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In this research, storey drift has been determined using Deep 

neural networks (DNN Keras). DNN Keras has various 

hyper tuning parameters (hidden layer, drop out layer, 

epochs, batch size and activation function) that make it 

capable to model complex problems. Building height, 

number of bays, number of storeys, time period, storey 

displacement, and storey acceleration were the input 

parameters while storey drift was the output parameter. The 

dataset consists of 288 models, out of 197 were used as 

training data and the remaining 91 were used as test data. 

0.9598 correlation coefficient was observed for DNN Keras 

as compared to 0.8905 by resilient back-propagation neural 

networks (BPNN), indicating that DNN Keras has about 8 

per cent improved efficiency in predicting storey drift. 

Wilcoxon signed-rank test (non-parametric test) was used to 

compare and validate the performance of DNN Keras and 

resilient BPNN algorithms. The positive results of this study 

point to the need for further research into the use of DNN 

Keras in structural and civil engineering. 
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1. Introduction 

Over the last decade, machine learning approaches have become an effective tool to solve 

complex engineering problems. Neural networks, support vector machines, decision trees and 

nature-inspired algorithm-based learning are the most popular machine learning techniques for 

structural and earthquake engineering problems. A brief and extensive literature review on the 

application of machine learning in structural engineering can be found in [1–6]. In precast 

concrete structures, seismic response of the structure is an important parameter that includes 

storey drift, displacement, story acceleration, storey forces and seismic reaction is of greater 

concern to structural engineers. 

Storey drift should be reasonably reliably measured during the seismic design of a precast 

building, as they can be specifically connected to the financial harm and life-safety risks caused 

by seismic events. Storey drift was defined as the relative lateral displacement between two 

successive building floors. To avoid significant damage to structural and non-structural members 

of the building, storey drift should be restricted to particular values. Analysis on estimating drift 

has concentrated primarily on SDOF systems. Two methods (FEMA440 - 2004) are commonly 

used to estimate the maximum response of SDOF systems. The first method is based on the early 

concepts of Veletsos and Newmark [7], who explored the relationship between elastic and 

inelastic systems for displacement and developed the equal-displacement rule. The second 

method is based on the idea of reciprocal linearization. The maximum displacement of the 

inelastic SDOF system is observed by Jacobsen [8] and Iwan [9]. The maximum displacement of 

the SDOF elastic system with stiffness lower than the initial stiffness of the inelastic system and 

damping greater than the inelastic system approximates the SDOF system. The current practice 

(IS 1893. ATC, FEMA440, Eurocode 8) adopts procedures that are based on similar SDOF 

systems to estimate maximum deformations of buildings. 

Under pseudo-static cyclic loads, the behaviour of a full-scale two-story reinforced precast 

concrete structure connected utilising three-way wet joints with poorly designed and detailed 

steel connectors was investigated. Steel connectors failed due to permanent bending mechanisms 

at relatively modest storey drift, with friction/sliding and connection behaviour dominating the 

structure's response [10]. 

Menegon et al. [11] and Seifi et al. [12] studied the behaviour of precast concrete structures in 

seismic regions. Building walls and cores made of precast concrete have become increasingly 

popular over the last 10 to 20 years, both in regions with low seismicities, such as Australia and 

in regions with high seismicities, such as New Zealand. On-site time frames are shorter with 

precast construction, and high quality of construction can be achieved in the precast yard, which 

is more efficient than traditional cast in situ building techniques. To develop new innovative 

precast wall systems, various research studies have been conducted [13,14]. Precast concrete 

structures were evaluated for their in-plane lateral drift behaviour and ductility. 

Machine learning techniques, such as BPNN are used in predicting the structural reliability 

evaluation and seismic response of structure [15]. Deep learning has been used in various civil 
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and structural engineering problems over the last 5 years, and it has been found to perform well 

in contrast to conventional modelling approaches [16,17]. Storey drift of structure erected using 

precast concrete members using deep neural networks was carried out. Input parameters 

consisted of building height, number of bays, number of storey, time period, storey displacement, 

and storey acceleration on the seismic drift of precast concrete structures. 

It was reported in recent years that deep learning was being used to solve civil engineering 

problems with excellent results when compared to existing modelling approaches [18–21]. 

Detailed literature reviews indicate that deep learning has not yet been used to predict storey 

drift. While keeping this in mind, as well as the enhanced performance of deep learning-based 

regression models, this research explores its potential for predicting storey drift in precast 

concrete structures. 

2. Deep learning 

The Neural Network (or the Artificial Neural Network) has the potential to learn from instances. 

ANN is an information retrieval model focused on a biological neuron network. To solve 

problems, this is made up of a large number of highly interconnected computing modules known 

as neurons or nodes. This takes the non-linear direction and processes information in parallel 

across the nodes. A neural network is a dynamic mechanism of adaptation. Adaptive means that 

it can shift the weight of the inputs to change the internal structure [21]. 

A deep neural network (DNN) is based on ANN, but the difference is in the number of layers. An 

ANN has 3 layers i.e input layer, hidden layer and output layer. DNN has also 3 layers that are 

input layer, hidden layers and output layer, but DNN can have n numbers of hidden layers for 

accurate prediction. The input layer is the layer that is connected to the input data and no 

processing is done in the input layer. In the hidden layer, the activation function is used to 

transform and transfer the data to the output layer. The output of the hidden layer activation 

function is transferred to the output layer which is responsible for calculating the predicted 

output. The final layer is called as output layer. 

Each node has its associated weight and bias, weight is a factor inside a neural network that 

converts input data into hidden layers of the network. Each node is a set of inputs, weight and 

bias given by equation 1 [21]. 

y = Wx + b (1) 

Where y is the output, x is the input, W is the weight and b is bias. Without activation function 

ANN model is like a linear regression model, the activation function is a code that gives DNN a 

non-linearity that allows it to understand the complexity of the model. There are a variety of 

activation functions, such as identity, sigmoid, hyperbolic tangent (tanh) and rectified linear unit 

(ReLU). Epochs, batch size and learning rate are the critical hyper tuning parameters to train the 

data set. A deep neural network generally overfits the test data in case of limited training data. To 

avoid the problem of overfitting, the dropout layer can be introduced after the hidden layer in 
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DNN. Dropout is a regularization method that approaches parallel training of many neural 

networks with various architectures. Dropout can be implemented on the hidden layer but this 

should not be used on the output layer. 

Several hyper tuning parameters require computational analysis. These parameters include 

number and nodes of the hidden layer, dropout layer and dropout rate, activation function, 

number of epochs, batch size and optimizer. To implement DNN, Keras [22] was used in 

RStudio [23]. 

3. Methodology for modelling 

288 frame models of building having precast member for various ground floor height, bays 

number, storey displacement, time period, storey acceleration and material properties were 

analysed as shown in table 1.All these parameters were feed in various models based on deep 

learning. A total of 288 were analyzed to understand the effect of all the input parameters on the 

storey drift of structures. A live load of 3 kN/m
2
 and a superimposed dead load of 1 kN/m

2
 was 

considered for analysis. For analysis purpose, ETABS [24] software was used since it is a 

reliable software for structural design and analysis as the same software is used in analyzing the 

iconic Burj khalifa in Dubai [25]. The non–linear ground motion data has been adopted from the 

PEER database. An ensemble of 100 different ground motion data has been used for analytical 

study. These ground motions are combined using Bispec software. In the adopted ground motion 

records, only near-fault data has been adopted to obtain effective variation in the seismic 

response parameters. Figure 1 depicts the 3D modeling and plan of a 12 storey structure having 4 

bays. 

   
Fig. 1. (a) Plan of one of a considered structure; (b) 3d model of one of a considered structure. 
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Table 1 

Input parameters considered in model. 
Model Parameters Parameters Values 

Base Model 

Height of storey (in m) 3 6 9 12 15 18 

Bays (Nos.) 2 3 4 5 

Type of Frame Shear wall with opening Shear wall without opening 

Length of building (in m) 8 12 16 20 

Breadth of building (in m) 8 12 16 20 6 9 12 15 

Height of building (in m) 9 18 27 36 45 54 

Type of Section Without- cracks With- cracks 

Size of column (in mm) 300 x 600 

Size of Beam (in mm) 300  x 450 

Slab Size (in mm) 4000  x 3000  x 150 4000  x 4000  x 150 

Shear Wall thickness (in 

mm) 

200 150 

Grade of Concrete M40 

Ground floor 

height changed 

wrt to base model 

Change in building height 

(in m) 

10 19 28 37 46 55 

Concrete grade 

changed wrt to 

base model 

Grade of Concrete M30 

 

Table 2 

Training and testing data set summary. 

Input 

parameters 

Training Data set Testing Data set 

Min Max Mean Median Std. 

dev. 

Min Max Mean Median Std. 

dev. 

No of storeys 3 18 10.49 12 5.07 3 18 10.52 9 5.28 

No of bays 2 5 3.52 3 1.14 2 5 3.46 4 1.07 

Building 

Height  

9 55 31.81 36 15.24 9 55 31.89 28 15.83 

Time Period  0.24 1.47 0.74 0.71 0.299 0.25 1.54 0.74 0.75 0.306 

Displacement 0.00088 0.07241 0.013 0.011 0.0106 0.0010 0.0477 0.0133 0.0107 0.0105 

Story 

acceleration 

0.040 1.32 0.73 0.72 0.104 0.60 0.85 0.73 0.72 0.054 

 

4. Preparation of data set 

Rtsudio was used on the 70 percent of the 288 models in order to obtain the split data to be used 

for training. In the present study, 197 and 91 random samples were selected to obtain split data to 

be used as training data and testing data respectively. Input parameters were the building height, 

number of bays, no of storey, time period, storey displacement, and storey acceleration. Table 2 

depicts the minimum, maximum, mean, median and standard deviation value obtained for both 

training and testing data set. Mean absolute percentage error (MAPE), root mean square error 

(RMSE) and correlation coefficient (CC) was used with test data to compare the efficiency of 

DNN Keras and resilient BPNN modelling approaches. The hyper-tuning parameters determine 

the efficiency of DNN Keras and resilient BPNN. Trails runs were carried out to find the 

optimum value of hyper-tuning parameters by comparing the RMSE and CC. Table 3 provides 
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the optimum value of hyper-tuning parameters used in the present study. The number of nodes in 

the hidden layer in DNN Keras was obtained using the formula[26] 𝑯𝒏 ≤ 𝟐𝑵 + 𝟏, where Hn is 

the nodes in all hidden layers and N is the input parameters. In the present study, the input 

parameters are 6 and the nodes in the hidden layer are 13. The performance of DNN Keras and 

resilient BPNN algorithms was compared and validated using a non-parametric test (Wilcoxon 

signed-rank test). 

Table 3 

DNN-Keras [22] and resilient BPNN- hyper-tuning parameters optimum value. 
Program Used Hyper-tuning parameters 

DNN-Keras Layer_dense- 3 (6,5,2 nodes), Layer_dropout-3 with dropout rate=0.1, activation function-

"tanh",, optimiser- ‘rmsprop’, epochs-450, Batch_size-9. 

Resilient 

BPNN 

Hidden layer = 1(8 nodes), algorithm = 'rprop+', activation function - "tanh" 

Threshold- 0.01 

 

Table 4 

MAPE, RMSE and CC values with test data. 
Modelling Approach Test Data 

CC RMSE MAPE 

DNN Keras 0.9598 0.00120 0.1385 

Resilient BPNN 0.8905 0.00193 0.4379 

 
Fig. 2. A 6-6-5-2-1 DNN keras model. 

SD.Y 
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5. Results 

Table 4 displays the values of the mean absolute percentage error (MAPE), root mean square 

error (RMSE) and correlation coefficient (CC) obtained with test data using DNN Keras and 

resilient BPNN. Table 4 shows that DNN Keras has better accuracy and efficiency than resilient 

BPNN for CC, RMSE, and MAPE. Trial and error method was used to obtain the optimum value 

of dropout rate, which in this case was observed to be 0.1 that is a hyper-parameter. Results show 

that 6-6-5-2-1 is an optimized DNN network (figure 2). In figure 3, the performance of DNN 

Keras at 450 epochs has been presented in the loss in cross-validation and training dataset. 

Val_loss is the value of cost function for cross-validation data and loss is the value of cost 

function for training data, whereas val_mae is the value of mean absolute error for cross-

validation data and mae is the value of mean absolute error for training data. To avoid 

overfitting, while programming early stops function was used if no improvement in the model 

was found out after 100 epochs. Figure 3 provides the plot between loss, mean absolute error 

(mae) and the number of epochs. Figure 3 also shows that the model is learning as the loss is 

decreasing and accuracy is increasing. The mean absolute error (mae) of 0.0009 was achieved 

with testing data as compare to mae of 0.0012 with training data. Table 4 shows that DNN Keras 

has significantly higher accuracy and efficiency in predicting storey drifts than resilient BPNN. 

DNN Keras has a CC of 0.9598, RMSE of 0.00120 and MAPE of 0.1385 in comparison to 

resilient BPNN which has a CC of 0.8905, RMSE of 0.00193 and MAPE of 0.4379. It is also 

worthwhile to mention that the efficiency in predicting the storey drift is higher in the case of 

DNN Keras as compared to resilient BPNN. Improved efficiency of 8 per cent is observed for 

DNN Keras over resilient BPNN. 

 
Fig. 3. Best performance of DNN keras at 450 epochs for loss and mean square error. 
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Fig. 4. Actual versus predicted storey drift on testing data for DNN Keras. 

 

 
Fig. 5. Actual versus predicted storey drift on testing data for resilient BPNN. 

 

Table 5 

Wilcoxon signed-rank test. 
Algorithm z-value p-value w-value 

DNN Keras vs Resilient 

BPNN 

-5.67 

z Critical two-tail- 

1.9599 

0.0000000071 660 
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Fig. 6. Variation in predicted values of storey drift using DNN Keras and resilient BPNN to the actual 

storey drift. 

The figure 4 and 5 provide the plots between the actual storey drifts versus predicted storey drifts 

using test data of DNN Keras and resilient BPNN algorithms. The figure 4 and 5 shows that 

DNN Keras and resilient BPNN are both good performers for storey drift values in the lower and 

middle ranges. The storey drift predicted by DNN Keras is in good agreement with the actual 

storey drift, as shown in the figure. There is five negative value predicted by resilient BPNN 

program might be considered as a negative of this program. Figure 6 demonstrate the variation of 

actual and predicted storey drift with the number of test data using DNN Keras and resilient 

BPNN programs. 

To investigate the behaviour of DNN Keras with different batch sizes and epoch counts, the 

model that produced the best results with test data was used. To avoid overfitting, while 

programming early stops function was used if no improvement in the model was found out after 

100 epochs. Table 6 provides the variation of RMSE with different values of epochs and batch 

size using test data. The data set performs well with 450 epochs and a batch size of 9, according 

to the results in table 6. The higher value of epochs will increase the computational cost without 

increasing the accuracy of the model. 

DNN Keras model was validated by Wilcoxon signed-rank test as DNN Keras has better 

performance as compared to resilient BPNN with a p-value of 0.0000000071 as presented in 

table 5. The DNN Keras model was used on all data set using the same hyper tuning parameter 

for calculation of CC, RMSE and MAPE on all data set. Table 7 clearly shows that the test data 

and all data set have a better fit than the training data set. The analytical models have been 

validated and practical applicability has been presented by the authors in previously published 

research [27,28]. 
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Table 6 

Variation of RMSE value with varying batch size and number of epochs. 

Number of epochs Batch Size RMSE  

263 1 0.00203 

207 2 0.00166 

370 3 0.00139 

314 4 0.00125 

600 5 0.00211 

157 6 0.00130 

423 7 0.00164 

376 8 0.00123 

450 9 0.00120 

682 10 0.00311 

583 11 0.00131 

 

Table 7 

Testing, training and all data. 
DNN Keras CC RMSE (m) MAPE 

Test data 0.9598 0.00120 0.1385 

Training data 0.9349 0.00191 0.1614 

All data 0.9391 0.00172 0.1542 

 

6. Verification of the proposed method 

This section basically aims in comparison between the analysis results obtained from dynamic 

analysis, proposed method and IS 1893:2016. This is done to verify the accuracy of the proposed 

method to predict the storey drift of precast concrete structures. Efficacy and constraint of the 

proposed method were checked by using a 4 bay-12 storey model. Table 8 shows the comparison 

of the storey drift obtained for IS 1893:2016, dynamic analysis and the proposed method. 

Table 8 

Comparison of IS code method, Dynamic Analysis and proposed method for storey drift. 

Storey Drift 

Dynamic Analysis Proposed Method IS 1893:2016 

0.0056 (%) 0.0052 (%) 0.0082 (%) 

 

Results in table 8 clearly show the accuracy of the proposed method in comparison to the IS 

1893:2016, proposed method has 53 percent more accuracy than IS1893:2016 in predicting the 

storey drift but proposed method has a limitation that it can be used only for buildings up to 5 

bays, 20 m in length, 20 m in breadth and 60 m in height. 
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7. Conclusions 

In this study, DNN Keras and resilient BPNN was used to obtain the storey drift of concrete 

structures with precast members. DNN-Keras produced better results as compared to to resilient 

BPNN for the given data set. DNN Keras has a CC of 0.9598, RMSE of 0.00120 and MAPE of 

0.1385 in comparison to resilient BPNN which has a CC of 0.8905, RMSE of 0.00193 and 

MAPE of 0.4379. The efficiency of DNN Keras in predicting the storey drift of a precast 

building is explored in this paper. DNN Keras has about 8 per cent improved efficiency in 

predicting storey drift over resilient BPNN. From the present study, it is also concluded that 

DNN Keras is a precise and robust modelling technique which may be used in future to solve 

various problems related to civil engineering. The present study uncovered the use of hidden 

layer and drop out layer to create the model, but optimization techniques can also be used for the 

deep neural networks. 
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