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Rear-end collision warning system has a great role to 

enhance driving safety. In this system, some measures are 

used to evaluate the safety and in the case of dangerous, the 

system warns drivers. This system should be executed in 

real-time, to remain enough time to avoid collision with the 

front vehicle. To this end, in this paper, a new system is 

developed by using a random forest classifier to extract 

knowledge about warning and safe situations. This 

knowledge can be extracted from accidents and vehicle 

trajectory data. Since the data of these situations are 

imbalanced, a combination of cost-sensitive learning and 

classification methods was used to improve the sensitivity, 

specificity, and processing time of classification. To evaluate 

the performance of this system, vehicle-trajectory-data of 

100 cars that have been provided by Virginia tech 

transportation institute, are used. The comparison results are 

given in terms of accuracy and processing time. By using 

TOPSIS multi-criteria selection method, it is shown that the 

implemented classifier is better than different classifiers 

including Bayesian network, Naive Bayes, MLP neural 

network, support vector machine, k-nearest neighbor, rule-

based methods and decision tree. The implemented random 

forest gets 88.4% accuracy for detection of the dangerous 

situations and 94.7% for detection of the safe situations. 

Also, the proposed system is more robust compared with the 

perceptual-based and kinematic-based algorithms. 
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1. Introduction 

Road safety is an important subject all over the world. The general parameters influential on road 

accidents are driver, vehicle, road, and environment [1]. According to the recent research studies 

about the accidents’ reasons, human fault affects almost 93% of accidents and it is the main 

reason in 75% of accidents [2]. Using the safety systems installed on vehicles, the rate of 

accidents can be decreased. These safety systems are divided into two groups, passive safety 

systems, and active safety systems [3]. Usually, the passive safety systems including seat-belt 

and airbag are limited and expensive. Currently, active systems like an advanced driver 

assistance system (ADAS) has been followed by different vehicle manufacturers [4]. The main 

purpose of this system is to reduce the driver’s faults by warning dangerous situations. Collision 

warning system as a subsystem of ADAS helps drivers to evaluate non-obvious dangerous 

situations to reduce related human’s faults. 

According to the wide variety of car accidents, NHTSA reported 32.9 % of car accidents as rear-

end collisions [5]. Thus, in the current paper an intelligent and online ADAS is proposed for rear-

end collision warning, see e.g. [6–10] to see the effects of such systems. The processing time of a 

rear-end collision warning is very important in its effects. A poorly timed warning may actually 

undermine driver safety [11]. Too soon or too frequent alarms (false alarms) bother driver and 

too late or missed alarms decrease the effectiveness of the system [12]. As a result, finding a 

balance between opportune alarming (not too soon, not too late) and detecting dangerous 

situations are important for developing a useful system and they are considered in this paper. 

Following [13–15] and [16], we have classified the existing algorithms for rear-end collision 

warnings into two groups including perceptual-based and kinematic-based. In the former, there 

are some criteria to evaluate driver performance. For each criterion, there is a threshold value 

and when the value of criterion is less than that threshold, warning will be issued. Time-to-

collision (TTC) [17] and time-gap (TG) [18] are two criteria for analyzing the performance of a 

driver who is following a preceding vehicle [19]. A variety of existing studies have attempted to 

identify rear-end collision situations using time-to-collision, time-gap or both of them. In [20] 

and in Chapter 1 of [21], two warning distances between vehicles based on a critical threshold 

for TTC were defined. They have been referred to as Honda algorithm and Hirst and Graham 

algorithm. The authors of [22] and [23] proposed a vision based forward collision warning by 

using TTC and a possible collision course to trigger a warning. TTC was used in [24] to judge 

collision threat and to estimate the potential effectiveness of a forward collision avoidance 

system with a forward-collision warning system, a brake assist, and autonomous braking 

functionality. In [25], a methodology was proposed to estimate rear-end crash probability based 

on an exponential decay function using TTC. The authors of [26] used a non-dimensional 

warning index and TTC for determining driving situations and the main idea of this system is to 

maintain a specified TG between vehicles. In [27], a fuzzy rear-end collision warning system 

was developed using TTC and TG in order to warn a driver of a possible collision. 

On the other hand, the systems based on the kinematic information of two vehicles, take pre-

determined driver’s reaction time and maximum deceleration rate to calculate safe distance. The 
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safe distance which is calculated differently is taken as a critical threshold and when the distance 

between two vehicles is less than this threshold, the system warns. In the researches of [28,29] 

and [12], three warning distances were calculated between vehicles based on different scenarios. 

The constructed algorithms were entitled as "stop distance algorithm", "Mazda algorithm" and 

"PATH algorithm". A vision-based ADAS with forward-collision warning function was also 

developed in [30] applying a headway distance estimation model to detect the potential forward 

collision. The concept of the forward-collision warning based on distance was also proposed in 

[31]. In [32], a rear-end collision risk index was extended using safety distance and then a fuzzy-

clustering algorithm was applied to identify the rear-end collision risk levels. 

To summarize the scientific gaps of the previous algorithms, one can note that the accuracy of 

the detection of the dangerous and the safe situations was not acceptable because of using some 

constants and pre-defined values for parameters and threshold values. Really, a lot of researches 

on rear-end collisions detection and alarming exist, but there is not enough attention to extracting 

the knowledge about the warning and safe situations. Such knowledge can be extracted from 

accidents and vehicle trajectory data. Data mining algorithms can be used to extract patterns 

from vehicle trajectory data to define the threshold values for parameters and to find a useful 

criterion adaptable to reality. This is the most important contribution of this paper to use data 

mining to enhance the rear-end collision warning system. 

Secondly, the data of collision warning is imbalanced and the usual classification techniques 

cannot provide reasonable results [33]. 

Thirdly, the existing techniques consider the fixed values as the thresholds to split the warning 

and the safe classes, but these thresholds should be adapted with the problem. 

To cover, these gaps, this paper proposes a new classification system by considering the random 

forest as the classifier together a cost-sensitive learning mechanism [34,35] to improve the 

results. The structure of the paper is as follows. The proposed methodology for the rear-end 

collision warning system is presented in the next section. Some details are dedicated to 

optimizing the classification of movement situations into dangerous and safe classes. Section 3 

presents the evaluation of the proposed methodology. The final section ends the paper with a 

brief conclusion. 

2. Rear-end collision warning system 

The vehicles continuously interact with the other vehicles to realize car-following and lane-

changing, etc. When these interactions are not stable, collision possibly happens. Therefore it is 

possible to evaluate the potential of collision with analyzing the vehicle’s motion and unsafe 

situations[24] . Data mining techniques are appropriate tools to detect warning situations based 

on the vehicle's trajectory data. These methods are used to analyze a large volume of data and to 

extract patterns and rules to extract accident knowledge [36]. Among data mining techniques, 

classification algorithms are the most famous techniques for knowledge extraction and they are 

considered in the current paper to detect warning situations for rear-end collisions and safe 
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situations. In our study, 100 car’s database is considered for constructing and testing algorithms 

[37]. This dataset includes 100 sets of naturalistic cars’ trajectories that were conducted in the 

Northern Virginia / Washington, D.C. area over a 2 year period. To collect the data, no special 

instructions were given to drivers in the absence of the experimenters. The vehicles were 

instrumented with different sensors containing the forward and rearward radar, lateral and 

longitudinal accelerometers, gyro, GPS, access to the vehicle CAN, and five channels of 

compressed digital video. Collection rates for the various sensors ranged from 1Hz to 10Hz. This 

dataset contains approximately 2,000,000 vehicle miles and 43,000 hours of driving data. 

Detailed video analysis has been compiled for 68 crashes and 760 near-crashes. See [37] for 

more details. To classify the situations, we follow the steps given in Figure 1. The details of the 

modules will be discussed in the next subsections. 

Data 
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Evaluation of 

Algorithms

Optimal 

Classifier

Training 

Data

Validation 

Data

Knowledge 

Base

Predicting 
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situation is 

warning or safe

Classification 

Algorithms

 
Fig. 1. The structure of the proposed rear-end collision warning system. 

2.1. Cost-sensitive learning module 

Usually, a cost-sensitive learning method is used on databases with imbalanced class distribution 

[34,35,38]. In cost-sensitive learning, the class with fewer elements is considered as a positive 

class and the other with more elements is taken as a negative class. Often misclassification of 

actual positive classes that are predicted as a negative class, is greater than the misclassification 

of actual negative classes that are predicted as positive class [39]. The cost of classification can 

be calculated with a confusion matrix given in Table 1. 

Table 1 
Confusion/Cost matrix for a two-class problem. 

 Positive prediction Negative prediction 

Positive class True Positive (TP) False Negative (FN) 

Negative class False Positive (FP) True Negative (TN) 
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In the database which is used for classification, a cost-sensitive learning model is used, because 

the amount of data for safe situations is 5 times more than the warning situations. The cost 

matrix is demonstrated in Table 2. 

Table 2 
Confusion/Cost matrix for warning and safe situations problem. 

 Warning prediction Safe prediction 

Warning class 0 5 

Safe class 1 0 

 

2.2. Classification algorithms module 

All classification methods can be used to find a relation between input and output properties. In 

the proposed rear-end collision warning system, we implement a random forest classifier which 

is an ensemble classifier including several unpruned trees. Each tree is independently built based 

on bootstrap samples of training dataset and the best split at each node is calculated within a 

randomly selected subset of descriptors. After trees are grown, predictions for test data are made 

by the majority voting of ensemble tees. For more information about this classifier, one can refer 

[40–42]. In the next section, it is shown that this algorithm is preferable on other classifiers for 

the proposed warning system. For this aim, classification algorithms in Weka are called. Details 

of some examined classification methods are given as follows: 

 Bayesian network: It is a directed acyclic graph (DAG) that illustrates a factorization of a 

joint probability distribution (JPD). Given a sufficiently large dataset, the Bayesian 

network can learn by structural learning and parameter learning. More details can be found 

in[43]. 

 Naïve Bayes: It is a simple probabilistic method that assumes class conditional 

independence. This classifier predicts the class with the highest posterior probability which 

is calculated by Bayes theorem. For more study, see [44]. 

 Multi-layer perceptron: It is a feed-forward neural network with one or multiple hidden 

layers including different numbers of neurons. The best algorithm for tuning the weights in 

this network is the backpropagation algorithm [45,46]. 

 Support Vector Machine: It uses a sequential optimization algorithm to find an optimal 

hyperplane that correctly classifies data points by separating the points of two classes as 

much as possible [47]. 

 K-nearest neighbor: Among different methods of supervised learning, the nearest neighbor 

has the highest efficiency because there is no preliminary assumption about training data 

distribution. For details, see [48]. 

 JRip rule-based (RIPPER1): It is a rule-based method in which there is a set of rules and if 

a sample has the properties of one of the rules, that sample is a member of rule’s class 

otherwise it would not be counted as a rule’s class. The RIPPER algorithm is a two stages 

algorithm to reduce errors by iteratively pruning the design space and extracting the 

knowledge of rules. For more research, see [49]. 

                                                 
1
 Repeated Incremental Pruning to Produce Error Reduction 
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 C4.5 decision tree: It constructs a decision tree in a top-down manner with a divide and 

conquer strategy. The construction begins by evaluating each attribute using a criterion 

known as the information gain ratio to determine the best attribute for classifying the 

training samples. This attribute is chosen for the root node of the tree. Then the decision 

tree splits the data into subsets according to the value of the chosen attribute, and the 

process repeats for each child. Details of C4.5 have been given in [50,51]. 

2.3. Evaluation measures 

To evaluate the results of the different classifiers, the data set is divided into training data set and 

validation data. Accuracy criterion (Eq. (1)), sensitivity criterion (Eq. (2)), specificity criterion 

(Eq. (3)) and also processing time of building classifier model and classifying validation data are 

used to compare the results in this paper. They are usually used in machine learning and data 

mining procedures, see e.g., [36]. 
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Moreover to evaluate the different methods in the proposed system, the properties of data 

samples are used for the data mining process. These properties include the follower vehicle's 

speed, the relative distance between two vehicles (follower and leader vehicles), the relative 

speed between two vehicles, time to collision and the time gap. The time-to-collision (TCC) is 

the time interval between two vehicles colliding together without changing the movement 

direction and speed. TTC is calculated by Eq. (4). 
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In addition, based on Eq. (5), the time gap (TG) is the time interval between the follower and the 

leader vehicles without any change in the situations. 
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3. Experimental results 

3.1. The experimental data 

In this section, we have used 100 car's database from Virginia tech transportation institute 

[37,52] to examine the data of vehicles trajectory. This database includes information about 68 

crashes and 760 near-crashes. In these near-crashes, a fast movement such as braking or lane 

changing avoids an accident. To use crashes' data, it is possible to use reinforcement learning. In 

reinforcement learning, the behaviors aligned with final goals will be rewarded and the other 
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behavior farther from the final goal will be penalized. For the cases that the driver's reaction is 

lane changing, the other lane properties should be taken into account to analyze the risky 

behavior. However, such data are not given in 100 car’s database. So in the experiment of the 

current paper, we use the near-crashes data as the rear-end collisions where a driver's reaction is 

braking. After such preprocess on 100 car’s database, we have obtained 39938 data samples. The 

properties of these samples are used for the data mining process in the proposed system as 

mentioned in Subsection 2.3. 

Moreover, to install supervised learning methods, the following steps are repeated: 

1. The sample data are divided into two classes: warning (dangerous) class or safe class. 

2. Each near-crashes’ data includes 30 seconds trajectory before the event, the event and 10 

seconds trajectory after the event. Event means the time interval between leader vehicle's 

starting to stop, therefore rear-end collision starts to happen, until when the follower’s 

driver does some fast actions like braking to avoid colliding the leader vehicle. 

3. Obviously, before and after the event, there is not necessary to warn, however, the warning 

is necessary during the event. So, the warning level is considered as zero or one. Zero is 

assigned to all time-interval with 30 seconds before the event and 10 seconds after the 

event. One is also assigned to the time interval of the event. 

3.2. The selection methodology for classifiers 

To tune up the classifiers and to compare the results of different classifiers, the dataset is divided 

into a training dataset and a validation dataset to create and to validate the models, respectively. 

In this study, to guarantee independence judge between the results and the data, three scenarios 

are considered with three random selection with 65%, 70% and 80% of the total data. The 

remaining data is used as validation data. Then to select the best classifier for each scenario, 

based on the assigned weights to all criteria, it is possible to use TOPSIS technique[53], which is 

a famous method for solving multi-criteria decision making problems. To assign weights to the 

different criteria, there are different cases. In this study, the following 4 assumptions on the 

weights are considered: 

 Assumption 1: All three criteria have the same weight and importance, 

 Assumption 2: The specificity and sensitivity are important and have the same weights, 

 Assumption 3: All three criteria are important but specificity has greater weight than 

sensitivity and sensitivity hast greater weight than processing time, 

 Assumption 4: All three criteria are important but sensitivity has greater weight than 

specificity and specificity has greater weight than processing time. 

3.3. Experiment results on multi-layer neural network 

An artificial neural network with a single hidden layer can be used to approximate every non-

linear function by a pre-determined precision degree [54], however, the number of neurons in the 

hidden layer is not easy to obtain. In this study, to obtain a sufficient number of neurons in the 

hidden layer, a trial-and-error method was used and the performances were compared. In what 
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follows, the different numbers (5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80) are 

compared.  Figure 2 shows the simulation results for the three-layer perceptron. Obviously, the 

highest accuracy and specificity of the first scenario happen for a neural network with 75 

neurons in the hidden layer and the highest sensitivity occurs for a network with 60 neurons in 

hidden layer. For the second scenario, the highest accuracy and specificity happen for a network 

with 40 neurons in the hidden layer and the highest sensitivity occurs for 35 neurons. In the third 

scenario, the highest accuracy and specificity happen with 15 neurons in the hidden layer and the 

highest sensitivity is for 25 neurons. In addition, Figure 3 compares the processing time for three 

scenarios in which the lowest processing time happens for 5 neurons. 

 
Fig. 2. Accuracy, sensitivity and specificity of three layer perceptron with different hidden neurons. 

 
Fig. 3. Processing Time of three layer perceptron with different hidden neurons. 
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In the presented cases, for each scenario, there is a decision matrix including 16 alternatives and 

3 different criteria. Alternatives are the number of hidden neurons and the criteria are the 

sensitivity, the specificity and the processing time. Accuracy is not taken as a criterion into 

account because it is a combination of sensitivity and specificity. The decision matrix values can 

be extracted from Figure 2 and Figure 3. For all of the assumptions, the weights of criteria are 

given in Table 3. 

Table 3 
Weight matrix for different criteria for the considered assumptions and the best number of neurons in the 

hidden layer. 

Assumptions 

Index 
Sensitivity Specificity 

Processing 

Time 

Third 

Scenario 

Second 

Scenario 

First 

Scenario 

1 
3

1

 3

1

 3

1

 

5 

neurons 

10 

neurons 

5 

neurons 

2 
2

1

 2

1

 
0 

70 

neurons 

45 

neurons 

20 

neurons 

3 
6

2

 6

3

 6

1

 

5 

neurons 

10 

neurons 

10 

neurons 

4 
6

3

 6

2

 6

1

 

5 

neurons 

10 

neurons 

5 

neurons 

 

Applying TOPSIS method for all of the mentioned assumptions shows that the best number of 

neurons of the hidden layer of the corresponding neural networks is different. See0including the 

best number of hidden neurons based on the presented experiments. 

3.4. Experiment results on k-nearest neighbor method 

In the k-nearest neighbor method, it is possible to find the best k to find reasonable results. To 

this aim, we simulate this classifier for different k and for the previously mentioned three 

different scenarios. Then, for each scenario, the best value of k has been obtained. The weights of 

criteria are similarly defined based on the assumptions given in Table 3. Figure 4 shows the 

simulation results for the k-nearest neighbor. Obviously, in all three scenarios, the greatest 

accuracy and specificity are obtained for k=1 and the maximum sensitivity is fetched for k=5. 

Thus as much as k increases, the accuracy, and the specificity decreases and the sensitivity 

increases. In Figure 5 the processing times of all different k-nearest neighbor methods for all of 

the scenarios and different k are illustrated. As one can note that there is not a great difference 

between these experiments in terms of processing times. 
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Fig. 4. Accuracy, sensitivity and specificity of k-nearest neighbor classifier with different k. 

 
Fig. 5. Processing time of k-nearest neighbor classifier with different k 

By using TOPSIS method, the best k for all scenarios is given in Table 4 for different 

assumptions. 

Table 4 

The best k for k-nearest neighbor method. 
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3.5. Experimental results on a great range of the classifiers 

To compare different classification methods for all three scenarios based on the functional 

criteria and the assigned weights, in what follows the tuned up multi-layer perceptron and k-

nearest neighbor are considered for all of the scenarios and weighting assumptions. 

Figure 6 presents the accuracy, sensitivity, and specificity of classification methods. Figure 7 

displays the processing times of classification methods. As it is shown in the figures, the highest 

accuracy, sensitivity, and specificity are obtained first for k-nearest neighbor and then for the 

random forest. High processing time is one of the drawbacks of k-nearest neighbor method, 

while processing time of random forest is strongly less than the k-nearest neighbor method. 

 
Fig. 6. Comparison between accuracy, sensitivity and specificity of classifiers. 

 
Fig. 7. Comparison between processing time of classifiers. 
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2nd Scenario: Specificity 0.803 0.52 0.72 0.683 0.946 0.835 0.916 0.946
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3rd Scenario: Sensitivity 0.746 0.779 0.719 0.702 0.92 0.865 0.866 0.884

3rd Scenario: Specificity 0.813 0.56 0.807 0.682 0.954 0.837 0.923 0.947
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By using TOPSIS, it is possible to select the most effective classification method for each 

scenario. The values of the decision matrix are given in Figure 6 and Figure 7. 

As it is displayed in Table 5, using the first assumption on weights, in all three scenarios, the 

random forest appears to be the best method for classification. The random forest in the third 

scenario has the highest sensitivity, specificity, and accuracy, and a reasonable processing time. 

Really, the random forest with 80% training data (third scenario) can be selected as the most 

effective classifier method to detect the warning and safe situations for rear-end collisions. Its 

accuracy, the detection rates for the warning situations and the safe situations are 93.6%, 88.4 % 

and 94.7 %, respectively. 

Table 5 
Effective classifiers for different scenarios under various assumptions. 

Third Scenario Second Scenario First Scenario 

Random Forest Random Forest Random Forest Assumption 1 

2-Nearest Neighbor 2-Nearest Neighbor 2-Nearest Neighbor Assumption 2 

Random Forest Random Forest Random Forest Assumption 3 

Random Forest Random Forest Random Forest Assumption 4 

 

3.6. Knowledge extraction from the proposed classifier 

The proposed random forest includes a set of decision trees. Traversing any decision tree from 

the root to leaves provides some controlling rules. In the proposed random forest, since the rules 

are extracted from decision tree, the parameters' thresholds and indicator’s thresholds are 

different and they will be initialized according to the other parameters. Some of the obtained 

rules are as the following: 

 If "Speed<=73 km/h" & "DeltaX[4.7,8.6] m" & "DeltaV[-13.5,-3.2] m/s" & 

"TimeGap<=1.5 s " & "TimeToCollision<=2.8 s" , Then "Warning with 

frequency=(320.26, 24.5)" 

 If "Speed[69,88] km/h " & "DeltaX[48,69] m" & "TimeGap[2.3,3.1] s" & 

"TimeToCollision>5.25 s" Then "Safe with frequency 66.92" 

Based on the used data, the first rule demonstrates that when the speed of follower vehicle is less 

than 73 km/h, the distance of leader vehicle from follower one is between 4.7 m and 8.6 m, the 

relative speed of leader vehicle from follower one is between -13.5 m/s and -3.2 m/s, the time 

gap is less than 1.5 s and the time to collision is less than 2.8 s, the status is warning. This rule is 

supported by 320.26 samples (pattern's weight) in the corresponding dataset where for 24.5 of 

samples (pattern's weight) the conclusion is not valid (not correctly predicted). In addition, the 

second rule shows when the speed of follower vehicle is between 69 km/h and 88 km/h, the 

distance of two vehicles is between 48 m and 69 m, the time gap belongs to [2.3,3.1] seconds and 

the time to collision is larger than 5.25, the status is safe. 
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3.7. Experimental results on the generalization capability 

As it is previously mentioned, in this experiment, the near-crashes’ data of rear-end collisions 

were considered where the driver’s reaction is braking. Now, the generalization capabilities of 

the proposed system over data of crashes and data of the lane-changing are presented. Figure 8 

shows the results of the generalization capability of the proposed system. 

 

Fig. 8. Generalization capability of proposed system on two datasets about lane-changing and crash. 

3.8. Comparison between the proposed system and perceptual-based systems 

The most popular criteria which are used for evaluation of the safe and the warning situations are 

the time-to-collision and time-gap. Moreover, the time-to-collision has been used in “Honda” 

and “Hirst and Graham” algorithms in the category of perceptual-based systems. If the values of 

these criteria are equal or less than their threshold values, the situation is called a warning, 

otherwise, it is called safe. When the relative distance of two vehicles is less than or equal to 

warning distance which is calculated by “Honda” and “Hirst and Graham” algorithms, the 

situation is a warning, otherwise, it is detected as safe. 

The success of perceptual-based warning systems depends on the appropriate and correct 

selection of threshold values. Due to the critical threshold of time-to-collision, there are some 

research studies to suggest these values, which are gathered in Table 6. 

Table 6 

Previous results about recommended time-to-collision. 

Recommended time-to-collision Source 

2 [27] 

2.2 [20] 

3 Chapter 1 of [21] 

3.5 [55] 

4 [56] 

0.528 

0.639 

0.836 

0.669 

Sensitivity Specificity

lane-changing               Crash 
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In addition to the previously suggested threshold values, we will calculate the threshold value for the 

available vehicle trajectory data. To do this, the pruned decision tree C4.5 was used as a cost-sensitive 

learning model. Now, to find a threshold value for vehicle trajectory data used in this study, the time-to-

collision index for data samples are determined by a pruned C4.5 decision tree. The results of this tree 

using cost-sensitive learning is shown in Figure 9. 

Note that 0 presents the safe situation and 1 refers to the warning situation. Based on Figure 9, using cost-

sensitive learning, the threshold value is 6.5. It is also worth mentioning that the threshold value of the 

time-to-collision criterion means a warning situation for the values between 0 to the threshold value, 

otherwise, it means a safe situation. 

 

Fig. 9. Critical threshold for the time-to-collision using cost-sensitive learning. 

Figure 10 shows the sensitivity and the specificity for the time-to- collision index with different threshold 

values. In addition, it shows the sensitivity and the specificity for “Honda” and “Hirst and Graham” 

algorithms by taking different threshold values for the time-to-collision index. 

 

Fig. 10. Sensitivity and specificity for time to collision, Honda and Hirst&Graham algorithms with 

different critical thresholds. 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
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TTC Sensitivity 0.244 0.265 0.339 0.372 0.404 0.501

TTC Specificity 0.962 0.957 0.933 0.92 0.905 0.846

Honda Sensitivity 0.279 0.279 0.275 0.275 0.277 0.279

Honda Specificity 0.819 0.885 0.874 0.865 0.857 0.819

Hirst&Graham Sensitivity 0.209 0.117 0.137 0.153 0.162 0.209

Hirst&Graham Specificity 0.84 0.941 0.922 0.911 0.899 0.84
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The experimental results show that the systems which work based on time-to-collision criterion are more 

precise for detection of the safe situations but they are weak in detection of the warning situations. So the 

ratio of warning situations detected by these systems is smaller than the other systems. This observation 

was also reported by [57]. 

About the critical threshold of time-gap, there are some researches that suggest the values given in Table 

7. 

Table 7 
Previous results about recommended time-gap. 

Source Recommended time-gap 

[58] 
1.6 s or more (no secondary task distraction) 

2.08 s or more (being distracted by secondary tasks) 

[59] 
1.5-2.49 s (motorway) 

1.66-3.21 s (rural wary) 

[60] 2 s or more 

[61] 

1.1 s (young) 

1.5 s (middle aged) 

2.1 s (older) 

[62] 1.1-1.8 s 

 

To find the critical threshold value for the vehicle's trajectory data, again the time-gap of samples 

is determined by the pruned C4.5 decision tree. The decision tree obtained from cost-sensitive 

learning is shown in Figure 11. In this figure, 0 means a safe situation and 1 represents a 

warming situation. 

 

Fig. 11. Critical threshold for the time-gap using cost-sensitive learning 

As Figure 11 shows, the critical threshold of the time-gap is 0.8. Figure 12 also shows the 

sensitivity and the specificity for the time-gap index with different threshold values. 
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Fig. 12. The sensitivity and the specificity for the time-gap with different critical thresholds. 

As Figure 12 shows, the systems which work based on the time-gap criterion with a threshold 

value greater than 1.5, are more precise for the detection of warning situations but they are weak 

in the detection of safe situations. As a result, the percentage of situations detected as warning by 

these systems is fairly more than other systems. The results are adaptable with the same results in 

[57]. 

Figure 13 shows the comparison results of the proposed classification system with the perceptual 

based systems, regarding the threshold values found from the vehicle's trajectory data. 

 

Fig. 13. Comparison between the proposed system and perceptual-based systems. 

As Figure 13 shows, the specificity and sensitivity of the proposed random forest is different 

from the other perceptual-based algorithms. Really, the perceptual-based algorithms are using 

only one criterion and one constant threshold value for the criterion, therefore they cannot have 

good precision. 
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3.9. Comparison between proposed system and kinematic-based systems 

In kinematic-based systems, the safe distance for the follower vehicle is used to give a warning. 

The most important algorithms for calculating the safe distance of the follower vehicle, are 

MAZDA, stop-distance, and PATH. In vehicles trajectory data that were used in this study, 

1- The distances between vehicles are calculated. 

2- If this distance is less than or equal to the obtained warning distance calculated by Mazda, 

stop-distance and PATH algorithms, the situation is considered as a warning, otherwise it is a 

safe situation. 

By comparing the warning and the safe situations that have been obtained by these steps, with 

the real situations, one can obtain the sensitivity and the specificity for each algorithm based on 

vehicle trajectory data. Figure 14 compares the results of the proposed classification system with 

kinematic-based systems. 

 

Fig. 14. Comparison between the proposed system and kinematic-based systems. 

As Figure 14 shows, there is a huge difference between the proposed system and all of the other 

kinematic-based algorithms regarding the specificity and the sensitivity. Actually, kinematic-

based algorithms cannot result in desirable precision because they used constant and predefined 

values for two parameters 1) reaction time of follower vehicle and 2) maximum decreasing rates 

of vehicle’s speeds. They also assume a fixed decreasing rate of follower vehicle’s speed. A 

bunch of researches has focused on finding the appropriate driver's reaction time and the 

maximum decreasing rate of vehicle’s speed, where different values are considered for these two 

parameters. Therefore, the low precision of these algorithms is a result of these pre-defined and 

constant values. To investigate the effect of the parameters on the performance of the kinematic-

based algorithms, the different parameters of Table 8 are considered for stop-distance algorithm. 

The first, the second and the third series of the parameters have been considered with stop-

distance, MAZDA and PATH algorithms previously. The fourth series are determined by the 

proposed system of the current paper. The sensitivity and the specificity results of this algorithm 

with the parameters of Table 8 are shown in Figure 15. 
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Table 8 
Initializing the parameters of the stop-distance algorithm. 

Driver’s reaction time of 

follower vehicle 

)(sdriver  

Maximum decreasing rate 

of leader vehicle 

)/( 2smal  

Maximum decreasing rate of 

follower vehicle 

)/( 2sma f
 

1.5 5 5 
First Series of 

Parameters 

0.1 8 6 
Second Series of 

Parameters 

0.5 6 6 
Third Series of 

Parameters 

0.8 7 7 
Fourth Series of 

Parameters 

 

 

Fig. 15. Stop-distance algorithm with different series of parameters initialization. 

As Figure 15 shows, any change in the constant parameters in the algorithm results in in a 

remarkable change in sensitivity and specificity. Therefore, kinematic-based systems are not 

robust for the rear-end collision warning. 

3.10. Summarization of the results of the proposed warning system 

Figure 16 shows a comparison between the proposed classification system with kinematic-based 

systems and perceptual-based systems. The threshold values for perceptual-based systems are 

equal to the threshold values obtained from the vehicles trajectory data used in this study. 

Actually, the time-to-collision index is 6.5 and the time-gap index is 0.8. 
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Since the kinematic-based algorithms use the constant and predefined values for the parameters 

and the perceptual-based algorithms use constant threshold values, they cannot result in good 

precision. Using only one criterion in rear-end collision warning systems improves and the others 

are left. Also, the time-to-collision index is weak to detect warning situations and the time-gap 

index bothers the driver with frequent warning alarms. However, the proposed random forest 

outperforms the other systems for detecting warning and safe situations. It provides high 

precision for the following reasons: 

1) Using both of the time-to-collision and the time-gap indices associated with the speed, relative 

speed, relative distance, 

2) Dynamic threshold values instead of the constant threshold values, 

3) Recognizing the warning and safe situations by learning based on the naturalistic data of 

collisions, before event, through the event, and after event. 

 

Fig. 16. Comparison between the proposed classification system with kinematic-based systems and 

perceptual-based systems. 

4. Conclusions 

In this paper, a rear-end collision warning system based on data mining was proposed. Using the 

classification algorithms including Bayesian network, Naïve Bayes, MLP neural network, 

support vector machine, k-nearest neighbor, rule-based methods, decision tree, and random 

forest, it was proved that the random forest got the best classification results. This classifier was 

powerful to recognize the warning and safe classes. Since the data of two classes were 

imbalanced, a combination of cost-sensitive learning and classification methods was used. Using 

sensitivity, specificity, and processing time as selection criteria, TOPSIS method was used to 

prove the preference of the random forest for the rear-end collision warning system. This 

classifier detected warning situations and safe situations with 88.4% and 94.7% accuracies. The 
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proposed rear-end collision warning classifier was compared with the perceptual-based and 

kinematic-based algorithms and it is shown that this system outperforms the previous algorithms. 

The limitation of this study can be summarized as the following: 

1. The presented random forest in some cases suffers from overfitting. 

2. The effect of uncertainty is neglected in the corresponding classification system. 

3. The results should be validated in real driver assistant systems. 

In future works, one can consider these limitations to improve warning systems. Also, one can 

predict the degree of danger instead of the classification of the driving situations for 

implementing rear-end collision warning system. Multiple linear regression and hybrid 

algorithms in the recent literature[63] seem to be applicable to this problem, but more research is 

needed. 
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