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Newly poured concrete opposing hot and windy conditions is 

considerably susceptible to plastic shrinkage cracking. Crack-

free concrete structures are essential in ensuring high level of 

durability and functionality as cracks allow harmful instances or 

water to penetrate in the concrete resulting in structural 

damages, e.g. reinforcement corrosion or pressure application 

on the crack sides due to water freezing effect. Among other 

factors influencing plastic shrinkage, an important one is the 

concrete surface humidity evaporation rate. The evaporation 

rate is currently calculated in practice by using a quite complex 

Nomograph, a process rather tedious, time consuming and 

prone to inaccuracies. In response to such limitations, three 

analytical models for estimating the evaporation rate are 

developed and evaluated in this paper on the basis of the ACI 

305R-10 Nomograph for “Hot Weather Concreting”. In this 

direction, several methods and techniques are employed 

including curve fitting via Genetic Algorithm optimization and 

Artificial Neural Networks techniques. The models are 

developed and tested upon datasets from two different countries 

and compared to the results of a previous similar study. The 

outcomes of this study indicate that such models can effectively 

re-develop the Nomograph output and estimate the concrete 

evaporation rate with high accuracy compared to typical curve-

fitting statistical models or models from the literature. Among 

the proposed methods, the optimization via Genetic Algorithms, 

individually applied at each estimation process step, provides 

the best fitting result. 
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1. Introduction 

Hot weather can result in several problems throughout the concreting phases (mixing, placing, 

and curing) and adversely affect concrete properties and its service life. These problems are 

associated with high concrete temperatures that are primarily caused by fast evaporation of water 

out of concrete. During evaporation in fresh concrete, three-dimensional volume changes occur 

mainly due to quick loss of surface bleed water which in turn tends to bring the nearby solid 

particles closer [1]. Thus, while humidity evaporates over the surface of newly placed concrete 

more rapidly that it is retained by the bleed water, concrete surface is getting shrunk [2]. Due to 

that shrinkage, a restraint is triggered by the drying surface layer of the concrete. Therefore, 

tensile stresses are developed in the feeble, stiffening plastic concrete which in turn produces 

shallow cracks. These cracks are widespread in almost all directions over the concrete surface 

and can be sparse or dense [3]. The consequent cracks may occur in either the plastic or hardened 

state. Accordingly, such developing conditions negatively affect the concrete quality and strength 

[4]. 

ACI Committee 305 [5] defines hot weather as any combination of high ambient temperature, 

high concrete temperature, low relative humidity, high wind velocity and solar radiation. The 

adverse arrangement of these factors can lead to rapid evaporation of humidity from the fresh 

concrete surface which, as aforesaid, is the primary cause of plastic shrinkage cracks in concrete. 

Yet, the analysis by ACI does not include solar radiation as a variable [6]. In principal, fresh 

concrete is susceptible to plastic shrinkage cracking especially during hot, windy, and dry 

weather conditions [7]. 

Plastic shrinkage cracking can seriously affect a concrete member by reducing its durability and 

strength directly or indirectly [8]. Such occurrence in construction projects can result in 

substantial repair cost requirement. Hence, a systematic way for controlling this manifestation is 

essential to prevent such sort of damage from happening, as any impairment that may occur to 

concrete or concrete members, because of hot weather, can never be fully alleviated [9]. 

The evaporation rate is a parameter that directly affects concrete plastic shrinkage and further 

influences the long-lasting, permanency, and strength of concrete structures. As such, the 

estimation of the evaporation rate is important for any fresh concrete prior to pouring process. 

The construction industry has been assisted in this direction by the use of an ACI Nomograph c 

[5] which returns a numerical value of the evaporation rate without describing straightforwardly 

the sensitivity of evaporation rate in relation to the individual influencing factors. However, the 

use of the Nomograph is not very workable, especially when multiple estimations are needed 

within a repetitive type of analysis. Instead, the implementation of mathematical models can 

highly expedite the process, improve the accuracy, minimize errors in curve reading, and support 

decision making. 

The objective of this work is to develop mathematical models that can be used as efficient 

alternatives to the Nomograph manual estimation of the water bleeding rate (evaporation rate) 

over freshly poured concrete surfaces. Alternate methods and development tools are employed, 

including curve fitting via Genetic Algorithms and Artificial Neural Networks, leading to a 



 V.C. Papadimitropoulos et al./ Journal of Soft Computing in Civil Engineering 4-4 (2020) 79-97 81 

number of models. The models are comparatively tested between each other and with an existing 

mathematical model from the literature with data coming from two regions, in particular from 

Country A and Country B. Evaluation results are presented and discussed along with the main 

conclusions of the study. 

2. Background 

Concrete plastic shrinkage cracking is usually noticed on beams, slabs, pavements, and, more 

commonly, on flat concrete surfaces. Several factors can impact cracking due to plastic 

shrinkage, such as water-cement ratio, aggregate fineness content, member size, admixtures, and 

on-site practices for pouring the concrete [7]. Concrete shrinkage is one of the key mechanisms 

leading to the initial crack formation in concrete structures. Concrete shrinks as humidity is 

diminishing to the environment in addition to self-desiccation that is the moisture depletion 

through cement hydration process [10]. Yet, the most important reason is the vaporization of 

water laying on the surface of the freshly poured concrete [11]. Furthermore, evaporation itself is 

a process leveraged by climatic factors, such as relative humidity, air temperature, temperature of 

the evaporating surface - namely the concrete surface - and the wind velocity at the surface [5]. 

According to ACI committee report, the plastic shrinkage cracking is mostly associated with hot 

weather concreting in dry climates [5]. It arises in unprotected or exposed concrete surfaces, like 

slabs or pavements, but also happens in beams and footings. In particular, after concrete is 

poured, settlement of heavier solid particles downwards takes place while free water is forced 

upwards to the surface where it will finally evaporate. The bleed rate can be directly affected by 

the parameters of concrete mix, like water to cement ratio, type of cement, amount of fines in the 

mix, etc., [6]. Cracking phenomena may develop in any climate where the evaporation rate 

happens to be greater than the rate at which the water surges to the surface by means of bleeding 

out of the freshly poured concrete. 

Plastic shrinkage cracks occur when the surface of the concrete dries rapidly and shrinks before 

it can gain sufficient tensile strength to resist cracking ([11,12]). The key to prevent plastic 

shrinkage is to ensure that the evaporation rate does not exceed the bleed rate as this, besides 

cracking, will lead to additional problems like inadequate hydration [13]. In conclusion, plastic 

shrinkage cracking rarely happens in hot-humid climates where the relative humidity hardly 

drops the level of 80% ([5,11]). 

Water evaporation from newly set concrete is a complex process depending on several 

parameters and conditions. Models for estimating the evaporation rate have been investigated for 

a century now and a development history can be found in [6]. As of now, due to the complexity 

of the process, the evaporation rate assessment is predominantly done in practice through the use 

of a Nomograph developed by ACI [5]. The evaporation Nomograph analyzed in ACI 305R-10 is 

a graph mainly utilized by construction site engineers as a means for estimating the rate of 

evaporation of surface humidity from concrete, taking into consideration the influence of air 

temperature, relative humidity, and wind velocity. Nomographs are graphical tools easy to use 

and visually tempting for estimating some parameters within a usually complex equation [14]. 

The particular Nomograph (Figure 1) is based on common hydrological methods for valuing the 



82 V.C. Papadimitropoulos et al./ Journal of Soft Computing in Civil Engineering 4-4 (2020) 79-97 

water evaporation rate from aquatic reservoirs, e.g., lakes, pools, or tanks. Likewise, it is the 

most accurate means for the estimation of the evaporation rate from a surface that is bleeding 

water. The evaporation rate value provides an indication of the possible onset of plastic shrinkage 

cracking [6]. 

 
Fig. 1. ACI Nomograph for estimating surface water evaporation rate of concrete. (Source: ACI 305R-10 

- Hot Weather Concreting). 

Although the Nomograph employment may be quite effective for few or rare estimations in 

practice, there are certain limitations in its use. First, the estimation is considerably affected by 

the user subjectivity, especially in the areas where graph lines are quite dense, while there are 

several intermediate steps until the final result (i.e., the evaporation rate) is obtained. Further, the 

Nomograph use is rather prone to errors either in reading the correct values or correctly drawing 

the lines, especially if several calculations are needed. Therefore, some inaccuracies are expected 

while maneuvering within the graph. Most importantly, the calculations are performed manually, 

not allowing thus to automate further analyses (and especially those performing iterative 

processing) that utilize the evaporation rate as an input parameter. Instead, the development of 

mathematical models can facilitate computational analysis and decision making. 

In the direction of developing mathematical relationships, as an alternative to the Nomograph 

use, Uno has presented a simple formula for estimating the concrete evaporation rate (on the 

basis of the input parameters of the ACI graph) in the form of the following equation [6]: 
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     
2.5 2.5 65 18 18 4 10c aE T r T V        (1) 

where: 

E = Evaporation rate (kg/m
2
/hr), 

Tc = Concrete temperature (
o
C), 

Tα = Air temperature (
o
C), 

r = Relative humidity (%), 

V = Wind velocity (kph). 

Such a formula can serve into some degree the above goals. However, the model simplicity is 

unavoidably associated with some inaccuracies either in output values or in the application 

range. For instance, the model effectiveness range is above 15
 o

C while the temperature range in 

the Nomograph starts from 5
 o

C. Further, comparison of results provided by the Nomograph and 

the formula indicates some observable deviations. Considering therefore the current 

computational capabilities in handling more complex mathematical formulas, if they can provide 

better estimation results, the present study aims at developing improved mathematical models for 

estimating concrete evaporation rate that can be further used in concrete work decision making. 

3. Methodology 

The main scope of this work is to develop mathematical models that can be used for the 

estimation of fresh concrete evaporation rate as an efficient alternative to the ACI Nomograph 

use. The latter includes a four-step process indicated by the light blue line in Figure 1. The 

process starts from the air temperature (X1) and through a clockwise movement, goes through 

the relative humidity (X3), the concrete temperature (X2), and the wind velocity (X4) leading to 

the evaporation rate reading (Y) on the lower y axis scale. Among independent parameters, all 

but (X2) come from meteorological observations. Instead, the concrete temperature (X2) is 

determined in accordance with the guidelines of ACR 305-10 - Hot Weather Concreting [5] and 

ACI 207.2R-07 - Report on Thermal and Volume Change Effects on Cracking of Mass Concrete 

[15] regarding the estimation of the concrete placement temperature in relation to the ambient 

temperature. 

For the model development, a database of meteorological records from two regions in Country A 

and Country B has been developed. For each data sample, the ACI Nomograph has been 

manually and carefully employed to estimate the corresponding (target) evaporation rate value 

(Figure 2). The database is partitioned into three segments to be used for model development 

(training), validation, and testing respectively. A number of methods and techniques are used to 

develop mathematical models that best fit the data provided. The developed models are assessed 

and evaluated upon the validation and testing sets. Several aspects of the validation and testing 

processes are discussed while the developed models are compared with each other and with the 

existing model (Equation 1). 
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Fig. 2. ACI Nomograph process illustration. 

The problem complexity and the non-linear relationships among the involved parameters do not 

allow a direct identification of a mathematical relation that can estimate the evaporation rate in a 

trustworthy means. This is because it is necessary to assume a suitable model form that 

effectively represents the process under analysis. In this regard and in order to examine the 

possibility of obtaining a solution in terms of a modeling relationship provided by a statistical 

software, the Stata
®
 software [16] was utilized. The software has been originally developed by 

StataCorp in 1985 and is primarily engaged to research activities. As it can be seen in the results 

and discussion section below, such an approach may not be much effective and this calls for 

more rigorous model development techniques. 

In the quest of effective process modeling, optimization methods (e.g., Genetic Algorithms – 

(GA)) and artificial intelligence methods (Artificial Neural Networks - (NNs)) can be elaborated 

for optimizing curve-fitting upon input-output datasets. A common strategy is to analyze several 

types of them - intended to the specific purpose - and compare the degree of fitness to the data 

provided by means of particular tests. The error between the model estimation and the target 

value can be minimized through model training. In this study, the statistical Root Mean Square 

Error (RMSE) is utilized as the main model efficiency assessment parameter. For cross-checking 

purposes, the (dimensionless) Percent Mean Relative Error (PMRE) parameter is used 

complimentarily. Finally, for assessing the linearity between estimates and target values, the 

Correlation Coefficient R and the F-test are employed. 

The F-test is a statistical test in which the test statistic has an F-distribution under the null 

hypothesis. It is mostly used when comparing statistical models that have been fitted to a data set 

in order to identify the model that best fits the population from which the data were sampled. The 

customary question in such sort of studies is whether the model estimated values and the real 

(target) ones are close enough to each other. In response to that query, few perspectives or 

approaches can be exploited. In this study, it was chosen to rely on a simple test indicating how 

close the corresponding real and estimated values are scattered around a 45-degree line. 

Accordingly, a simple regression model of a form 

yi = β0 + β1 ° xi + εi, i = 1,….,n (2) 

https://en.wikipedia.org/wiki/Statistical_test
https://en.wikipedia.org/wiki/Test_statistic
https://en.wikipedia.org/wiki/F-distribution
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Population_(statistics)
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can be utilized for checking the accuracy of the estimation algorithm. Hence, the objective of the 

analysis is the testing of the following hypothesis [17]: 

H0 : β0 = 0 & β1 = 1 vs H1 : not H0 (3) 

The hypothesis H0 (or else null hypothesis) can be adeptly checked by means of the F-test where 

the “general linear hypothesis” is tested. 

Regression analysis is a statistical method for identifying the relationships among variables and 

for making predictions for the output by using mathematical formulas. In case of complex 

problems and parameter relationships, a common approach for establishing an analytical model 

based on datasets is the multivariate nonlinear regression. However, the effectiveness of the 

method largely depends on the degree of the problem non-linearity. Existing statistical software 

include predetermined types of built-in mathematical relationships (e.g., exponential, 

logarithmic, polynomial) to be used for curve-fitting. For instance, a typical relationship for 

associating independent variables (Xi=1---n) with a dependent variable Y, which is widely 

exploited by many software applications, is the one shown in Equation 4 (adjusted to the 

problem under consideration). However, it is not generally feasible to configure tailor-made 

relationships or to combine different types of relationships within a statistical software so as to 

potentially improve the accuracy of the outcome. 

       1 2 3 4

1 2 3 4 0

a a a a
Y X X X X a      (4) 

In this study, two methods are used to develop approximation models for the evaporation rate 

estimation. The first performs curve-fitting upon existing data samples by minimizing the root 

mean square error (RMSE) via Genetic Algorithm (GA) application. Two development 

approaches are examined. In the first, curve-fitting is straightforwardly performed between input 

and output values. Because such development does not provide any insight on the 

interrelationships among the parameters (indicated by the Nomograph) and the corresponding 

errors within the intermediate steps of the sequential estimation process, an alternative modeling 

approach is considered by sequentially developing mathematical relationships for each part of 

the development process. In a different direction, an Artificial Neural Network is alternatively 

developed to optimally link the input and output parameters of the data set. A short description of 

the models and the development methodologies are given next. 

3.1. Model A1: Global curve-fitting optimized by genetic algorithm 

In this development part, a global (single-step) curve-fitting is performed. Following 

experimentation with alternative non-linear mathematical relationships, a generalization of the 

nonlinear relationship (4) was finally considered in the form of Equation 5 (Figure 3). 

1 2 3 4 0Y A A A A a      (5) 

  14

1 11 12 1 13

a
A a a X a     (5-1) 

  24

2 21 22 2 23

a
A a a X a     (5-2) 
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  34

3 31 32 3 33

a
A a a X a     (5-3) 

  44

4 41 42 4 43

a
A a a X a     (5-4) 

where: 

Y: Evaporation rate (kg/m
2
/hr), 

X1: Air temperature (
o
C), 

X2: Concrete temperature (
o
C), 

X3: Relative humidity (%), 

X4: Wind velocity (kph). 

 
Fig. 3. Model A1 structure: Global curve fitting optimized by Genetic Algorithm. 

3.2. Model Α2: Step-by-step curve-fitting optimized by Genetic Algorithm 

In this development approach, each quadrant of the Nomograph is independently analyzed 

aiming at assessing and reducing the error associated with the particular part of estimation. The 

main advantage of this approach is that the whole problem is divided into smaller sub-problems. 

For each one, a dependent variable is estimated which acts as an independent variable for the 

next phase. This process makes the whole problem better editable as every sub-problem exerts 

lower nonlinearity degree. The development structure is indicated in Figure 4 and follows the 

process being utilized by the Nomograph practice. The result is a set of three mathematical 

formulas, one for every part of calculations (Equations 6.1-6.3) corresponding to the Nomograph 

associated quadrants. The formula types were derived after experimentation with alternative 

mathematical forms. 

 
Fig. 4. Model A2 structure: Step-by-step parameter modeling optimized by Genetic Algorithm. 

    1712 1

1 11 13 14 3 15 1 16 18

bb X
Y b e b b X b X b b


          (6-1) 
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    26

2 21 1 22 23 1 24 2 25 27

b
Y b Y b b Y b X b b          (6-2) 

   31 2 32 33 2 34 4 35 36Y b Y b b Y b X b b          (6-3) 

where: 

Y: Evaporation rate (kg/m
2
/hr), 

X1: Air temperature (
o
C), 

X2: Concrete temperature (
o
C), 

X3: Relative humidity (%), 

X4: Wind velocity (kph). 

In both models, A1 and A2, genetic algorithms (GA) were employed to minimize the error 

between input and output values. A genetic algorithm is a metaheuristic inspired by the natural 

process of evolution and rather constitutes the basis for evolutionary algorithms development. 

Genetic algorithms utilize an initial random population of applicable solutions with individuals 

representing distinct problem solutions and progressively move towards better solutions on the 

ground of previous solutions. In particular, new solutions evolve iteratively from the current 

population by stochastically selecting individuals and performing actions like recombination 

(crossover) or characteristic modification (mutation) to develop offspring which are accepted or 

not depending on their degree of fitness (optimization value). As with all types of evolutionary 

algorithms, genetic algorithms do not guarantee full convergence to the optimal solution in any 

case; yet they have been found capable of closely approaching it in several problems and at a 

reasonable computational time. 

3.3. Model B: Neural network model development 

An alternative approach for modeling the evaporation rate estimation process is through the 

development of an artificial neural network (ANN). In principal, there are several types of ANNs 

which differ in architecture, the way they calculate the signals in each neuron, and the training 

algorithm. The main types include the Multi-Layer Feedforward (MLF), the Generalized 

Regression Neural (GRN) and the Probabilistic Neural (PN) ANN. The main advantages of the 

GRN/PN types are that they do not require setting topology specifications (e.g., number of 

hidden layers and nodes) and their training can be fast. Yet, their drawback is that they may not 

be as reliable for predictions (estimations) and classifications as the MLF type which, on the 

contrary, requires topology specifications by the developer and presents longer training time. The 

MLF type uses the back-propagation (BP) algorithm [18] for calculating the aggregate values 

during training. 

For the problem under analysis, the simulation was carried out by a MLF type for improving the 

accuracy level in estimations. The MLF type acts as a “universal” approximator [19] and can 

practically simulate any form of complex function with its efficiency being mainly determined 

by the appropriate selection of the network parameters, i.e., number of nodes and hidden layers, 

activation function, and learning algorithm. The ANN employed in this study consists of four 

input neurons (representing the input variables), two hidden layers with four neurons each and an 
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output neuron for the result (Figure 5). The selection of this structure follows existing knowledge 

indicating that the use of two layers can efficiently solve several problems of such kinds 

([20,21]) while a larger number of neurons can lead to unnecessarily prolonged learning times. 

The sigmoid function is used as the neuron activation function (transfer function). This is the 

most commonly used function in ANN development as it is continuous, differentiable, and can 

vary within any desirable value range. The training goal is to determine the neural network 

weights so that the Root Mean Square Error (RMSE) parameter is minimized. 

 
Fig. 5. Neural network structure for Model B. 

3.4. Statistical model Stata 

The alternative of employing existing statistical software and its capability in developing 

regression models for curve-fitting is explored in addition. The fractional polynomials option of 

the Stata® software was used to obtain the parameterization equation. Fractional polynomials are 

an alternative to regular polynomials that provide flexible parameterization for continuous 

variables [22]. Following input and output data insertion, the fractional polynomials application 

returned the following formula: 

   
3

1
2 3

2 3

4 4

0.0342 10.2428 0.0219 24.1672 0.0087 65.9310
10

0.2149 1.1647 0.0470 1.2570 0.3681
10 10

X
Y X X

X X

  
          

      
                   

 (7) 

where: 

Y: Evaporation rate (kg/m
2
/hr), 

X1: Air temperature (
o
C), 

X2: Concrete temperature (
o
C), 

X3: Relative humidity (%), 

X4: Wind velocity (kph). 
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4. Data management and development software 

The problem of concrete dehydration and shrinkage cracking is more exaggerated in warm 

climates. Therefore, data from such areas were targeted for the model development. On the other 

hand, the models should be able to function with comparable accuracy within the full allowable 

concreting temperature range. In this regards, data from two different areas (City A, Country A 

and City B, Country B) and time periods (2018 and 2019) where used for model development 

and testing. Both places envisage meteorological conditions that reasonably fit to the desirable 

parameter ranges including the important hot weather conditions in summer. Meteorological data 

were then extracted from two year records with random sampling at every 10-day period (four 

samples per period) of each calendar month ensuring a rather uniform data sampling for 

impartiality purposes. 

Tables 1 and 2 present some indicative snapshots of the meteorological data from the two areas, 

as they have been organized into Microsoft Excel™ sheets for further processing. Each city 

sample includes 144 recordings (12 per month). Out of the 288 data sets, 50 percent was used for 

model training, 25 percent for validation and another 25 percent for testing. According to Green 

[23], the sample set size for training in such type of analyses should be above an approximate 

level of fifty plus four times the number of independent parameters, i.e., 82 samples in this 

development case. The training data set here includes 144 samples and this is well above the 

proposed threshold. 

Table 1 

Input data from the City A, Country A. 

No Month Day Air temp (
ο
C) Relative humidity (%) Wind velocity (kph) 

1 Jan 2 9.7 54.0 29.2 

2 Jan 9 7.2 63.6 4.0 

3 Feb 13 11.7 53.2 12.2 

4 Feb 28 13.3 85.8 9.5 

5 Mar 24 15.8 77.1 30.2 

6 Mar 26 17.0 78.3 33.4 

7 Apr 20 16.8 77.4 15.1 

8 Apr 30 18.1 82.7 18.5 

9 May 7 23.2 72.9 14.1 

10 May 27 19.7 84.5 13.9 

11 Jun 3 27.8 49.3 19.3 

12 Jun 25 24.4 81.4 13.3 

13 Jul 22 36.2 39.3 23.9 

14 Jul 29 29.0 82.9 8.6 

15 Aug 8 33.1 43.9 23.4 

16 Aug 24 27.6 72.3 15.1 

17 Sep 7 28.0 81.2 13.6 

18 Sep 20 25.3 80.4 6.5 

19 Oct 19 23.9 72.2 21.6 

20 Oct 30 18.8 50.9 2.8 

21 Nov 4 22.0 38.7 5.3 

22 Nov 7 18.1 53.0 6.4 

23 Dec 3 19.0 53.8 14.8 

24 Dec 30 13.9 70.8 4.3 
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Table 2 

Input data from the City B, Country B. 

 

The sampling was organized in a random basis so as to prevent any bias or interrelations among 

pieces of data and allow likewise every single recording the same chance for being selected. In 

addition, a wide range of parameter values have been represented in the dataset. In particular, the 

ambient temperature values are in the range of 7 
ο
C to 38.7 

o
C, the relative humidity values 

between 11% and 94%, and the wind velocity values from 1 kph to 39 kph. 

Genetic algorithm implementation for models A1 and A2 was performed through the Palisade 

Evolver™ software which runs as a Microsoft Excel™ add-in. The parameter to be optimized is 

the Root Mean Square Error (RMSE) between input and output values. In terms of the genetic 

algorithm parameters, the population size was set at 50 chromosomes, the crossover rate at 50%, 

and the mutation rate at 10%. 

Neural network development was done through the Palisade NeuralTools™ application which 

also runs as a Microsoft Excel™ add-in. The NeuralTools™ application supports all 

aforementioned types of ANNs, among which the MLF (Multi-Layer Feedforward) type that was 

employed in this study. The backpropagation algorithm was used for the ANN training with the 

the goal to calculate the synaptic weights by minimizing the Root Mean Square Error (RMSE) 

within the training sample. 

No Month Day Air temp (
ο
C) Relative humidity (%) Wind velocity (kph) 

1 Jan 23 7.0 93.0 4.0 

2 Jan 23 11.0 77.0 2.0 

3 Feb 4 13.0 63.0 2.0 

4 Feb 13 15.0 68.0 13.0 

5 Mar 19 33.0 12.0 15.0 

6 Mar 24 18.0 88.0 24.0 

7 Apr 4 15.0 77.0 4.0 

8 Apr 30 32.0 21.0 11.0 

9 May 20 32.0 43.0 11.0 

10 May 27 23.0 74.0 7.0 

11 Jun 3 27.0 58.0 17.0 

12 Jun 15 31.0 31.0 11.0 

13 Jul 5 32.0 59.0 20.0 

14 Jul 22 27.0 70.0 11.0 

15 Aug 8 27.0 74.0 9.0 

16 Aug 24 32.0 52.0 15.0 

17 Sep 7 26.0 70.0 13.0 

18 Sep 20 31.0 43.0 17.0 

19 Oct 8 23.0 74.0 6.0 

20 Oct 24 32.0 36.0 11.0 

21 Nov 1 30.0 11.0 20.0 

22 Nov 22 19.0 64.0 6.0 

23 Dec 3 24.0 41.0 13.0 

24 Dec 30 15.0 77.0 19.0 
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5. Results and discussion 

In this section, the results of model calibration and validation are presented with appropriate 

comparisons regarding model efficiency and accuracy. The model coefficients for cases A1 and 

A2, as developed through the training dataset, are presented in Tables 3 and 4 respectively. 

Table 3 

Model Α1 coefficients. 

a ij 1 2 3 4 

0 - 0.07780    

1 2.23559 3.66167 11.02054 5.24413 

2 11.50336 3.68125 -17.57696 -2.77908 

3 12.48055 0.15160 7.44044 -1.59311 

4 6.07940 -1.24607 118.71189 -3.35225 

 

Table 4 

Model Α2 coefficients. 

b ij 1 2 3 4 5 6 7 8 

1 15.23160 0.04253 -0.00022 70.47599 1.8 -15.62668 1.87571 -1.53674 

2 -1.08108 -0.00043 -250 1.8 7.31097 1.55541 62.79499  

3 -0.01180 -0.00241 40.00078 0.62137 -7.44470 0.47220   

 

For evaluating the efficiency of the developed models and accuracy of results, several forms of 

graphical result representations and numerical indicators are used. Figures 6-8 show the 

regression results between the estimated and measured values resulting from the proposed 

models and in relation to the three datasets (training, validation, and testing) respectively. In 

addition, a similar analysis and results are presented with regard to the existing Uno model of 

Equation (1). Figure 9 presents the output of the Stata® software with respect to the deviations 

between the actual and estimated values of the evaporation rate in each of the three analysis 

datasets. Finally, Table 5 summarizes the statistical results and efficiency measures of each 

model in the analysis. 

The results indicate that there is a tolerable performance of all models in terms of the Root Mean 

Square Error and the Percent Mean Relative Error. Among all, models A2 and B present 

noticeably higher fitting performance in comparison to other models in terms of the above 

performance parameters and the correlation coefficint R, the latter indicating a strong linearity 

between estimated and actual values (Table 5). Further, there exists a strong approximation of the 

ideal line y=x between estimated and actual values in all models but Uno’s one, as is indicated by 

the approximation lines shown in Figures 6-8. In particular, while the x coefficient in models A1, 

A2 and B are very close to 1.0, the same coefficient in Uno’s model is about 0.9 indicating a 

global underestimation of the expected evaporation rate value within the entire analysis range. 

This is also indicated by the F-Test results in Table 5 which shows that the null hypothesis is 

rejected. The Stata model presents widerly scattered approximation points in comparison to other 
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methods (as also presumed by the R values in Table 5) and a noticable deviation from the 45 

degree line between model output and target values. This deviation is, however, smaller than that 

of Uno’s model results. 

The following conclusions can be further drawn from the analysis. Comparing the results 

between models A1 and A2 indicates that in a complex and segmented process, it is more 

effective to model each segment individually (if feasible) rather than to consider the entire 

process as a whole. In the former case, there is more effcient handling of individual errors within 

each step. Further, the result comparison between models A1 and B indicates that an ANN may 

be more capable to develop a robust model to simulate a complex process than a curve-fitting 

process which is hampered by the need to assume a proper mathematical formula type. Finally, 

the comparison among A1, B, and Uno’s model reveals the trade-off between model simplicity 

and expected estimation accuracy. In fact, Uno’s model is simpler than the ones developed in this 

study and this is its main advantage. On the other hand, with currently available computational 

power and in the aim of obtaining more accurate results that facilitate subsequent concrete 

analyses, the use of somewhat more complex formulas does not observably burdens the 

computational effort while improving accuracy. Figure 10 indicatively illustrates the 

convergence chart of the Genetic Algorithm in the case of Model A1. It can be seen that there is a 

fast and strong initial convergence of the objective parameter value (RMSE) followed by a 

longer computational process with much slower convergence rate towards the minimum value. 

  

  
Fig. 6. Modeling results for the training dataset. 
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Fig. 7. Modeling results for the validation dataset. 

  

  
Fig. 8. Modeling results for the testing dataset 
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Fig. 9. Stata model results 

Table 5 

Statistical indicators for all models. 

Model 
Root mean square 

error (RMSE) 

Percent mean 

relative error 

(PMRE) 

Correlation 

coefficient (R) 
F-Test* 

Training dataset 

Model A1 0.0509 12.18% 0.9896 0001.49 

Model A2 0.0100 02.29% 0.9996 0001.12 

Model B 0.0148 03.59% 0.9991 0000.17 

Uno model 0.0570 09.22% 0.9990 1108.00
 

STATA 0.0843 30.81% 0.9713 0001.49 

Validation dataset 

Model A1 0.0489 11.77% 0.9872 0002.05 

Model A2 0.0139 03.01% 0.9990 0002.42 

Model B 0.0178 04.50% 0.9985 0002.95 

Uno model 0.0488 10.39% 0.9981 0244.45
 

STATA 0.0793 25.40% 0.9661 0002.16 

Testing dataset 

Model A1 0.0503 12.74% 0.9922 0000.35 

Model A2 0.0167 04.05% 0.9992 0002.65 

Model B 0.0209 05.46% 0.9987 0002.92 

Uno model 0.0587 10.01% 0.9988 0359.58
 

STATA 0.0753 34.53% 0.9832 00 3.00 

*Critical value F2, 142, 0.05 = 3.07 for training dataset | F2, 70, 0.05= 3.13 for validation & testing datasets. 
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Fig. 10. Genetic Algorithm convergence chart for Model A1. 

6. Conclusions 

The preservation of newly poured concrete in hot and windy conditions from fast dehydration is 

considerably important in safeguarding concrete from plastic shrinkage cracking. Among other 

factors influencing plastic shrinkage, an important one is the concrete surface humidity 

evaporation rate. The evaporation rate is currently calculated in practice by the use of the ACI 

305R-10 Nomograph for “Hot Weather Concreting”, a process rather tedious, non-automated, 

time consuming and prone to errors. In response to such limitations, analytical models for 

estimating the evaporation rate are developed and evaluated in this work. The development 

utilizes techniques like optimal curve-fitting via Genetic Algorithm optimization and Artificial 

Neural Networks. 

Based on meteorological data from two different areas, three models have been developed. The 

first two perform curve-fitting via Genetic Algorithm optimization, either considering the full 

process as a whole (model A1) or examining each process segment separately and assembling 

results (model A2). The third model is developed upon an Artificial Neural Network which 

simulates the entire estimation process (model B). In each case, wide experimentation was 

performed to fine-tune the model characteristics. For developing a better understanding of the 

proposed model performance, a typical curve-fitting method through the employment of a 

statistical software as well as an existing model from the literature were also examined in the 

analysis. 

Evaluation results indicate that the proposed models can effectively assess the proper values of 

the evaporation rate over the entire range of the independent parameters. Among them, models 

A2 (step-by-step curve fitting) and B (artificial neural network) present the best performance in 

terms of the statistical error indicators between estimated and actual values. Further, result 
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comparisons with the statistical software output and with the existing simple mathematical model 

from the literature reveal that the proposed models, being more comprehensive, exert higher 

accuracy and this outcome can be explained by the non-linearity and complexity of the actual 

estimation process. 
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