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Reinforced concrete (RC) shear wall is one of the most 

widely adopted earthquake-resisting structural elements. 

Accurate prediction of capacity curves of RC shear walls has 

been of significant importance since it can convey important 

information about progressive damage states, the degree of 

energy absorption, and the maximum strength. Decades-long 

experimental efforts of the research community established a 

systematic database of capacity curves, but it is still in its 

infancy to productively utilize the accumulated data. In the 

hope of adding a new dimension to earthquake engineering, 

this study provides a machine learning (ML) approach to 

predict capacity curves of the RC shear wall based on a 

multi-target prediction model and fundamental statistics. 

This paper harnesses bootstrapping for uncertainty 

quantification and affirms the robustness of the proposed 

method against erroneous data. Results and validations using 

more than 200 rectangular RC shear walls show a promising 

performance and suggest future research directions toward 

data- and ML-driven earthquake engineering. 
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1. Introduction 

In the past decades, persistent efforts have been devoted to gaining insights into the nonlinear 

behaviors of damaged rectangular RC walls [1–4]. Driven by these accomplishments, the 

research community benefits from databases (e.g., ACI 445B Shear Wall Database, Peer 

Structural Performance Databases, and DesignSafe Platform). Many ML-based predictions of 

RC structures have been on trial [5,6]. ML gives computers the ability to learn complex data 

without explicitly programmed rules. ML can be categorized into single-target prediction and 

multiple-target prediction methods regarding the number of prediction targets. There exist 

various applications of single-target ML methods in infrastructure engineering. The prediction of 

the shear strength of a deep beam was conducted by support vector regression (SVR). The 

researchers modified the SVR algorithm to optimize hyperparameters to be more suitable for 

civil applications [7,8]. Valdebenito [9] estimated the in-plane shear strength of reinforced 

masonry (RM) using the artificial neural network (ANN). ANN model was trained and tested by 

285 RM walls from pieces of literature. The compressive strength of high-performance concrete 

had been predicted using the ensemble method [10]. Furthermore, with the interest of vertical 

structural elements, prediction of horizontal forces was made via support vector machine and 

ANN [5,11]. 

However, ML-based prediction of force-displacement (F-D) capacity curves is challenging since 

it involves multiple-target predictions. Two rare examples of curve prediction include predictions 

of soil-water characteristic curves (SWCCs) using genetic programming (GP) [12] and ANN 

[13], respectively. In Johari’s work, SWCC itself was learned and predicted by the GP, but the 

final prediction is a complex mathematical expression of the curve. Sajib developed ANN 

models of the SWCC fitting parameters to predict the suction-water content relationship. 

In this paper, we adopt a multi-target regression model (MTRM) to predict the capacity curves of 

RC shear walls. This paper is structured as follows. The second section demonstrates the 

methodology of the MTRM and its extension with ensemble learning. The third section presents 

complete procedures to build the capacity curve database and perform capacity curve prediction. 

The fourth section summarizes predictive results, validation, and impact of the extended database 

and erroneous data on the proposed method. Finally, the last section yields the conclusion and 

discusses the limitations and future extensions. 

2. Multi-target regression model 

MTRM has been implemented in the open-source machine learning system (named Clus) 

developed by Struyf [14]. Clus is a decision tree learner and rule learning system that works in 

the predictive clustering trees (PCTs) [14]. Prior to the demonstration of MTRM, it is instructive 

to introduce the background of ML. There are two categories of ML methods depending on 

training data. The first category is “supervised” learning, in which ML trains with data consisting 

of a pair of {𝒙(𝑙), 𝒚(𝑙)} that stands for a vector of descriptive variables and 𝒚(𝑙) ∈ ℝ𝑘 represents a 

target vector. The superscript (𝑙) indicates labeled data. Contrarily, “unsupervised” learning 

trains ML with unlabeled data consisting of {𝒙(𝑢)} where (𝑢) indicates unlabeled data. A 
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decision tree, a typical supervised learning method, is a tree-shaped graph that uses a branching 

method to demonstrate every possible outcome of a decision. It is widely used in data mining to 

simplify complex problems. It usually starts with a single node, which branches into all possible 

outcomes. 

Fig. 1. (a) Illustrative example of a PCT; (b) example of a rule ensemble. 

Each of those outcomes will branch into other nodes, which represent other possibilities. 

Clustering, a representative unsupervised learning method, tries to find a collection of points that 

are similar to each other in terms of homogeneous values of all variables compared with points 

out of the cluster. Decision tree and clustering are therefore considered as quite different 

methods. Decision trees partition instances to subsets in terms of values of target attributes only, 

and clustering splits instances to subclusters regarding the value of all descriptive attributes. 

Noteworthy, a PCT is a decision tree whose leaves do not contain classes, and each node, as well 

as each leaf, corresponds to a cluster in Fig. 1 (a) with instances in the form of {𝑥1, 𝑥2, 𝑦}. 

Diversely, PCTs search for subsets with the values of both descriptive attributes and target 

attributes [15]. MTRM shares the same algorithm with PCTs in the context of constructing 

clusters. PCTs can be built with a standard “top-down induction of decision trees” (TDIDT) 

algorithm [16]. Top-down PCTs shape in a triangle whose root is up. All instances locate at the 

root at the beginning, and they are partitioned into subclusters by tests. The pseudo algorithm of 

constructing PCTs is presented in Table 1 [17]. 

It is instructive to recap key strategies of PCTs, i.e., a splitting criterion, a stopping criterion, and 

a pruning strategy, respectively. There are many splitting criteria (e.g., Shannon entropy [18] and 

Gain Ratio [19]). The purpose of splitting clustering is to obtain subclusters such that intra-

cluster distance (the distance between examples belonging to different clusters) is minimized. 

For regression problems, intra-cluster distance is specified as the intra-cluster variance. Given a 

cluster and a test that will result in a partition of the cluster to decrease the variance, the intra-

cluster variance is defined as: 

𝑣𝑎𝑟 = ∑ 𝑑(𝒙𝑖, 𝒙)2𝑁
𝑖=1  (1) 



 Y. Yang, I.H. Cho/ Journal of Soft Computing in Civil Engineering 5-4 (2021) 90-113 93 

where 𝒙 ∈ ℝ𝑛 is the mean vector of the cluster, and 𝒙𝑖 ∈ ℝ𝑛 (𝑖 = 1, ⋯ , 𝑁) is an element in the 

cluster, and 𝑁 is the total number of elements in the cluster. The entity 𝑑 stands for the Euclidean 

distance. Growing trees without stopping criteria will lead to an overfitting problem. Often, a test 

is applied to check whether the class distribution in the sub-clusters differs significantly. Since 

the regression problem uses intra-cluster variance as the heuristic for choosing the best split, then 

a reasonable stopping criterion is to use an F-test to check whether variance decreased 

significantly, and thus a test will be found. 

Table 1 

Algorithm of constructing PCTs. 
1: Function 𝑷𝑪𝑻(Training instances 𝐼): 9: Function 𝑩𝑻(𝐼): 

2: (𝑡∗ , 𝑝∗)  =  𝑩𝑻 (𝐼) ; 10: 𝑝 = partition induced on 𝐼 by 𝑡 ; 

3: If 𝑡∗  ≠  none 11: (𝑡∗, 𝑝∗, ℎ∗) = (None, 0.5, 0) ; 

4: for each 𝐼𝑘  ∈  𝑃∗ 12: ℎ = 𝒗𝒂𝒓(𝐼) − ∑
|𝐼𝑘|

|𝐼|
𝒗𝒂𝒓(𝐼𝑘)𝐼𝑘 ∈𝑝  ; 

5:                 𝑇𝑟𝑒𝑒𝑘 = 𝑃𝐶𝑇(𝐼𝑘) ; 13: for each test 

6: return node(𝑡𝑘, 𝑇𝑟𝑒𝑒𝑘) ; 14:        if (ℎ >  ℎ∗) 

7: else if 15:                  (𝑡∗, 𝑝∗, ℎ∗) = (𝑡, 𝑝, ℎ) ; 

8: return leaf (𝐼𝑝𝑟𝑜𝑡𝑜𝑦𝑝𝑒) ; 16: return (𝑡∗, 𝑝∗) ; 

 

If no acceptable test is found, the algorithm labels the leaf with the prototype instances and stops 

the growth. Pruning strategy is a technique to remove trivial parts of the tree to identify 

instances. Often pruning is done randomly for large data. This paper does not adopt any pruning 

strategies due to our small database size. The illustration of the pseudo-algorithm of constructing 

PCTs will help engineers with a comprehensive understanding of the MTRM. The PCT function 

takes instances I as input to grow trees. An instance represents a row of the dataset in this paper. 

The function PCT in line 1 of Table 1 is the algorithm's main function, which grows the decision 

tree until stopping criteria are met. The function BT is invoked in line 2 to search for the best test 

to partition training instances to hierarchical clusters. BT returns optimal 𝑡 and 𝑝, denoted as 

(𝑡∗, 𝑝∗), where 𝑡 is an action test of attribute values to induce a partition on I, 𝑝 is a partition 

induced on 𝐼 by 𝑡 (e.g., In Fig. 1 (a), a test 𝑡 on root node checks whether 𝑥1 is larger than two or 

not to partition 𝐼 at the root to two sub-clusters via a partition 𝑝). The superscript “*” represents 

the optimal (i.e., best-so-far) quantities. With BT in line 2, PCT function is invoked recursively 

to obtain trees and the corresponding nodes within the loop in lines 5 and 6. However, if the best 

test is not found in line 7, then the algorithm will return a leaf labeled as the prototype instances 

in line 8. Usually, the prototype instances have the lowest average distance to all other instances 

in the cluster, such as the mean of the original instances. 

Function BT is explained in the right column of Table 1. BT searches for the best test to partition 

the cluster to minimize intra-cluster variance (i.e., maximize inter-cluster variance). In line 11, 

the candidates for the best test (𝑡∗) along with the corresponding partition (𝑝∗) and heuristic 

value (ℎ∗) are initialized. Here, ℎ is defined in line 12, meaning a heuristic value of 𝑡. Function 
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var is defined in Eq. (1). Since 𝑡∗ is initially unknown, ℎ∗ is set as zero. The loop in line 13 

calculates heuristic values of all possible tests to partition clusters. The best test and partition will 

be chosen if a current heuristic value ℎ is larger than the initial heuristic value ℎ∗ (lines 14-15). 

2.1. Ensemble method 

An ensemble method has been used to boost the prediction accuracy of this study. This method 

generates an ensemble of prediction models since combining a number of predictions is often 

more accurate than an individual prediction model [20,21]. 

Table 2 

Pseudo code of ensemble method. 
1: Let 𝐌 = the original training data; 𝑛𝑝𝑚 = number of prediction models; 𝐗 = the test data 

2: for 𝑖 = 1 𝑡𝑜 𝑛𝑝𝑚 do 

3:       Create an identical training set 𝐌𝐢 from 𝐌 

4:       Build a prediction model 𝑃𝑀𝑖  with 𝐌𝐢 

5: end 

6: for each test record 𝑥𝑗 ∈ 𝐗, 𝑗 = 1, … , 𝑛 do 

7:       𝑃𝑀𝑓𝑖𝑛𝑎𝑙(𝑥𝑗) =  
∑ 𝑃𝑀𝑖(𝑥𝑗)

𝑛𝑝𝑚
𝑖=1

𝑛𝑝𝑚
 

8: end 

 

The general procedures for the ensemble method are summarized in Table 2. In line 3 of Table 2, 

the main loop creates 𝑛𝑝𝑚 sets of training data M1, …, 𝐌𝐧𝐩𝐦
 by the simple random sampling 

method. It is a naive sampling method that generates every possible sample 𝐌𝐢 of size  
𝑀

𝑛𝑝𝑚
 from 

the population of size M [22]. Each instance has an equal probability of being selected. Line 4 

utilizes sets of training data to train 𝑛𝑝𝑚 base prediction models PM1, …, 𝑃𝑀𝑛𝑝𝑚
. Then line 7 

aggregates predictions of all the models and algebraically averages these predictions as the final 

output for the regression problem. Various approaches have been successfully applied to 

construct ensemble learning. The popular ones are bootstrap aggregation (so-called bagging), 

boosting, and random forests. Bagging, a technique to generate multiple repeated bootstrap 

samples with replacement, is frequently used in classification and regression to improve stability 

and accuracy [23]. Instead of generating a succession of independent bootstrap samples, boosting 

trains multiple base prediction models using a weighted data set. Weights of samples are adjusted 

by issuing more weights on misclassified samples [24]. In this paper, random forests are 

implemented according to the research conclusion by Dragi, which indicates that multi-objective 

random forests are significantly better than multi-objective bagging [25]. Random forests share 

the same general procedures with other ensemble methods in Table 2. The general procedures to 

build random forests are shown as follows: 

1. Subsets training data 𝐌 to 𝑖 bootstrap samples 𝐌1, … , 𝐌𝑖 in line 3 of Table 2. 

2. Build 𝑖 decision trees 𝐷𝑇1, … , 𝐷𝑇𝑖 with corresponding 𝐌𝑖 as suggested in line 4. At each node, 

variables are selected at random out of all the features, and the best splits on these variables are 

used to split the node. Each tree is growing to the largest extent without pruning.  
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3. Perform prediction with test data using each tree 𝐷𝑇𝑖 in line 7. The final prediction will be the 

average of 𝑃𝑀1(𝑥𝑖), 𝑃𝑀2(𝑥𝑖), … 𝑃𝑀𝑛(𝑥𝑖) because it is a regression problem (𝑃𝑀𝑖(𝑥𝑖) is the 

prediction from decision tree DTi).  

In this paper, random forests have been employed as an ensemble learning method to cooperate 

with MTRM. Random forest cooperates with MTRM mainly in terms of two aspects. Firstly 

MTRM generates a collection of PCTs by bagging random forests instead of a single decision 

tree. Secondly, MTRM randomly picks attributes as input for function BT in Table 1 instead of 

using all attributes to find out the best test to partition the cluster.  

Table 3 

Algorithm of constructing rule ensembles. Note that I is training instances, and T is a collection of PCTs. 

R and W represent the collection of rules generated from T and their corresponding weights. 

1: 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒆𝑺𝒆𝒕𝑶𝒇𝑷𝑪𝑻𝒔(𝐼): 5: 𝑶𝒑𝒕𝒊𝒎𝒊𝒛𝒆𝑾𝒆𝒊𝒈𝒉𝒕𝒔(𝑅, 𝐼): 

2: return 𝑇; 6:                     If (weight of 𝑟 ∈ 𝑅 =  0)  

3: 𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑷𝑪𝑻𝒔𝑻𝒐𝑹𝒖𝒍𝒆𝒔(𝑇): 7:                                                     remove 𝑟; 

4: return 𝑅; 8: return (𝑅, 𝑊); 

 

2.2. Rule ensemble for MTRM 

Large ensembles of PCTs are hard to interpret. Thus, all PCTs are transcribed into a collection of 

rules. Rule learning, a collection of unordered rules whose predictions are combined via 

weighted voting, is an expressive and human-readable model representation. It is a conjunction 

of statements along with input variables. To briefly explain how the rule ensemble interprets the 

MTRM, the key algorithm to achieve rule ensembles of MTRM is summarized in Table 3 [26]. 

In line 1 of Table 3, function GenerateSetOfPCTs recursively calls function PCT in Table 1 to 

generate bagging of PCTs, then line 2 returns a collection of PCTs. Such large ensembles of 

PCTs are impossible to interpret, and thus all the trees are transcribed to sets of rules by function 

ConvertPCTsToRules in line 3 [27]. Line 5 finds the optimized weight for each of those rules 𝑅 

by function OptimizeWeights. During this process, it is trying to assign as many weights as 

possible to zero, in the purpose of learning small and interpretable trees. A gradient-directed 

optimization algorithm [26] optimizes all the weights. The physical meaning of weights indicates 

the importance of each rule contributing to the final prediction. Lines 6 and 7 remove the trees if 

their optimal weights are zero. Finally, line 8 returns a collection of rules whose weights are not 

zero and their corresponding weights. Hence, the final prediction can be computed by the 

following equation: 

𝑦̂ = 𝑤0𝑎𝑣𝑔 +  ∑ 𝑤𝑖𝑟𝑖(𝑥)𝑀
𝑖=1  (2) 

where 𝑤0 is the baseline prediction, part (𝑎𝑣𝑔) is a constant vector with the average over all the 

targets. The entity 𝑟𝑖 is a vector function which gives out a constant prediction shown in Fig. 1 

(b) as a toy example. And 𝑤𝑖 is the corresponding weight of a rule. Note that 𝑀 indicates the 

number of rules in a PCT. Fig. 1 (a) considers a population of instances with two descriptive 

variables in the form of {𝑥1, 𝑥2} and a target response {𝑦}. A toy PCT is constructed on top of 
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founded tests, and each clustering of the PCT is represented by a conditional statement as a result 

of function 𝑪𝒐𝒏𝒗𝒆𝒓𝒕𝑷𝑪𝑻𝒔𝑻𝒐𝑹𝒖𝒍𝒆𝒔 in Fig. 1 (b). A prediction of 𝑦 with {𝑥1, 𝑥2} = {5, 0.1}is 

calculated as: 

𝑦̂ = 0.95(1) + 0.2 [if(𝑥1 > 4), then (1)] + 0.4 [if(𝑥1 > 3), then (3)] + 0 [if(𝑥2 < 2),

then (2)] + 0.3 [if(𝑥2 < 1), then (1)] + 0 [if(𝑥2 > 2.5), then (6)]  

= 0.95 + 0.2 × 1 + 0.4 × 3 + 0 × 2 + 0.3 × 1 + 0 × 6 = 2.65 (3) 

Conditions in the statements only take descriptive attributes into account because the rules will 

be applied to the new unlabeled instances. In this paper, there are eight target variables, and thus 

each rule will give a resultant vector of dimension eight. The adopted MTRM is PCTs employing 

random forests, and the model is transcribed into a rule ensemble for better interpretation, 

enabling the proposed model to predict multiple targets simultaneously. 

2.3. Clus 

MTRM has been implemented in the Clus, an open-source machine learning software that can be 

downloaded from [28]. Clus is a decision tree and rule learning system that works in PCTs [14]. 

It is a Java-based platform to build both classification and regression trees by choosing different 

operation settings. It has been successfully applied to plenty of tasks, including multi-target 

regression and classification, structured output learning, time series prediction, etc [14]. Clus 

provides many choices for operation settings. In particular, the operation settings related to the 

multiple-target regression are explained. First, three input files are required: (1) a file with 

training data, (2) a file with test data, and (3) a file specifying all the parameter settings. The 

training and test data dictionary (i.e., files names and variable types) should be listed in these 

setting files. Descriptive and target attributes in the dataset should be specified explicitly. Other 

functionalities, including choices of ensemble method and rule ensemble, should be addressed 

accordingly. Appendix A presents a brief example of input files. Full practical example files are 

available in [29]. After training the model, an output file will be generated which contains 

predictions for multiple target attributes. In addition, one can access the graphic PCTs in the 

output file of which example is shown in Appendix B. One is referred to the Clus manual for 

detailed instructions and additional settings. 

3. Prediction of capacity curve 

Although the proposed ML-based approach to capacity curve prediction can be applied to any 

RC structure, this study demonstrates the potential by focusing on rectangular RC shear walls’ 

capacity curves. The training database is built upon a hybrid database consisting of real 

experimental results and computational simulation results. A high-prediction parallel finite 

element analysis platform (called VEEL, meaning virtual earthquake engineering laboratory) has 

been adopted to ensure reliably simulated curves. VEEL’s general applicability and accuracy 

have been well documented in [30]. VEEL is rooted in a number of microphysical mechanisms, 

including a multi-directional smeared crack model, a topological information-based steel bar 

model capable of capturing progressive bar buckling, a 3D interlocking-based nonlinear shear 
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mechanism, and a bar-concrete proximity-based general confinement model. An optimized 

parallel computing algorithm is leveraged to effectively link millimeter length-scale mechanisms 

to real-scale RC walls [31,32]. 

3.1. Transform capacity curve into multivariate targets 

The size of the experiment-based database is too small for ML training. We need to enrich the 

experimental database with simulated data without introducing a substantial loss of accuracy. 

The original database contains global F-D responses of seven rectangular shear walls (i.e., RW1, 

WSH1, WSH2, WSH3, WSH4, WSH5, and WSH6). The contrast between experimental F-Ds 

from existing literature [2,33] to F-Ds simulated by VEEL is performed in Fig. 2 to emphasize 

the precision of the original database. As summarized in Table 4, the variances occur in the axial 

force ratio (af) in percentage, yield stress (fy) in MPa, the diameter of vertical reinforcement (db) 

in millimeter, and concrete compressive strength (f ’c) in MPa. It is challenging to rephrase the 

continuous capacity curve into the multivariate target, which machine learning can learn and 

predict. The overall procedures to extract the F-D capacity curve database are illustrated in Fig. 

3. In Task 1 of Fig. 3, it is essential to extract the outermost points. Most of the outermost points 

are related to the overall envelope of the capacity curve of a shear wall subjected to reverse and 

cyclic loading. Although there is no strict restriction, 46 points are extracted from the shear wall 

database, as visualized in Fig. 4. More points will improve the accuracy of the fitted capacity 

curve, but this choice appears acceptable to capture the overall nonlinear envelops reasonably. 

The extracted points on the capacity curve envelope are denoted as {𝑑𝑖, 𝐹𝑖}, 𝑖 = 1, … 46, where 𝑑𝑖 

is a displacement and 𝐹𝑖 is the associated force point. We perform separate least-square fittings 

on the positive and negative regimes to account for asymmetric shapes of general capacity curve 

envelopes.  𝜷 ∈ ℝ𝑝 stands for parameters to be determined, and 𝜷 = [𝜷𝑃: 𝜷𝑁], 𝜷𝑃 =

{𝑃1, 𝑃2, … , 𝑃𝑝}𝑇 and 𝜷𝑁 = {𝑁1, 𝑁2, … , 𝑁𝑝}𝑇. Then, the optimal parameters (denoted by 𝜷̂) for the 

positive and negative regimes are obtained by  

𝜷̂𝑃 = argmin
𝜷𝑃

‖𝑭 − 𝐝𝜷𝑝‖
𝟐

, for 𝑑𝑖 ∈ ℝ+ (4) 

𝜷̂𝑁 = argmin
𝜷𝑁

‖𝑭 − 𝐝𝜷𝑛‖𝟐 , for 𝑑𝑖 ∈ ℝ− (5) 

where 𝐝 is the model matrix, 𝐝 ∈ ℝ46×4 of which ith row means 𝒅𝑖 = {𝑑𝑖, 𝑑𝑖
2, 𝑑𝑖

3, 𝑑𝑖
4}. The 

envelope force vector is 𝑭 = {𝐹1, 𝐹2, … , 𝐹46}. Thus, the p-parameter fitted model for the capacity 

curve envelop is succinctly given by:  

𝐹𝑖 = 𝐻(𝑑𝑖) ∑ 𝑃𝑙𝑑𝑖
𝑙𝑝

𝑙=1 + 𝐻(−𝑑𝑖) ∑ 𝑁𝑙𝑑𝑖
𝑙𝑝

𝑙=1  (6) 

where 𝐻(𝑑) is the unit step function (i.e., one for 𝑑 > 0, zero otherwise); 𝑝 is the highest order of 

base polynomials. This study chose 𝑝 = 4 for the polynomial bases rooted in the prior 

knowledge that most capacity curves often exhibit convex or concave shapes. A higher-order 

fitting may help, but our choice is justifiable since the values of R
2
 (the coefficient of 

determination) calculated using our approach are commonly larger than 0.99. For the subsequent 

multi-target machine learning, we added the optimal parameters 
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𝜷̂ = [𝜷̂𝑝: 𝜷̂𝑛] = {𝑃̂1, 𝑃̂2, 𝑃̂3, 𝑃̂4, 𝑁̂1, 𝑁̂2, 𝑁̂3, 𝑁̂4}T onto the existing wall database. Thus, 32 

descriptive variables and eight target variables are included in the finalized database. Detailed 

variable information is summarized in Appendix C. Overall, the capacity curve database 

dimension is 182 × 40 (i.e., 182 instances with 40 attributes). 

Table 4 

Details of the original rectangular shear wall database. 

 RW1 WSH1 WSH2 WSH3 WSH4 WSH5 WSH6 

af 0 ~ 30 0 ~ 40 0 ~ 40 0 ~ 40 0 ~ 40 0 ~ 40 0 ~ 40 

fy 300 ~ 600 450 ~ 610 500 ~ 710 500 ~ 720 500 ~ 640 500 ~ 710 500 ~ 650 

db 12.7 ~ 28.6 8 ~ 14 8 ~ 15 8 ~ 15 8 ~ 15 6 ~ 12 8 ~ 15 

f ’c 37.7 30 ~ 60 30 ~ 60 30 ~ 60 30 ~ 60 30 ~ 60 30 ~ 60 

 

 

Fig. 2. (Top six panels) experimental F-D responses versus (bottom six panels) simulated F-D responses 

by VEEL. 
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Fig. 2. Flowchart of transformation of capacity curve database to multiple target database. 

 
Fig. 3. Example of extraction of 46 outermost points from force-displacement (F-D) responses. 

3.2. Multi-target prediction of capacity curve 

This section explains the complete process of the multiple target ML prediction of the capacity 

curves using PCTs. PCTs consider trees as a hierarchy of clusters with respect to many observed 

descriptive variables to build trees to predict multiple targets simultaneously. As explained in the 

previous section, our hybrid database contains 32 descriptive variables (denoted as 𝐗 ∈ ℝ𝑛×32) 

and eight target variables (𝐘 ∈ ℝ𝑛×8). Thus, the ith row of 𝐗 is 𝒙(𝑖) = {𝑥1, … , 𝑥32}(𝑖) whereas the  

ith row of 𝐘 is  {𝑃̂1, 𝑃̂2, 𝑃̂3, 𝑃̂4, 𝑁̂1, 𝑁̂2, 𝑁̂3, 𝑁̂4}
(𝑖)

. The prediction task is to predict 𝒚(𝑛𝑒𝑤) ∈ ℝ8 

given a new query of 𝒙(𝑛𝑒𝑤) ∈ ℝ32. Fig. 5 summarizes general procedures of initial setup, 

training, prediction, and visualization. We will elaborate on each sub-task as follows. 

3.2.1. Initial preparation 

Task 1 in Fig. 5 summarizes the key procedure before launching multiple target ML. Ranges of 

variables in the hybrid database are wide, e.g., ranging from 0.01 to 2.23×10
9
.
 
To be consistent 

and prevent any unit-dependent effect in PCTs, we normalized all attributes to the range of [0, 

1]. We considered two normalization schemes: “min-max” and  “standard deviation” 

normalizations as candidates. In the min-max normalization, normalization is done by 

𝑥𝑖
′ =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (7) 

where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximum of the ith attribute, respectively. In the 

standard deviation normalization, we have 

𝑥𝑖
′ =

𝑥𝑖−𝑥̅

𝑠
 (8) 

where 𝑥̅ and s is the mean and the standard deviation of the ith attribute, respectively. To 

quantitatively compare impacts of the normalization schemes, we compare multi-target 
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predictions of three cases: using (1) the original database without any normalization, (2) database 

normalized by the min-max scheme, and (3) database normalized by the standard deviation. All 

the initial settings of the MTRM model are constrained identical for three cases. From this 

preliminary comparison, the “min-max normalization” appears to lead to the lowest MAE. 

 
Fig. 4. Multi-target prediction flowchart from initial preparation, training and prediction, and 

postprocessing and investigation. (DM: Mahalanobis Distance; MAEavg: the averaged mean absolute error 

of the multiple-target prediction). 

Hence, this study adopts the “min-max” normalization throughout the following procedures. 

𝑥𝑚𝑎𝑥 and 𝑥𝑚𝑖𝑛 of each attribute must be stored for future backward mapping (i.e., from the 

normalized target to actual response, Task 2 (b) of Fig. 5).  

Although our hybrid dataset has more than 200 instances, it is still relatively small for reliable 

ML training. The PCTs may not be stable to learn the rules around the outside borders of 

multiple descriptive variables. Such an issue is the so-called “extrapolation” problem, an intrinsic 

statistical model. In short, a statistical or ML model can predict well when the new instance is 

similar to those inside the data space. Still, its accuracy decreases as the new instance is near the 

borderlines or beyond the data space. In those ranges, prediction becomes an extrapolation since 

similar cases have never been experienced [34]. Therefore, it is important to understand each 

instance’s relative location in the entire data space. In addition, it is instructive to note that the 

data space covered by the database is scattered and refers to space with more than one instance 

experienced inside. In the hope of quantitatively determining the borderlines of scattered data 

space and facilitating visualization of the relative position of new instances in the entire data 

space, we adopted the Mahalanobis Distance (denoted as 𝐷𝑀). For a data point in the 

multidimensional space, 𝐷𝑀 measures how many standard deviations away the point is from the 

mean of the multidimensional space by 

𝐷𝑀(𝒙)  ≡  √(𝒙 − 𝝁)𝑇𝐒−1(𝒙 − 𝝁) (9) 

where 𝒙 is an instance in the descriptive data space (here 𝒙 = {𝑥1, 𝑥2, … , 𝑥32}𝑇), 𝝁 is a vector of 

the mean of each descriptive variable (here, 𝝁 = {𝜇1, 𝜇2, … , 𝜇32}𝑇) and S is the covariance 

matrix. We calculate and record 𝐷𝑀 into the database as auxiliary information (Task 1 (b) of Fig. 

5). This information determines whether new data is inside the database space or close to or 

beyond the existing database. To facilitate the unbiased training of PCTs, we randomly shuffled 

the database to make 70% training data and 30% test data (Task 1 (c) of Fig. 5).    
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3.2.2. Training and test of the multi-target prediction model 

As shown in Task 2 of Fig. 5, the next step is to train and perform the multi-target prediction. 

PCTs generate two types of prediction results: original predictions and pruned predictions. A 

very large PCTs is grown, which typically learns the details and noises in the training data to the 

extent that it will negatively influence the performance of the model on new instances. The PCTs 

are pruned by one of the pruned criteria to eliminate the negative impact. Here, only original 

predictions are considered in this paper because the pruned prediction is only necessary for the 

very large data set [16]. Random forests are used as an ensemble learning method. Among many 

measurements of prediction accuracy in the ML domains, we adopted the mean absolute error 

(MAE). Since we are predicting multiple targets, each target has its own MAE by: 

𝑀𝐴𝐸𝑖 =  
100

𝑛
∑ |

𝐴𝑖(𝑗)−𝑃𝑖(𝑗)

𝐴𝑖(𝑗)
|𝑛

𝑗=1  (10) 

where 𝑀𝐴𝐸𝑖 is the MAE of the ith target, 𝐴𝑖(𝑡) and 𝑃𝑖(𝑗) is the true value and predicted value of 

the ith target of the jth instance, respectively. n is the total number of instances. Then, the overall 

MAE of all target attributes (denoted as 𝑀𝐴𝐸𝑎𝑣𝑔) is calculated as: 

𝑀𝐴𝐸𝑎𝑣𝑔  =  
1

𝑞
∑ 𝑀𝐴𝐸𝑖

𝑞
𝑖=1  (11) 

where q is the number of total target attributes. In this study, q = 8 (see Task 2 (b) of Fig. 5). 

3.2.3. Visualization of prediction mode 

Task 3 of Fig. 5 summarizes the postprocessing. Since our target is to predict curves (not a 

simple scalar), we reconstruct the capacity curves using the predicted coefficients of the 

polynomial bases. It starts from the backward mapping of the coefficients from [0, 1] to the 

original ranges. Given the predicted matrix 𝐘𝑝𝑟𝑒𝑑 ∈ ℝ𝑛×8 with each entity ranging [0, 1], a batch 

backward mapping is simply given by   

𝐘𝑓𝑖𝑛𝑎𝑙 =  𝐘𝑝𝑟𝑒𝑑𝐘𝑑𝑖𝑓𝑓 + 𝐘𝑚𝑖𝑛  (12) 

where 𝐘𝑝𝑟𝑒𝑑 ∈ ℝ𝑛×8 is the final predicted coefficient matrix with original ranges. 𝐘𝑑𝑖𝑓𝑓 ∈ ℝ8×8 

is a diagonal matrix and 𝐘𝑚𝑖𝑛 ∈ ℝ𝑛×8 is a column-size identical matrix, which is given by  

𝐘𝑑𝑖𝑓𝑓 ≡ [
(max (𝒚1) − min (𝒚1)) [𝟎]

⋱
[𝟎] (max (𝒚8) − min (𝒚8))

] 

𝐘𝑚𝑖𝑛 ≡ [

(min (𝒚1)) ⋯ (min (𝒚8))
|| ⋱ ||

(min (𝒚1)) ⋯ (min (𝒚8))
] 

Here 𝒚𝑖 ∈ ℝ𝑛×1 represents a vector of original ith target coefficient. Since we now have all 

coefficients of the polynomial bases, we can draw the envelopes of the capacity curves by using 

Eq. (6). 
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3.2.4. Confidence interval 

As all statistical models involve uncertainty, our multiple-target prediction model naturally 

exhibits uncertainty for new predictions. For a new prediction, it is crucial to provide uncertainty 

that is rooted in the training process that uses randomly selected training data sets. To offer a 

measurement of uncertainty behind ML-based prediction, this study harnesses a bootstrapping  

[34] similar to the so-called “percentile bootstrapping.” The detailed procedure to obtain 

bootstrapping sample is as follows.  

[BS 0] Initial stage begins with a training data set 𝑀(𝑖=1) and a new instance 𝒙𝑛𝑒𝑤 ∈ ℝ32×1 

[BS 1] Fit a multiple-target prediction model using the training data set 𝑀(𝑖) and obtain a target 

response 𝒚𝑛𝑒𝑤(𝑖) = {𝑃1, 𝑃2, 𝑃3, 𝑃4, 𝑁1, 𝑁2, 𝑁3, 𝑁4}
(𝑖)

T
 for the given 𝒙𝑛𝑒𝑤. 

[BS 2] Generate a new training data set 𝑀(𝑖+1) by resampling 70% of the database (randomly 

selected with replacement). 

[BS 3] Refit the multiple-target prediction model using the training dataset 𝑀(𝑖+1). 

[BS 4]  Repeat above steps (1-3) nbs times to generate nbs bootstrapping samples (i.e., nbs multi-

target predictions).  

In our approach, sorting the nbs multi-target predictions is necessary, but it is not straightforward 

as a single target bootstrapping. To derive a physically sound approach for sorting the nbs 

multivariate predictions, we focused on the absorbed energy of the structure, i.e., area under the 

capacity curves. In general, a peak-based sorting appears not reasonable: e.g., curve (c) has the 

largest positive peak while curve (a) has the largest peak in the negative regime in Fig. 6. 

However, the total absorbed energy intuitively leads to a single scalar that also holds the 

mechanical meaning of the structure. Fig. 6 briefly illustrates how the capacity curves' absorbed 

energy is calculated and how it can help order the three dissimilar curves of different peaks and 

shapes. Since we represent the capacity curve envelopes with polynomial bases and already 

obtained their real-valued coefficients in 𝒚𝑛𝑒𝑤(𝑖), 𝑖 = 1, … , 𝑛𝑏𝑠 (BS 2), it is straightforward to 

calculate the absorbed energy (denoted as 𝐼(𝑖) ∈ ℝ+) as  

𝐼(𝑖) = |∫ 𝐻(𝜁(𝑖)) ∑ 𝑃𝑙𝜁(𝑖)
𝑙𝑝

𝑙=1 + 𝐻(−𝜁(𝑖)) ∑ 𝑁𝑙𝜁(𝑖)
𝑙𝑝

𝑙=1

𝐷max,(𝑖)

𝐷𝑚𝑖𝑛,(𝑖)
 𝑑𝜁(𝑖)| (13) 

where the subscript (𝑖) denotes the ith multi-target prediction; |.| returns the absolute value; 𝐻(𝑑) 

is the unit step function (i.e., 1.0 for 𝑑 > 0, zero otherwise); 𝐷𝑚𝑎𝑥,(𝑖) and 𝐷𝑚𝑖𝑛,(𝑖) is the positive 

maximum and negative minimum displacement of the capacity curve, respectively; 𝜁(𝑖) is the 

displacement coordinate. The condition that the cumulative distribution of bootstrap samples 

(denoted as 𝐺̂) is less than or equal to a constant b is expressed as: 

𝐺̂(𝑏) = 𝐹{𝐼(𝑖) ≤ 𝑏 } , 𝑖 = 1, … , 𝑛𝑏𝑠. (14) 

where F is the frequencies of 𝐼(𝑖). An instance with a specific percentile (α) is represented as: 
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𝒚∗(𝛼) =  𝐺̂−1(𝛼) (15) 

 

Fig. 5. Illustration of calculation of the absorbed energy used for sorting in bootstrapping. Three capacity 

curves (a,b,c) with different peaks and shapes are shown. (⊕ means a summation operation). 

 

 

Fig. 7. 95% percentile confidence interval of wall WSH3 under 590 MPa shear strength. 

 

where 𝐺̂−1 is the inverse function of 𝐺̂. Therefore, the 95% percentile confidence interval is 

given by 

(𝒚∗(0.025), 𝒚∗(0.975)) (16) 

In this paper, 𝑛𝑏𝑠 = 100 is adopted. Here, a 95% confidence interval indicates the probability of 

the range covering the predicted curves regarding the total absorbed energy. For instance, Fig. 7 

shows a 95% percentile confidence interval. Note that there is ample room for extension of the 

proposed approach, especially regarding how to define the “order” of the bootstrapped samples. 

Also, there are other methods for uncertainty quantification, such as a Jackknife method [35], 

which is straightforward and does not require a random sampling.  
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4. Results 

4.1. Impact of PCT types on prediction accuracy 

To investigate the impact of PCT types on the performance of MTRM, we considered two types 

of operational settings of PCTs. The first type, conventional PCTs, considers both descriptive 

variables X and target attributes Y to partition instances into subsets during searching. On the 

contrary, the second type, the so-called trial PCTs, partitions instances into subsets in terms of 

only the descriptive variables X. For comparison, we used identical training and test data from 

the capacity curve database (182 rows) to train the model and make predictions. As already 

mentioned in Task 1 (b) in Fig. 5, DM of all instances are recorded to easily visualize each 

specimen’s relative position in the multivariate space and are plotted in a radar plot (e.g., Fig.8). 

The detailed values of the created database and DM  of all instances are available in [29]. Four 

selected walls (indexed by 4, 20, 67, and 88) and their DM values are presented in Fig. 8. Fig. 9 

presents the predicted capacity curves of selected walls accordingly. The corresponding MAEs of 

these four capacity curves predicted by the conventional PCTs and trial PCTs are aggregated in 

Table 5. 

Table 5 

MAEs of prediction by conventional PCTs versus trial PCTs. 

Wall Index DM MAEs (conventional) MAEs (Trial) 

4 17.9 2.6% 4% 

20 16.8 2.3% 18% 

67 0.62 1.1% 1.2% 

88 1.79 0.1% 0.1% 

 

Another prediction of wall 175 with DM = 1.89 is plotted in Fig.10, which also supports the good 

prediction of both PCTs with smaller DM. The prediction accuracy of conventional PCTs is much 

stable and superior to the trial PCTs. In addition, it is observed that both conventional PCTs and 

trial PCTs make a relatively accurate prediction of wall index 67 and 88, but a decent prediction 

of wall index 4 and 20. To some extent, the trial PCTs is similar to the “clustering” since it 

considers only the descriptive attributes. On the contrary, the conventional PCTs collaborate with 

the rule ensemble to better interpret and explore complex data. In view of the high 

dimensionality of our database (i.e., 32 variables), the conventional PCTs appear to slightly 

outperform the trial PCTs. Based on this outcome, the conventional PCTs were utilized in all the 

simulations hereafter. 

4.2. Impact of the extended database on the prediction 

The discussion addressed so far is inherently based on the training data. It is common sense that 

PCTs will yield better predictions when a target instance resides within the boundary of the 

available training data. The prediction model will perform the so-called “extrapolation” when a 

new target has little similarity and falls outside the existing training data. To investigate the 

influence of this extrapolation, we first trained the PCTs with 70% of sampled training data from 

the capacity curve database (182 rows) and made the prediction for the 30% test data plus a new 

instance (SW1-2) inclusively involved. The DM of SW1-2 along with other 182 instances are 

visualized in Fig. 11 (a).  The DM of SW1-2 (marked as a star) indicates exclusion of the new 

instance in contrast with the existing training data space. And the predicted capacity curve of 

SW1-2 is visualized in Fig.12 as the dashed curve. Secondly, we collected 33 new rectangular 
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shear walls from [36] and merged them into the capacity curve database, enlarging them to 214 

rows. Repeat the scenario by training the PCTs with 70% of sampled training data from the 

extended capacity curve database (214 rows), and predict the rest of the test data. 

 
Fig. 8. Radar plot of 182 walls with varying DM: (a) wall 4 with DM = 17.99; (b) wall 20 with DM  = 16.76; 

(c) wall 67 with DM = 0.62; (d) wall 88 with DM = 1.79. 

 
Fig. 9. Predicted capacity curves using the conventional PCTs and the trial PCTs: (a) wall 4; (b) wall 20; 

(c) wall 67; (d) wall 88. 
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Fig. 10. Predicted capacity curves of wall 175 using the conventional PCTs and the trial PCTs. 

It is critical to note that we force SW1-2 as one of the test data for both scenarios for comparison. 

The predicted capacity curve of SW1-2 is visualized as the dashed curve delimited by dots in 

Fig. 12. For the first scenario, it is observed that the prediction of SW1-2 under the original 

database diverges from the experimental F-D of SW1-2 in Fig. 12. And the data space of SW1-2 

marked as star indicates exclusion of the new instance in contrast with the existing training data 

space in Fig. 11 (a). For the second scenario, we found that the prediction of SW1-2 under the 

extended database converges significantly in contrast with the prediction of the previous 

scenario. The ample data space around SW1-2 in Fig. 11 (a) has been compacted asymptotically 

with multiple samples around in Fig. 11 (b), which presents that the extension of 33 new shear 

walls has high similarity with specimen SW1-2 in terms of DM. Analyzing the results of both 

scenarios, the extension of the database, which includes instances of high similarity with SW1-2 

in terms of DM, will positively influence the prediction. These similar instances will fill in 

scattered data space around SW1-2 and lead to a more comprehensive model. On the contrary, an 

extension of the database of low similarity with SW1-2 will rarely promote the prediction of 

SW1-2. 

4.3. Impact of erroneous data on prediction 

Nowadays, a tremendous amount of engineering data accumulate in our domain, frequently 

reported with incompleteness and erroneous values. The deficiency of data will not facilitate 

training of the predictive models but leave the potential risk of generating an unstable prediction. 

One possible way to minimize the negative influence of data deficiency on prediction is to 

leverage imputation to handle missing values. The impacts of the existing imputation method 

fractional hot deck imputation on the prediction of engineering data have been investigated by 

[37]. The robustness of the MTRM against erroneous data is one of the most important criteria to 

evaluate the model objectively. Note that the naive version of the capacity curve database (182 

rows) has 2.3% erroneous values within the descriptive variable matrix X because of human 

errors. Fortunately, the author was aware of these errors ahead of time and remedied the capacity 

curve database with extreme caution. To investigate the impact of erroneous data on the 

prediction, the author utilized  30% of sampled erroneous data to train the conventional PCTs 

and generate predictions for wall indexed by 20 and 88, respectively. (the identical walls denoted 
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by (b) and (d) in Fig. 8). The predicted F-D curves of these two targets are visualized in Fig. 13 

as dash curves in contrast with predicted capacity curves upon the correct database (dash curves 

delimited with dots). Fig. 13 infers that the conventional PCTs are fairly robust against erroneous 

data. 

 
(a) 

 

(b) 

Fig. 11. (a) DM of 183 wall instances (b) DM of 214 wall instances. Note that DM  of wall SW1-2 is marked 

with a star. 
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Fig. 12. The predicted capacity curves of SW1-2 based on the original database and the extended 

database, respectively. 

 
Fig. 13. The predicted capacity curves based on erroneous database versus that based on the correct 

database: (a) wall 20; (b) wall 88. 

5. Conclusions 

In the hope of providing an efficient and reliable tool that can help quickly determine the 

capacity curves of F-D responses, this paper utilizes a multi-target regression model to generate 

the prediction. To our best knowledge, the prediction of capacity curves had never been 

attempted in infrastructure engineering. The general conclusion is that the MTRM implementing 

conventional PCTs combined with ensemble methods generates fairly good predicted F-D curves 

in terms of MAE  and visualization. Its confidence interval and robustness against erroneous data 

strengthen the reliability of the method. Compared with the traditional approach to conducting a 

real experiment or simulating finite element models, the proposed method of incorporating ML 

will significantly reduce expenses in terms of time and money. 

The future works will focus on several interesting aspects which will promote the performance of 

the method. Firstly, the university of the proposed capacity curve database is restricted to 

rectangular shear walls. The extension of the method to other types of infrastructures will break 

the bottleneck of the proposed approach. Secondly, the capacity curve database consists of 32 

descriptive variables currently, which may cause overfitting issues. An attributes selection test 

based on empirical engineering knowledge or the attributes selection algorithm [34] may 

improve the precision of the prediction. Lastly, concerning the size of the proposed capacity 

database, it may result in unstable and biased models. A sufficiently large database extended in 

the future will help to produce more accurate and stable results. 
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Appendix A: Example of input files 

The user must provide three input files to run the Clus. The training data file should strictly 

follow the format: 

@RELATION “WallDB_train”  

   

@ATTRIBUTE   var1 numeric 

@ATTRIBUTE   var2 numeric 

             ⋮     ⋮       ⋮ 
@ATTRIBUTE   var40 numeric 

   

@DATA   

0,0,0,0,1,0.25,0,0.256666667,0,0,0.048,0,0.226190476,5.07E-08,1,1,0.155506608,0, 

⋮ 
 

The Clus is format-sensitive. The exact name of the training data file should be included at the 

beginning. Afterward, users have to list all attributes along with data types. Note that training 

data must be listed row-wise. A comma delimits each element in a row, and each row is delimited 

by starting a new line. The test data file follows an identical format. Besides, a file specifying all 

the parameter settings is described as: 

[Attributes] [Ensemble] 

Target = 33-40 Iterations = 100 

Clustering = 1-40 EnsembleMethod = RForest 

Descriptive = 1-32  

  

[Data] [Output] 

File = WallDB_train.arff WritePredictions = {Train,Test} 

TestSet = WallDB_test.arff  

  

[Tree]  

Heuristic = VarianceReduction  

PruningMethod = M5Multi  

ConvertToRules = ALLNodes  

 

Users can control the types of PCTs in Attributes section. Data section lists the full name with the 

extension of training data and test data. Tree and Ensemble sections specify additional settings 

for the PCTs. For more details, Clus manual provides comprehensive explanations for each item 

in these three files. 
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Appendix B: Graphic PCTs 

This appendix explains a toy graphic PCTs after rule ensemble in Fig. 1 (b). An incomplete 

realistic graphic PCTs for predictions in Figs. 9 and 10 is obtained from the output file of Clus: 

 
We upload the output file of predictions in Figs. 9 and 10 with full graphic PCTs in [29]. 

Appendix C: Attributes details of the capacity curve database 

Attributes Detail 

I Moment of inertia 

Length Length of shear wall 

Thickness Thickness of shear wall 

Height Height of shear wall 

Number of floors Number of floors 

Axial Force Ratio Axial force ratio 

Cover thickness Cover thickness 

Concrete_fc Concrete compressive strength 

Concrete_ft Concrete yield strength 

bb Width of boundary element 

hb Thickness of boundary element 

cb Cover thickness in boundary element 

Steel_Vertical1_fy Yield strength of boundary longitudinal reinforcement 
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Steel_Vertical1_fu Ultimate stress of boundary longitudinal reinforcement 

Steel_Vertical1_Spacing Spacing of boundary longitudinal reinforcement 

Steel_Vertical1_strain at fu Ultimate strain of boundary longitudinal reinforcement 

Steel_Vertical1_Diameter Diameter of boundary longitudinal reinforcement 

Steel_Vertical2_fy Yielding strength of web longitudinal reinforcement 

Steel_Vertical2_fu Ultimate stress of web longitudinal reinforcement 

Steel_Vertical2_Diameter Diameter of web longitudinal reinforcement 

Steel_Horizontal1_fy Yielding strength of boundary transverse reinforcement 

Steel_Horizontal1_fu Ultimate stress of boundary transverse reinforcement 

Steel_Horizontal1_strain at fu Ultimate strain of boundary transverse reinforcement 

Steel_Horizontal1_Spacing Spacing of boundary transverse reinforcement 

Steel_Horizontal1_Diameter Diameter of boundary transverse reinforcement 

Steel_Stirrup1_fy Yielding strength of stirrups 

Steel_Stirrup1_fu Ultimate stress of stirrups 

Steel_Stirrup1_strain at fu Ultimate strain of stirrups 

Steel_Stirrup1_spacing Spacing of stirrups 

Steel_Stirrup1_Diameter Diameter of stirrups 

Number of longitudinal bars at wall boundary Number of longitudinal bars at wall boundary 

P1 ~ Pp and N1 ~ Np Polynomial bases parameters 
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