
Journal of Soft Computing in Civil Engineering 6-4 (2022) 83-94 

How to cite this article: Phani Kumar V, Sudharani C. Prediction of safe bearing capacity with adaptive neuro-fuzzy inference 

system of fine-grained soils. J Soft Comput Civ Eng 2022;6(4):83–94. https://doi.org/10.22115/scce.2022.345362.1457 

2588-2872/ © 2022 The Authors. Published by Pouyan Press. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).  
 

 

Contents lists available at SCCE 

 

Journal of Soft Computing in Civil Engineering 

Journal homepage: www.jsoftcivil.com 

Prediction of Safe Bearing Capacity with Adaptive Neuro-Fuzzy 

Inference System of Fine-Grained Soils 

Vaddi Phani Kumar
1*

, Ch. Sudharani
2 

1. Research Scholar, Sri Venkateswara University College of Engineering, Tirupati, Andhra Pradesh, India 

2. Professor, Sri Venkateswara University College of Engineering, Tirupati, Andhra Pradesh, India 

Corresponding author: phani611@gmail.com 

 https://doi.org/10.22115/SCCE.2022.345362.1457 

ARTICLE INFO 
 

ABSTRACT 

Article history: 

Received: 03 June 2022 

Revised: 27 July 2022 

Accepted: 31 August 2022 

 

A lot of fieldwork is required to assess the safe bearing 

capacity (SBC) of fine-grained soil using IS Code, along 

with performing shear parameters to determine angle of 

internal friction and cohesion. Standard penetration tests are 

conducted in order to obtain N-value of soil, and evaluating 

atterberg limits and dry soil density. Here, it is proposed that 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is adopted 

to predict fine-grained soil's safe bearing capacity. For this, 

input parameters considered for ANFIS system are depth of 

foundation, dry density, liquid limit, plasticity index, 

Percentage fine fraction, width/Length ratio, and N-Value. A 

wide range of safe bearing capacity data from various site 

locations was investigated and trained on. Four different 

models were developed with variations in membership 

function for each input, all the models are used with a 

gaussbell type of membership function. Among the four, the 

third model is predicting the nearest value with an R
2
 of 

0.9738. Based on the conclusion the ANFIS model is the 

most reliable technique for assessing the SBC of soils. 

Investigation of soil properties and estimation of safe bearing 

capacity will be having more difficulty with respect to 

skilled person to investigate and time required is also more 

as dimension of the footing changes SBC also varies. So, to 

overcome this type of problems my model will give you a 

best suitable and reliable SBC. 
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1. Introduction 

Essentially, soil's bearing capacity is its ability to bear the weight of its surroundings. Soil 

carrying capacity refers to the largest possible average contact pressure between a foundation and 

the soil, which should not lead to soil shear failure. Soil or rock's load-carrying capacity is the 

greatest weight per unit area that the material can hold without collapsing or displacing. 

Geotechnical engineers have been working on determining the bearing capacity of soils for the 

last several years [1,2]. 

Research efforts have been concentrated on studying the properties and behaviors of soil [3,4], 

equations & relations [5]. The safe bearing capacity of fine-grained soil is conventionally 

estimated by means of Terzaghi method (1943) and soil carrying capacity for foundation shear 

failure was frequently predicted by many people. Several researchers have carried out a variety 

of analytical studies, including finite element and numerical limit, as well as laboratory studies, 

including axial, eccentric, experimental model tests, and inclined loading. These studies have 

been used to draw various conclusions about the phenomenon being investigated [6–8]. [9] have 

used an explicit finite-difference approach for estimating the ultimate bearing capacity of ridged 

circular footings. This will help designers make the right theoretical decisions. Using explicit 

finite-difference coding, It was expected that ridged circular footings, when subjected to axial 

static stress, would also have an ultimate bearing capacity [9]. Analysis of several safe bearing 

capacities, load, shape, depth, and surface tilt equations was conducted by [10] to determine 

which was most reliable. 

It is common to use intelligent systems in order to obtain patterns for the existing data or else to 

simulate complicated relationships with nonlinearity among inputs and output. For projects 

involving soil engineering, soft computing systems are an excellent tool for reducing uncertainty 

[11]. The fuzzy logic model, artificial Neural Network, and adaptive neuro-fuzzy inference 

system are examples of soft computing techniques that have been utilised to predict different 

geotechnical engineering challenges. There are a variety of geotechnical engineering issues that 

can be addressed, including the ultimate bearing capacity of piles [12], Geosynthetic soil 

interface at cohesive stresses was predicted in the laboratory and the peaks were analyzed, [13] 

settlement of ground is predicted [14], the bearing pressure of shallow foundations [15]. (UCS), 

and ANN & ANFIS models have been used in the recent past to predict these issues. The ANN 

model has limitations like poor generalising performance, overfitting difficulties, arriving at a 

local minimum, sluggish convergence speed, and the inability to characterise any link among the 

model's input and output due to its "black box" nature. These issues all contribute to the model's 

inability to generalise well [16–19]. In addition, there is no dependable method for counting the 

number of hidden layers or the neurons that are included within each layer. Due to the fact that 

the fuzzy logic model has trouble figuring out the fuzzy rules, the fuzzy system cannot be 

trained. The design of ANNs trains the learning parameters of the ANFIS fuzzy inference system 

(FIS) [20–22]. On the other hand, a new and effective artificial intelligence tool based on 

statistical learning theory is the support vector machine (SVM) [23]. Structured risk 

minimization (SRM) is a superior generalization strategy to the empirical risk minimization 

(ERM) concept, since it focuses on the generalization error instead of only decreasing the error 
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on the training data. To reduce training data error, classic neural networks use ERM. Basic goal 

of the SVR is to decrease empirical risk (i.e., mistakes associated with training set) while also 

increases generalization capacity of the model concurrently. In contrast to the ANN and ANFIS 

models, it has the potential to prevent overtraining, as well as the capacity to reach a global 

minimum and higher levels of generalization [24]. The SVR model may also be improved to take 

use of new data as it becomes available. In geotechnical engineering, some examples of the use 

of support vector machines (SVM) include modelling capacity of pile [25], predicting over 

consolidation ratio (OCR) [18], settling of shallow foundation [24], and modelling carbonate 

sands' mechanical properties [24,26]. An empirical model for predicting soil's safe bearing 

capacity has therefore been developed in this study. 

Where multiple variables influence a certain quantity or property, the Adaptive Neuro-Fuzzy 

Inference System can be used. A number of factors can influence the accuracy of parameter 

values in empirical/theoretical equations when they have been assessed through laboratory and 

field studies. Because of the possibility of experimental working errors while predicting the 

bearing capacity using semi-empirical relations, such as from the equations given by Terzaghi 

and Peck, a designer may choose a conservative design, for example, such parameters value is 

dependent on laboratory and field experiments, hence in this work, an effort is made to support 

these relationships. The other purpose of the study is to devise an approach that may be used by 

ANFIS to estimate the permissible load bearing capability. The shear failure criterion is the only 

one used in this investigation to determine the safe bearing capacity. 

The standard penetration test, Dry density, Atterberg limits, and sieve analysis are the tests that 

take the least amount of time and are the most straightforward when it comes to analyzing soils 

from any point even with respect to depth. Researchers have made a great number of attempts to 

anticipate the safe carrying capacity of soils, taking into consideration the difficulties that have 

been outlined above. In this paper safe bearing capacity from different sites is calculated using 

eq-1. A new ANFIS model is proposed for predicting safe bearing capacity from Depth of 

foundation, Dry density, liquid limit, plasticity index, Percentage fine fraction, N-Value and 

width/Length ratio kN/m
3
. 

𝑞𝑛𝑢 = 𝑐𝑁𝑐𝑠𝑐𝑑𝑐 (1) 

Where, 𝑞𝑛𝑢 = 𝑛𝑒𝑡 𝑢𝑙𝑡𝑖𝑚𝑎𝑡𝑒 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 

              C = cohesion 

              𝑁𝑐 = 𝑏𝑒𝑎𝑟𝑖𝑛𝑔 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 

             𝑠𝑐 = 𝑠ℎ𝑎𝑝𝑒 𝑓𝑎𝑐𝑡𝑜𝑟 

             𝑑𝑐 = 𝑑𝑒𝑝𝑡ℎ 𝑓𝑎𝑐𝑡𝑜𝑟 

2. ANFIS working behavior 

Artificial intelligence is increasingly being adopted in engineering applications. The accuracy of 

predicting various qualities and values has been improved through the use of Neuro-Fuzzy 

applications. Matlab's fuzzy logic toolbox is useful for programme analysis, design, and 

simulation. ANFIS is a typical approach in fuzzy systems. ANFIS uses neuro-adaptive learning 
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to teach the Sugeno systems [27–29]. To train the network, membership function parameters are 

adjusted. The ANFIS builds a fuzzy interference system based on the input and output datasets 

that are supplied, and then modifies the system using the backpropagation technique. 

Membership functions were used as a means of facilitating the learning process. Target and 

intended outputs were divided by their squared differences in order to calculate the error. By 

constructing IF-THEN logic, or rules, the purpose of fuzzy logic is to discover the potential 

inputs that might lead to the proposed outcome. In order and parallel, constructed rules are 

computed, which may be subject to modification. Each variable will have a set amount of 

membership functions that will be used to define all terms. Boundaries are well defined in fuzzy 

logic. Using the membership function, input data is transformed into a membership value 

between [0, 1]. The function should be defined from a perspective of efficiency, speed, simplicity 

and convenience. 

The membership functions in Matlab's fuzzy logic toolbox are built right in (Matlab Inc). The 

membership functions 'Trimf' and 'trapmf' are formed using straight lines. The Gaussian 

Distributive Curve (GDC) is used to form two membership functions, a Two-sided Composite of 

two independent GC and a basic Gaussian-Curve (GC), and three parameters describe the 

membership function as generalized bell (gbellmf). The sigmoidal membership function was 

defined in either direction. There are two types of closed-membership functions of the sigmoidal 

function: "p sigmf" and "the modification between two sigmoidal functions, which are sigmoidal 

factors." Membership function 'zmf' has a polynomial curve that opens to the left and an 

asymmetric polynomial curve. In one form of membership function, both ends are zero, but in 

the other type, both ends are free to move either way. 

Initial Fuzzy Inference System (FIS) creation begins with the loading of data and the selection of 

either a Hybrid/Back-Propagation optimization strategy. These optimization methods will be 

used to train the set of data to exclude the training data. Ending the training process occurs when 

tolerance error targets are satisfied or the epoch number reaches maximum. 

The trained FIS is validated by using data sets that are diverse from the training data, such as the 

error plots and modified MFs stated above. 

3. ANFIS Architecture 

It is possible to define the Adaptive Neuro-Fuzzy Inference System as an adaptive system using 

the Sugeno fuzzy model. This makes learning and adjusting the system much simpler. Fig.1 

illustrates the Sugeno model's intelligence theory. As a result, ANFIS modelling is more effective 

and less reliant on master data. Two fuzzy IF-THEN rules, derived from the first order Sugeno 

Fuzzy model, were responsible for the development of the ANFIS architecture. 

Rule I If (s is A1) and (v is B1) then (t1 =X1 s + Y1 v + G1) 

Rule II If (s is A2) and (v is B2) then (t2=X2 s + Y2 v + G2) 

where, s, v - inputs, 

    Ai, Bi - fuzzy datasets, 

    ti - outputs, and 

    Xi, Yi and Gi - design parameters. 
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Fig. 1. Sugeno's 1

st
 -order of fuzzy model that has two inputs and two rules. 

Fig.2 illustrates how the preceding guidelines are implemented; a square denotes an adjustable 

node and a circle, a fixed node. The five layers of the ANFIS architecture are illustrated below. 

For the current, all inputs in layer 1 are fuzzy membership functions that can be modified by the 

user. 

Fixed and labeled with a π indicate that these nodes are multipliers in the second layer. 

Third-layer nodes are labeled N to imply that they play a normalized function in reference to the 

preceding layer's pushing capabilities. 

The nodes can be changed at the fourth layer. In this layer, each node's output is a combination of 

the third layer's output and the first-order polynomial (for a first order Sugeno model). 

In the fifth layer, there is a single fixed node that handles the processing of all incoming signals, 

which is referred to as Ʃ. 

 
Fig. 2. ANFIS architecture. 
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There are two inputs and three 'gbell' membership functions in first-order Sugeno fuzzy model 

(SFM), that generate nine rules. Using an IF-THEN rule, the two possible input values are 

depicted as fuzzy areas in Fig.3. Premise and Consequence characterize the outcome in the fuzzy 

zone, respectively. 

 
Fig. 3. Two-inputs first-order SFM. 

4. Application of ANFIS model for prediction of SBC 

ANFIS is utilised in this work to predict the safe bearing capacity based on the soil's basic 

parameters. Data sets total 2700 are utilized for training, testing, and verification [11,20,30–32]. 

2160 of them are used for training, 402 are taken for checking, and 138 are used for testing, with 

training accounting for the vast majority (80%). Numeric values are used for all input 

parameters. The first parameter used is depth in m while the second parameter takes dry density 

in kN/m
3
, the third parameter considered is Liquid limit in %. The fourth parameter is plasticity 

index in %. The fifth parameter is Fine fraction in %. The sixth parameter is N-value. The last 

parameter is B/L ratio. 

Members of all four models are taken into account from the most realistic alternative, as shown 

in Figures 4 to 7. SBC is considered as an output parameter, which is a single variable with a 

numeric value. Input data are transformed into membership values using a membership function, 
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which depicts a curve. All parameters are utilized in this way because the gbellmf (Generalized 

bell Membership Function) achieves smoothness and is possible to construct membership 

functions with symmetric properties. The fuzzy model is trained using the backpropagation 

optimization approach. Root Mean Square Error (RMSE) [33] and Correlation of Determination 

(R
2
) are used to estimate the performance of all three models. They are characterized in terms of 

mathematics as 

𝑅𝑀𝑆𝐸 = √
∑ (𝐾𝑖 − 𝐾𝑖̅)2𝑛

𝑖=1

𝑛
 

Where,  measured shear modulus is referred to as "Ki.", 

  shear modulus predicted is 𝐾𝑖̅ 

  no. of shear modulus values that have been observed is n 

𝑅2 =
∑ (𝐾𝑖 − 𝑄𝑖)̅̅ ̅̅ 2𝑛

𝑖=1

∑ (𝐾𝑖 − 𝐾𝑖)̅̅ ̅̅ 2𝑛
𝑖=1

 

Where, shear modulus, observed is Ki 

Mean shear modulus, observed is 𝐾𝑖̅ 

shear modulus, predicted is 𝑄𝑖̅ 

 
Fig. 4. MODEL – I. 
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Fig. 5. MODEL – II. 

 
Fig. 6. MODEL – III. 
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Fig. 7. MODEL – IV. 

5. Results and discussions 

As discussed before, 138 datasets were used to test and verify the ANFIS model. The goal of this 

study is to create predictions about the SBC for each dataset, compare those predictions to the 

actual test results for each of the four models that were taken into consideration, and then draw 

conclusions based on those comparisons. Table 1 displays the number of epochs and rules that 

were applied throughout the training process for each model. A fuzzy inference system uses 

seven inputs and just one output in order to make accurate predictions about SBC. The R
2
 and 

RMSE values are shown in Table 2, and Figure 8 depicts a plot of Target vs Output. The 

outcomes of the Target Means estimated and the Output Means Prediction are shown below. 

Model-III offers a more exact forecast than the other three models, and when compared to the 

other models, it delivers the most accurate prediction. 

Table 1 

Properties of Models. 

Sl.No. MODEL 
Membership 

Functions 
Epochs 

MF 

type 
No. of rules 

1 I [3 3 3 3 4 4 4] 1500 gbellmf 5184 

2 II [3 3 3 4 4 5 5] 1500 gbellmf 10800 

3 III [3 3 4 4 5 5 6] 1500 gbellmf 21600 

4 IV [3 4 4 5 5 6 6] 1500 gbellmf 43200 
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Fig. 8. Estimated SBC vs Prediction SBC. 

Table 2 

Results of ANFIS. 
Sl. No. MODEL RMSE R

2 

1. I 6.841 0.6732 

2. II 7.681 0.7849 

3. III 11.808 0.9738 

4. IV 12.426 0.8614 

6. Conclusions 

Four different models were used throughout the construction of the ANFIS model's Models I, II, 

III, and IV. In every single one of these models, the gaussbell type of membership function is 

utilized for the input parameter. The number of membership functions that were chosen for each 

input parameter was allowed to vary. In order to calculate SBC, the following data are used as 

inputs: depth of foundation, dry density, liquid limit, plasticity index, percentage of fine fraction, 

N-Value, and width to length ratio. A total of 2700 datasets were considered for selection and 

were then segmented into 80, 15, and 5 parts for this purpose (Training: Checking: Testing). The 

MODEL-III model is the most accurate of the four models that were taken into consideration; its 

RMSE is 11.808 and its R
2
 value is 0.9738. It has been concluded that the suggested ANFIS is 

sufficiently competent for precisely predicting the expected output making use of ANFIS. 

However, model-III is providing the most accurate results, despite the created model 

having certain limitations, particularly regarding the shape effect, the water table, and inclined 

loads. Only footings with a square or rectangular shape are recommended for use with this model 

since it was designed to accommodate those two shapes. The influence of the water table has not 

yet been taken into consideration while developing the model. Because the fact that the 
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inclination component is eliminated from the model, it is only appropriate for use with vertical 

loads. 
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