0.53 565 792 71.8 0.016 1.18 1378 

8 170 1.54 0.53 848 792 103.4 0.011 1.18 1696 

8 170 1.54 0.49 848 792 76.7 0.025 1.18 1158 

8 170 1.69 0.72 1187 792 74.1 0.016 1.18 1411 

8 170 1.84 0.92 1158 792 71.5 0.016 1.18 1498 

8 170 2.17 1.34 1469 792 76.1 0.015 1.18 1639 

8 170 1 0.74 2147 810 62.6 0.018 1.18 1049 

8 170 1 0.74 1187 810 60.8 0.021 1.18 1054 

8 170 1 0.74 1187 810 57.7 0.024 1.18 958 

8 170 1 0.74 1187 810 62.2 0.022 1.18 1020 

8 170 1 0.74 1187 810 59.7 0.018 1.18 1011 

8 170 0.84 0.53 1187 810 93.6 0.013 1.18 1468 

Gupta [9] 1996 

75 100 1.06 0.52 545 578 65.1 0.001 1 719.6 

75 100 1.06 0.52 545 578 69 0.002 1 850.7 

75 100 1.61 0.52 533.2 578 73.1 0.001 1 790.2 

75 100 1.61 0.52 533.2 578 70.5 0.002 1 970 

75 100 1.06 1.06 545 545 71.2 0.001 1 800 

75 100 1.06 0.52 545 578 60.5 0.001 1 486.6 

Dabbagh [10] 2005 

10.2 190.5 0.96 0.48 527.9 496.1 23.5 0.000 1 884.8 

75 100 2.52 0.45 536 536 86 0.002 1 992 

75 100 3.22 1.34 498 498 86 0.002 1 1190 

75 100 2.82 0.75 498 536 96 0.002 1 1107 

75 100 3.22 0.45 498 536 83 0.002 1 1134 

75 100 2.95 0.94 498 498 83 0.002 1 1141 

Barda et al. 

[44] 
1993 

10.2 190.5 0.73 0.44 543 496.1 29 0.000 0.50 1217.3 

10.2 190.5 0.26 0.44 552 499.6 16.4 0.000 0.50 977.6 

10.2 190.5 0.97 0.44 545.1 513.4 27 0.000 0.50 1107.2 

10.2 190.5 0.75 0.44 496.8 496.8 21.3 0.000 0.50 875.6 

10.2 190.5 0.96 0.41 531.3 501.6 25.7 0.000 0.25 1138.6 

Benjamin and 

Williams [45] 
1957 

5 61 0.5 0.5 359 359 20.1 0.000 0.92 89 

5 91 0.5 0.5 359 359 21.5 0.000 0.62 155 

5 122 0.5 0.5 359 359 19.5 0.000 0.46 201 

5 178 0.5 0.5 359 359 26.4 0.000 0.31 294 
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Yamada et al. 

[46] 
1974 

4 133 0.31 0.31 286 286 35.6 0.186 0.45 373 

4 133 0.63 0.63 286 286 30.4 0.201 0.45 370 

4 133 1.26 1.26 286 286 31.5 0.218 0.45 438 

3 133 0.84 0.84 286 286 32.8 0.221 0.45 276 

2 133 0.63 0.63 286 286 30.1 0.305 0.45 211 

2 133 1.26 1.26 286 286 33.7 0.293 0.45 213 

3 60 0.23 0.21 293 293 25.7 0.271 1.17 86 

Hwang et al. 

[8] 
2001 

12 396 0.66 0.66 572 572 20.6 0.120 0.45 2354 

12 396 0.66 0.66 572 572 20.8 0.228 0.45 2942 

12 396 0.66 0.66 572 572 21.3 0.155 0.45 3138 

12 396 0.33 0.33 572 572 19.6 0.097 0.45 1814 

12 396 0.33 0.33 572 572 20.8 0.097 0.45 1912 

12 396 0.69 0.66 284 284 20.5 0.110 0.45 2138 

12 396 0.69 0.66 284 284 19.6 0.106 0.45 1981 

12 396 0.77 0.74 397 397 20.9 0.116 0.45 2305 

Chen et al. 

[19] 
2018 

7.62 190.5 0 0 0 0 40.3 0.000 1 305.6 

7.62 190.5 2.87 0.93 448 455 43.6 0.000 1 632.1 

10 120 0.28 0.28 610 610 23.9 0.070 1 251.3 

12 100 0.25 0.38 407 415 20.3 0.000 2 323.8 

16 85.1 0.4 1.08 407 415 17.8 0.110 1.88 318.9 

16 85.1 0.4 1.08 407 415 20.8 0.094 1.88 335.8 

15.2 137.1 0.25 0.27 424 424 28.3 0.100 0.89 754 

15.2 137.1 0.25 0.27 424 424 31.9 0.050 0.89 649.5 

15.2 137.1 0.25 0.27 424 424 36 0.050 0.89 680 

8 191 0.94 0.27 448 414 43 0.000 1.08 519 

8 191 2.93 0.27 448 465 42.5 0.000 1.08 569 

Hirosawa 

[39] 
1975 

15.2 137.1 0.25 0.27 424 424 30 0.000 0.89 404.8 

6 80 0.22 0.23 433 433 23.5 0.000 1.075 102 

6 80 0.73 0.82 433 433 23.5 0.000 1.075 147 

6 80 0.44 0.41 433 433 23.5 0.000 1.075 135 

6 80 0.73 0.82 433 433 23.5 0.000 1.075 159 

6 80 1.17 1.17 433 433 23.5 0.000 1.075 175 

6 120 0.24 0.23 433 433 24.5 0.000 0.72 160 

6 120 0.78 0.82 433 433 24.5 0.000 0.72 235 

6 120 0.44 0.41 433 433 24.5 0.000 0.72 220 

6 120 0.78 0.82 433 433 24.5 0.000 0.72 260 

6 120 1.17 1.17 433 433 24.5 0.000 0.72 275 

6 120 0.22 0.23 433 433 25.5 0.000 0.72 199 

6 120 0.8 0.82 433 433 25.5 0.000 0.72 322 

6 120 0.36 0.41 433 433 25.5 0.000 0.72 319 

6 120 0.8 0.82 433 433 25.5 0.000 0.72 382 

6 120 1.17 1.17 433 433 25.5 0.000 0.72 422 

Mo and Shiau 

[40] 
1995 

7 86 0.72 0.81 302 302 32.2 0.001 0.76 205 

7 86 0.72 0.81 302 302 32.2 0.001 0.76 247 

7 86 0.72 0.81 302 302 32.1 0.001 0.76 202 

7 86 0.72 0.81 443 302 29.5 0.001 0.76 255 

7 86 0.72 0.81 302 302 37.5 0.001 0.76 223 

7 86 0.72 0.81 302 302 37.5 0.001 0.76 231 

7 86 0.72 0.81 302 302 39.9 0.000 0.76 250 

7 86 0.58 0.81 302 302 18 0.001 0.76 193 

7 86 0.58 0.81 302 302 18 0.001 0.76 217 

7 86 0.58 0.81 302 302 29.7 0.001 0.76 203 

7 86 0.58 0.81 443 302 30.7 0.001 0.76 246 

7 86 0.58 0.81 443 302 30.2 0.001 0.76 200 

7 86 0.58 0.81 443 302 30.2 0.001 0.76 210 

7 86 0.58 0.81 443 302 39.3 0.000 0.76 219 

7 86 0.58 0.81 443 302 37 0.001 0.76 205 

7 86 0.58 0.81 443 302 34.5 0.001 0.76 210 

7 86 0.58 0.81 302 302 66 0.000 0.76 227 
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