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The resilient modulus of different pavement materials is one 

of the most important parameters for the pavement design 

using the mechanistic-empirical (M-E) method. The resilient 

modulus is generally determined by a triaxial test, which is 

expensive and time-consuming and requires special 

laboratory facilities. This study aims to develop a model 

based on the Gaussian Process Regression (GPR) to predict 

the resilient modulus of stabilized base material with 

different additives under wetting-drying cycles. For this 

purpose, a laboratory dataset containing 704 records have 

been used. The input parameters were considered as the 

wetting-drying cycles, free lime to silica ratio, Alumina and 

iron oxide compounds in the additives, maximum dry density 

to optimum moisture content ratio, deviator stress, and 

confining stress. The results indicate high accuracy of the 

GPR method with a regression coefficient of 0.997 and 0.986 

respectively for train and test data and 0.995 for all datasets. 

Comparing the developed model based on the GPR method 

with the developed models in the literature based on the 

artificial neural network methods and the support vector 

machines shows higher accuracy of the GPR method. 
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1. Introduction 

The resilient modulus (Mr) is measured to determine the material stiffness values within different 

stress levels and describe the stress-strain nonlinear behavior of soil under repeated loading. This 

parameter is one of the important key parameters for pavement analysis and design. In 1986, the 

AASHTO pavement design guide recommended using the Mr to describe the stiffness of 

subgrade soil [1]. The Mr has been used as one of the fundamental characteristics to describe 

materials in structural design of flexible pavement since the publication of the AASHTO 

guideline in 1986 [2]. Moreover, the resilient modulus is also used to describe soil characteristics 

and aggregate materials in the mechanistic-empirical pavement design methods (e.g MEPDG 

method) [3]. 

The resilient modulus of soil and the aggregate materials is defined as the applied deviator stress 

to recoverable axial strain ratio under dynamic loading as follows [4]: 

d
r

r

M





 (1) 

Where σd is the deviator stress and εr is the recoverable axial strain. In the uniaxial compression 

test without confined stress, σd equals to the axial stress. 

The resilient modulus is directly determined in the laboratory by dynamic triaxial test, resonance 

column test, torsional shear test, and gyratory methods [5–7] or indirectly through correlation 

with the results of other standardized tests or backcalculation [8]. The most common method to 

determine the resilient modulus of soil and the aggregate materials in the laboratory is the 

dynamic triaxial test under the effect of different confining and deviator stresses. The dynamic 

triaxial test is time-consuming and expensive therefore, it is useful to present new methods and 

techniques to obtain an accurate estimation of the resilient modulus. Different statistical and 

computational intelligence models have been developed to predict the resilient modulus of fine-

grained and coarse-grained soil so far, including the models developed based on the artificial 

neural network [9–13], support vector machines [14–16], adaptive neuro-fuzzy inference system 

[17] as well as hybrid models [18]. 

The stabilized road materials should be sufficiently durable under the effect of Wetting and 

Drying (W-D) as well as Freezing and Thawing (F-T) cycles [19]. According to the mechanistic-

empirical pavement design guidelines, among other factors, the W-D and F-T cycles are 

important factors which cause damage and deterioration of base and subbase materials and likely 

lead to premature failure of the pavement [20]. Several researches have been carried out 

concerning the evaluation of the effect of W-D and F-T cycles on the mechanical and physical 

properties of the stabilized base layer [21–26]. In this regard, George and Davison (1963) carried 

out an experimental study to evaluate the durability of stabilized fine-grained soils under F-T 

cycles. The results of their study showed that applying ten F-T cycles is sufficiently destructive 

for the stabilized base layer [27]. Nonan and Hamfri (1990) evaluated the effect of the F-T cycles 

on the resilient modulus of the limestone aggregates stabilized with cement. Their results 
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indicated the importance of the F-T cycles over the W-D cycles at low deviator stresses. 

Moreover, they found out that the resilient modulus of the stabilized aggregates decreases 

significantly during the primary stages of the F-T cycles [21]. To evaluate the stabilized soils in 

Oklahoma, Miller et al. (2000) subjected stabilized samples to W-D cycles according to the 

ASTM D559 test method. In this study, the unconfined compressive strength (UCS) test was 

employed to evaluate durability. Results showed that the UCS increases by the increase in the 

W-D cycles [28]. Khoury and Zaman (2002) evaluated the effect of the W-D cycles on low 

quality aggregates stabilized with class C fly ash. Aggregates with low quality are referred to as 

the final acceptable limit to be used in the base layer in Oklahoma. In their study, the resilient 

modulus, the UCS test, and the elastic modulus were used to evaluate the effect of W-D cycles. 

The results showed that the resilient modulus values of the cured specimens in 28 days under 30 

W-D cycles are approximately 5% lower than the resilient modulus of similar specimens without 

exposure to the W-D cycles [29]. By evaluating the effect of F-T cycles on the flexural 

characteristics of the aggregates stabilized with 10% of class C fly ash, Khoury and Zaman 

(2000) found out that the resilient modulus and rupture modulus decrease as the F-T cycles 

increase. Based on the results, they noted that the effect of F-T cycles on these two mechanical 

properties is a function of curing time and the number of F-T cycles [30]. They also explored the 

effect of the W-D cycles on the resilient modulus of the aggregate materials stabilized with 

different stabilizers in 2007 [31]. The results showed that the changes in the resilient modulus 

under W-D cycles can be determined by the rate of the chemical reaction. It was also stated that 

changing the values of the resilient modulus can be expressed more properly by lime content, 

SFA (SiO2+Al2O3+Fe2O3) content, the optimum moisture content, and the maximum dry density. 

These researchers also proposed a regression model to predict the effect of these parameters as 

well as W-D cycles on the resilient modulus changes [31]. Maloof et al (2012) used the support 

vector machine (SVM) to predict the resilient modulus of the aggregate stabilized materials 

subjected to W-D cycles. They showed that the support vector machine results in more accurate 

modeling in comparison with the Least Square (LS) method [20]. Ghanizadeh and Rahravan 

(2016) used the artificial neural network (ANN) to predict the resilient modulus of the stabilized 

base materials under W-D cycles and compared their results with Maloof et al (2012) study. 

Results of this study confirms higher accuracy of ANN in comparison with the SVM method [9]. 

Kaloop et al (2019) developed some models to predict the resilient modulus of the stabilized 

base materials by combining the particle swarm optimization algorithm with the artificial neural 

network (ANN-PSO) and the extreme learning machine (PSO-ELM) and concluded that the 

PSO-ELM method has higher accuracy compared to other methods [32]. 

This study aims to present a model based on the Gaussian process regression (GPR) to predict 

the resilient modulus of stabilized base materials subjected to W-D cycles. The developed model 

is compared to the models developed by other researchers. The importance of each of the 

parameters to predict the resilient modulus of the stabilized base materials is considered by the 

sensitivity analysis. Also, the effect of each of the input parameters on the resilient modulus is 

evaluated by parametric analysis. 
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2. Dataset 

In this research, the dataset was adopted from Maloof et al. (2012) study [20]. In this dataset, 

four types of aggregate including Meridian, Richard Sput, Sawyer, and Rhyolite were stabilized 

by different additives and tested under different W-D cycles to determine the resilient modulus. 

The Meridian is a limestone material with 97% calcium carbonate (CaCO3) and Richard Spur is 

a limestone material with 87% calcium carbonate. Also, the Sawyer aggregate is a type of 

sandstone having a SiO2 amount of about 94% [20]. 

The stabilizer agents in Maloof et al. study included Cement Kiln Dust (CKD), Class C Fly ash 

(CFA), and Fluidized Bed Ash (FBA). The specimens were made near the optimum moisture 

content and maximum dry density and were cured within 28 days with an approximate 

temperature of 21
o
C and humidity percentage was about 90%. Then the specimens were exposed 

to 0, 8, 16, and 30 W-D cycles, and the resilient modulus of the stabilized materials were 

obtained to evaluate the performance of the stabilized materials subjected to W-D cycles. The 

resilient modulus test was carried out by applying a haversine dynamic load with loading time of 

0.1s and rest period of 0.9s [20]. Finally, a dataset containing 704 records, five input variables 

and one output variable was stablished [20]. 

Previous studies show that the resilient modulus of the stabilized aggregate base is a function of 

the Wetting-Drying Cycles (WDC), Calcareous/Siliceous Fly Ash Ratio (CSFAR), the dry 

Density to Moisture content Ratio (DMR), confining stress (3) and deviator stress (d) [31]. 

Therefore, in the current study these input variables are used to develop the GPR model. 

The statistical characteristics along with the frequency and the cumulative frequency for this 

dataset is shown in Figure 1. 

3. Modeling by the Gaussian process regression (GPR) 

3.1. Gaussian process regression (GPR) 

The Gaussian process regression is a probabilistic non-parametric learning method which is 

widely used for regression and classification problems [33]. This method has attracted the 

attention of many researchers in various scientific fields [34,35]. GPR is highly efficient for 

modeling the nonlinear data due to kernel functions. Moreover, the main merit of GPR is 

providing a reliable response for the input data [36]. 

Assume that in a training set of   niyxD ii ,...,1,  , 
nDRX   is the input data points (design 

matrix) and nRy is the desired output vector. The main assumption of GPR is that the output 

can be calculated as follows [37,38]: 

 )(xfy  (2) 

Where   RN n 2,0~   is the equal noise variance for all xi samples. 
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WDC: the number of Wetting-Drying Cycles 

CSAFR: Calcareous to Siliceous Fly Ash ratio (silica, Alumina, and iron oxide compounds in cementitious materials) 

DMR: Dry Density to Moisture content Ratio 

σ3: Restrictive stress (kPa) 

σd: Deviant stress (kPa) 

MR: resilient modulus (MPa) 

Fig. 1. The statistical characteristics, frequency and cumulative frequency of inputs and output variables. 

In the GPR method, n observation in  nyyy ,...,1  vector is considered as a single point 

instance of the Gaussian multivariate distribution. In addition, it can be assumed that this 

Gaussian distribution has a mean of zero. The covariance function  ', xxk determines the 
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relationship of one observation to another. The square of the exponential covariance function is 

commonly used to approximate functions using the GPR method, which is as follows [34,38]: 

 
 

 ',
2

'
exp', 2

2

2

2 xx
l

xx
xxk nf  













 
  (3) 

Where the maximum allowable covariance is defined as
2

f . It is noteworthy that  ', xxk  is 

equal to the maximum allowable covariance only when x  and 'x  are so close to each other, 

therefore,  xf  is approximately equal to  'xf . Besides, 𝑙 shows the length of the kernel 

function. Moreover,  ', xx  is Kronecker delta function which is defined as follows: 

1ij  if ji   and 0ij  if ji  . 

Concerning the training dataset, the final objective of the learning process is to predict y* the 

output value for a new input pattern. To achieve this, it is essential to develop three covariance 

matrices as follows: 

According to the training data set, the ultimate goal of the learning process is to predict the 

output value of y* for a new input pattern. To achieve this goal, it is necessary to create three 

covariance matrices as follows: 
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Regarding the assumption that the data are taken from a Gaussian multivariable distribution: 
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Since it has been proved that 
*

|y y  is developed from a Gaussian multivariate distribution with 
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1

*
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After determining meta-parameters of kernel function, parameters of the model including k and 

n can be determined by Bayesian inference. After training, the GPR model can be used to 

predict unknown values by the known input values. 

3.2. Evaluation parameters of GPR model 

In this study, the RMSE (Root Mean Squared Error), MAE (Mean Absolute Error), MAPE 

(Mean Absolute Percentage Error), MAD (Mean Absolute Deviation), and R
2
 (coefficient of 

determination) parameters have been used to evaluate the performance of GPR modeling. These 

parameters can be determined as follows: 
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Where N is the number of data to evaluate the desired method, mi is the measured value for i
th

 

data point, and pi is the predicted value for i
th

 data point. 

4. Results and discussion 

For modeling by the GRP method, 80% and 20% of all dataset records have been considered as 

training and testing set, respectively. Training and testing sets were randomly selected from the 

total data points. For this purpose, the data were shuffled in the Excel program and then the first 

80% of the data points were selected as the training set and the second 20% of the data points 

were considered as a testing set. The linear basis function has been used for modeling by GPR 

method and model overfitting was controlled by considering 10% of the training set as the 

validation set. Exponential kernel function and linear basis function also were assumed for 

developing final models. These two functions was selected based on the try and error method and 

after evaluation of different functions. be In this study four GPR models including model “A” 

considering all 5 input variables, model “B” considering 4 input variables (by omitting d), 

model “C” considering 4 input variables (by omitting 3), and model “D” considering 3 input 

variables (by omitting d and 3) were developed. Performance of these four GPR models is 

demonstrated in Figure 2 to 5. 
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As can be seen, sequence of four models developed in terms of accuracy (R
2
 and RMSE) is as 

A>C>B>D. In fact, model “A” with 5 input variables and values of R
2
 and RMSE equal to 0.998 

and 5858.336 for the training set and 0.985 and 6427.365 for the testing set has the best 

performance and model “D” with 3 inputs and values of R
2
 and RMSE equal to 0.922 and 

7631.497 for the training set and 0.912 and 1373.576 for the testing set has the lowest 

performance among the four developed models. 
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Fig. 2. The predicted versus measured resilient moduli based on the train and test datasets for model “A”. 
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Fig. 3. The predicted versus measured resilient moduli based on the train and test datasets for model “B”. 

Also omitting σd variable from input parameters in model “B”, lead to more reduction in model 

accuracy compared to omitting the σ3 variable in model “C” which confirms that the resilient 

modulus of the stabilized base material is more dependent on σd parameter compared to the σ3 
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parameter. The approximate equality of the coefficient of determination (R
2
) for the training and 

testing set in all cases indicates the high generalizability of the developed models. 
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Fig. 4. The predicted versus measured resilient moduli based on the train and test datasets for model “C”. 
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Fig. 5. The predicted versus measured resilient moduli based on the train and test datasets for model “D”. 

5. Comparing of performance with other methods 

As mentioned in section 2, the dataset used in the present study was adopted from the results of 

Maloof et al. (2012) [20]. In their research, in addition to conducting laboratory studies, they 

presented a model for predicting the resilient modulus using the support vector machine (SVM) 

method. Comparison of the results obtained from the present study and Maloof et al. (2009) 

study is provided in Table 1. It is evident that the GPR method is more accurate than the support 
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vector machine method; for example, in case of Model “A”, the value of R
2
 for the whole dataset 

using the GPR method is 0.995, and for the SVM method is 0.6400. Table 1 also shows the 

results of modeling accuracy based on the PSO-ELM method based on the Kaloop et al. (2019) 

study [32]. As can be seen, depending on the number of input parameters, the accuracy of the 

GPR method can be more or less than the PSO-ELM method. However, if all input parameters 

are considered, the accuracy of the GPR model is much higher than the PSO-ELM model, so that 

the RMSE for the GPR model is less than half of RMSE for the PSO-ELM model. 

Table 1 

Comparison of the GRP method and previously developed models. 

PSO-ELM [32] SVM [20] GPR (This study) 
Inputs Model 

RMSE R
2
 RMSE R

2
 RMSE R

2
 

253.439 0.981 1134.592 0.640 116.894 0.995 WDC, CSAFR, DMR, σ3, σd  A 

415.554 0.948 659.750 0.875 491.145 0.931 WDC, CSAFR, DMR, σ3 B 

304.451 0.973 371.309 0.959 329.743 0.968 WDC, CSAFR, DMR, σd C 

521.080 0.921 593.540 0.900 525.932 0.920 WDC, CSAFR, DMR  D 

 

6. Sensitivity analysis 

In this study, the Cosine Amplitude Method (CAM) is employed to determine the degree of 

importance of each input parameter to predict the resilient modulus using the degree of 

sensitivity index. The degree of sensitivity index can be calculated by the following equation 

[39,40]: 
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Where xij shows the i
th

 independent variable for the j
th

 data point and yj shows the dependent 

variable for the j
th

 data point (respect to xij). To estimate the relationship between input and 

output variables, the value of Ri must be close to 1, while Ri with a value of zero virtually 

eliminates the possibility of extracting a correlation. Figure 6 shows the degree of importance of 

input variables based on the results from the measured and predicted values of the resilient 

moduli. As it can be seen, the importance of different parameters can be displayed as DMR > 
CSAFR > σd > σ3>WDC. In other words, the DMR is the most important parameter and the 

WDC is the least important parameter for predicting the resilient modulus of the stabilized base 

materials under W-D cycles. Also the difference of Ri between the predicted and measured values 

for the resilient modulus for WDC, CSAFR, DMR, σ3, and σd parameters is 0.31%, 0.18%, 

0.19%, 0.22%, and 0.22%, respectively which shows the high accuracy of the GPR method to 

predict the resilient modulus. 
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Fig. 6. The importance of each of the variables based on the CAM method. 

7. Parametric analysis 

Time and cost limitations as well as the limited access to appropriate equipment are generally the 

main obstacles in laboratory studies. In most cases, investigating the effect of each variable on 

the test results over a wide range of cases requires fabricating several specimens which are time-

consuming and expensive. One of the advantages of modeling is to employ the developed 

models for parametric studies and evaluating the effect of each input parameter on the model 

output. As mentioned before, in this study the input parameters are WDC, DMR, CSFAR, 

confining stress (3), and deviator stress (d). 

In this study, by using the optimal GPR model, the effect of interaction between WDC and 

DMR, the interaction between DMR and CSFAR, the interaction between WDC and CSFAR, 

and the interaction between 3 and d on the resilient modulus of the stabilized base materials 

have been evaluated. For this purpose, the desired parameter was changed between its minimum 

value and its maximum value, and other parameters were considered equal to the mean values, 

and then the resilient modulus was determined according to the change of the desired parameter 

based on the optimal GPR Model. 
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Fig. 7. The parametric analysis of the effect of the input variables on the resilient modulus. 

As evident, the resilient modulus dramatically increases as the DMR increases. While the 

increase in W-D cycles and CSFAR slightly decrease and increase the resilient modulus, 

respectively. The increase in the confining and deviator stress leads to the increase in the resilient 

modulus and it can be seen that changes in the deviant stress have more effect on the resilient 

modulus than the restrictive stress. The interaction of confining and deviator stress shows that 

increasing these two values increases the resilient modulus and it can be seen that the changes of 

deviator stress have a greater effect on the resilient modulus than the confining stress. 

8. Conclusion 

In this study, the GPR modeling method was used to predict the resilient modulus of the 

stabilized base materials. The results of this research can be summarized as follows: 

1- With respect to the values of R
2
 and RMSE, model “A” with five inputs and values of R

2
 

and RMSE respectively equal to 0.998 and 85.574 for the training set and 0.985 and 

(a) (b)

(c) (d)
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242.624 for the testing set has the best performance and model “D” with three inputs and 

values of R
2
 and RMSE respectively equal to 0.922 and 513.173 for training set and 0.912 

and 576.968 for testing set has the lowest performance. 

2- It was found that omitting d variables in model “B” lead to more reduction of model 

accuracy compared to omitting 3 in model “C” which shows a greater dependence of the 

resilient modulus of the stabilized base materials to the deviator stress compared to the 

confining stress. 

3- The results of sensitivity analysis show that the degree of importance of different input 

parameters on the resilient modulus is as DMR> CSAFR> σd> σ3> WDC. 

4- The difference of degree of sensitivity (Ri) between the predicted and measured values of 

the resilient modulus for WDC, CSAFR, DMR, σ3, and σd parameters are 0.31%, 0.18%, 

0.19%, 0.22%, and 0.22% respectively. 

5- Results of the parametric analysis shows that the increase in DMR leads to an increase in 

the resilient modulus and the increase in the W-D cycles and CSFAR slightly decreases 

and increases the resilient modulus, respectively. It can also be seen that increasing the 

deviator stress and the confining stress will increase the resilient modulus of the stabilized 

base materials. 
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