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This research is oriented towards exploring mode-wise corridor 

level travel-time estimation using Machine learning techniques 

such as Artificial Neural Network (ANN) and Support Vector 

Machine (SVM). Authors have considered buses (equipped with 

in-vehicle GPS) as the probe vehicles and attempted to calculate 

the travel-time of other modes such as cars along a stretch of 

arterial roads. The proposed study considers various influential 

factors that affect travel time such as road geometry, traffic 

parameters, location information from the GPS receiver and 

other spatiotemporal parameters that affect the travel-time. The 

study used a segment modeling method for segregating the data 

based on identified bus stop locations. A k-fold cross-validation 

technique was used for determining the optimum model 

parameters to be used in the ANN and SVM models. The 

developed models were tested on a study corridor of 59.48 km 

stretch in Mumbai, India. The data for this study were collected 

for a period of five days (Monday-Friday) during the morning 

peak period (from 8.00 am to 11.00 am). Evaluation scores such 

as MAPE (mean absolute percentage error), MAD (mean 

absolute deviation) and RMSE (root mean square error) were 

used for testing the performance of the models. The MAPE 

values for ANN and SVM models are 11.65 and 10.78 

respectively. The developed model is further statistically 

validated using the Kolmogorov-Smirnov test. The results 

obtained from these tests proved that the proposed model is 

statistically valid. 
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1. Introduction 

In India, around 26% of commuters are traveling for about 90 minutes every day. Although the 

average commuting length is 29 minutes in India, a large group of commuters travels more than 

an hour to and from the place of work [1]. Thus, congestion becomes a persistent problem in the 

Indian traffic scenario due to the heterogeneous traffic, lack of discipline, etc. Therefore, 

extracting travel-time information for individual modes separately becomes a tedious task. In this 

study, authors have attempted to use public transport (i.e., buses) as probe vehicles to estimate 

the travel time of the test mode (i.e., car) for an arterial corridor. 

The current study chose public transit (bus transit) as the probe mode; because there will be no 

prevalence of privacy issues in using the public buses. The probe vehicles can be fitted with GPS 

receivers and can be easily tracked without much interference. Also, by using the bus as a probe 

mode, it is possible to acquire a large sample of data as the buses may take multiple runs on the 

arterial corridor in a day. 

It is a well-established fact that the majority of the developed nations like the United States and 

European countries prefer private transport over public transport for better accessibility [2–6]. 

However, the scenario is different in developing nations like India, China, etc., where the 

majority of people rely on public transport than private vehicles [7]. In this study, authors have 

considered public transit (bus) as the ideal choice for probe vehicles. As public transport follow a 

regular pattern such as predefined route and schedule, it is easier to track them and use them as 

probe vehicles [8]. Thus, the bus is chosen as a viable probe mode for model development. 

However, there are some typical shortcomings in public transport travel-time calculations. 

Issues involving public transit travel-time estimation are: 

1) The public transport buses vary in travel speeds and transfer times along different routes [9]. 

2) In certain cases of missing information on the schedule, the average travel speeds are assumed 

for the whole route [10–12]. 

3) In most cases, the transfer waiting times are ignored or assumed as a constant[2,13]. 

4) Very few studies have incorporated scheduled arrival or departure times for travel time 

analysis [9]. 

Some of the existing studies have used buses as the probe vehicles and calculated the travel-time 

for the other modes. They have conducted a correlation analysis between the two modes (bus and 

other modes like a car, two-wheeler, auto, etc) and developed linear regression models. The idea 

of developing non-linear models using machine learning algorithms was limited for mode-wise 

travel-time estimation. Moreover, very limited studies have included dwell time in their models. 

Existing research has reported few simulation-based studies too and real-time based field 

scenario studies were very limited. There are many factors affecting travel-time; some are 

categorized as traffic factors (distance, speed, travel-time, intersection length), road geometry 
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related factors (road width, gradients) and vehicle characteristics (bus stop halt time, passenger 

count). It is very difficult to develop a model that includes all these factors together and very 

limited research is identified where all these factors are considered together. 

The above issues are addressed in this study. This study considers the non-linear relationship 

between the two modes (Car and Bus) using ANN and SVM. Transit buses as probes offer a 

number of advantages: (1) covering a large portion of urban networks; (2) GPS are installed by 

transit operators making the model cost-effective; and (3) privacy concerns can be eliminated by 

installing GPS devices in public transit systems (buses). However, there are certain drawbacks in 

using buses; for instance, the characteristics of the buses differ slightly in comparison to the 

other vehicle characteristics. The difference between the bus travel-time and the average travel 

time of the stream is a random variable and modeling them for other modes is a great challenge. 

Despite these randomness and biases involved in obtaining bus travel-time data, it is considered 

as the best option as a probe vehicle for other vehicles in the traffic stream. This study includes 

the modeling bus characteristics such as bus stop dwell time by considering parameters like 

passenger count and dwell time at individual bus stops. 

The traditional travel-time prediction models in the literature are broadly classified into four 

categories: Historical average models [14–17], Statistical models [18–21], Model-based 

approaches [22–27] and Machine learning models [28–35]. Among these, Machine learning 

models are gaining popularity as these advanced models are well suited for supervised and 

unsupervised learning. This paper involves mode-wise travel-time estimation along an arterial 

corridor using Machine learning techniques (ANN and SVM). 

A suitable study corridor of 59.48 kilometers in length was chosen for this study. In this study 

corridor, there are 19 bus stops; the positional coordinates (latitude and longitude) of the bus 

stops were collected using a hand-held GPS during the field survey. The whole corridor was 

segmented into 18 successive segments based on the 19 successive bus stop locations. The 

proposed travel-time estimation method is developed in two stages. In the first stage, the segment 

travel-time data of bus and car along with other parameters such as segment length, average 

speed at segments, intersection length and signal timings (if the intersection falls within the 

segment), bus stop dwell time, passenger boarding and alighting (if the bus has stopped at the 

bus stop within the segment) were given as inputs to the neural network for training. A back-

propagation algorithm was used to train the model. In the second stage of development, the data 

is firstly classified based on the road geometry (number of lanes and gradients). Thus, the 

complete corridor data was segregated based on lanes -single lane to six lanes; and further, the 

data were categorized using gradients as a binary classifier in the SVM modeling process. The 

classified data along with the other parameters (length of the segments, bus travel-time, bus stop 

details such as halt time and passenger count, intersection length and signal time (red-time) were 

modeled using the SVM. The model parameters chosen for the ANN and SVM models were 

optimized using the k-fold cross-validation technique. For mode-wise travel-time modeling, a 

deeper understanding of the existing prediction models is required. The following sections 

provide a literature review on existing prediction models used for travel-time prediction. 
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2. Literature review on travel-time prediction models 

The travel-time prediction models can be categorized as statistical and simulation models. 

Various statistical models are: Regression models [15,36–39], Time series models [40–44], 

Kalman-filtering models [17,24,32,42,45,46], ANN models [17,30,32,34,47–50], Support Vector 

Machines[31,34,35,50–54], Hybrid models [29,31,51,55,56]. Among these wide ranges of 

prediction models, Machine learning models have gained popularity. Machine learning models 

are capable of performing non-linear modeling; and also these are considered as appropriate 

techniques for handling complex data. It is evident from the extensive literature that ANN is 

being widely used for bus arrival time prediction because of its ability to solve complex 

nonlinear relationships [17,32,34,50]. To account for the nonlinear nature of travel-time data for 

prediction, Kisgyorgy and Rilett [57] suggested modifications such as clustering techniques, 

modular neural network, expanded input nodes, and spectral basis neural network to ANN. Chien 

at al. [42] used integrated adaptive neural network algorithms to identify the prediction error in 

real-time; the bus travel-time prediction is assessed with a microscopic simulation model 

(CORSIM). Ishak and Alecsandru [58] used multiple topologies of the dynamic neural network 

to optimize the short-term travel-time prediction. However, existing studies [28,34,50,53,54] 

claimed that SVM is advantageous over ANN for short-term prediction. Zhong et al. [12] 

suggested assigning higher weights to the important variables can reduce the outliers and 

minimize their impact. Muller et al. [53] suggested that kernel algorithms are more efficient for 

travel-time prediction. However, the application of an accurate prediction methodology for 

mode-wise travel-time prediction is considered as a potential research challenge for researchers. 

The first work attempted in using public transit as probes for estimating the travel time of other 

modes was pioneered by Bae et al.[59]. The study used buses as probes for car travel-time 

estimation. They had used the simple regression and ANN (artificial neural network) methods for 

analysis and found that the ANN method outperformed the simple regression methods. The study 

considered only historical data, and real-time prediction was not attempted. Hall and Vyas[60] 

compared bus probe data with automobile trajectories and the study resulted in analyzing the 

delays between buses and automobiles are interrelated. The analysis revealed that longer delays 

of automobiles also resulted in delays on buses traveling on the same route. Bertini and 

Tantiyanugulchai [61] developed travel-time estimation models between automobiles and buses 

by eliminating bus stop dwelling time. The study by Bertini et al. [62] compared the time-

distance diagrams of different types of bus trajectories with the time-distance diagram of cars. It 

was found that pseudo bus trajectories are able to explain the car travel-time. But the study was 

tested for the morning peak period alone. 

Most of the research from existing literature have used either linear regression modeling or a 

combination of two or more methods for mode-wise travel-time prediction. It can be seen that 

the combination of Kalman filter and ANN were predominantly used in literature. Chakraborthy 

et al. [36] developed simple regression equations that used buses as probes to determine 

automobile travel-time. This method was not successful in predicting travel-time in real-time. 

Padmanabhan et al. [63] estimated the bus travel-time in a linear relationship by incorporating 
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the dwell time into consideration. Kumar et al. [64] on contrary estimated the travel-time for 

different modes with respect to buses used as the probe vehicle where the bus travel-time was 

correlated to other modes by removing the dwell times at bus stops with associated acceleration 

and deceleration. In their study, two methods were proposed: (1) regression analysis and (2) ratio 

method to analyze mode-wise travel-time estimation. Shalaby and Farhan [65] proposed a bus 

travel-time prediction model using the AVL (Automatic Vehicle Location) and APC (Automatic 

Passenger Counter) data to model bus travel-time. The performance of the model was tested 

using a micro-simulation tool - Vissim. A Kalman filter was fitted to check the accuracy of the 

model. Jeong and Rilett [48] studied three different models to predict bus arrival time. Historical 

data-based models, Regression Models, and Artificial Neural Network (ANN) models were used; 

and it was found that ANN models outperformed the other two. In this research, the AVL data 

was used and developed a model considering the dwell time and schedule adherence. Essaway et 

al.[66] used bus travel-time data to estimate general link-travel-times of neighbor (nearby) links. 

In this study, regression models were developed to relate bus travel-times to general link travel-

times. Consequently, the estimated link travel-times were used to calculate the travel-times of 

neighboring links. A summary of existing studies that have used the probe vehicle technique for 

travel-time estimation is detailed in Table 1. From Table 1, it is evident that in general regression 

models, Kalman filters and ANN are commonly used for mode-wise travel-time estimation. Both 

regression models and Kalman filters can perform linear modeling. But, travel-time is a dynamic 

parameter and the factors affecting travel-time are also very complex and dynamic in nature. In 

order to model such complex parameters, developing a non-linear model is required. 

In order to estimate the travel-time in the arterial corridor, an appropriate prediction 

methodology should be considered. The prediction model should be capable of capturing and 

modeling the relationship between various travel-time affecting parameters for mode-wise 

conditions. Machine learning models are gaining popularity as these advanced models are well 

suited for supervised and unsupervised learning. This paper involves mode-wise travel-time 

estimation along an arterial corridor using Machine learning techniques (ANN and SVM). The 

main reasons to choose ANN and SVM for mode-wise travel-time prediction are: 

(1) They are parametric models and suitable for handling complex data; 

(2) These methods are very efficient in modeling and deriving relationships involving bi-

modal (bus and car) parameters. Travel-time is one such parameter that is influenced by 

many other factors such as traffic and roadway characteristics. For example, travel-time 

prediction at intersections is very challenging as the signal timings are mostly dynamic 

and actuated; such multi-level parameter modeling can be efficiently performed using 

machine learning models. 

(3) ANN models have the ability to model complex parameters with repetitive iterations 

using randomized weights and bias values. 

SVMs have the capability of generalizing the data and it is also possible to achieve global 

minima for given training data. Further, ANN and SVM are highly optimized models to 

approximate the results between the actual and predicted values to some extent. 
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Table 1 

Travel-time estimation using probe vehicle technique. 

Author Technique Key Findings 

Bae [67] ANN, regression ANN outperformed regression. 

Hall and Vyas [60]  

Compared the 

trajectories of bus and 

car 

The delays of buses and other modes are inter-linked. 

Delay in automobiles consequently results in the 

delay of buses in a link. 

Cathey and Dailey 

[22] 
Kalman filter 

The study resulted in understanding correlations 

between travel-time obtained from probes and loop 

detectors.  

Tantiyanugulchai and 

Bertini [61] 
Bus and car trajectories  

The travel-times of automobiles and buses can be 

correlated by eliminating bus stop dwelling time. 

Chakraborthy and 

Kikuchi [68] 
Regression 

Proved buses can be used as probe vehicles to 

determine automobile travel-time. 

Jeong and Rilett [69] 

Historical data-based 

models, regression and 

artificial neural network 

The ANN models outperformed Historical and 

Regression models. The ANN model was developed 

considering the dwell time and schedule adherence. 

Bin et al. [54] SVM and ANN 

The study travel time using three input variables, 

results indicated that the SVM model outperformed 

ANN model 

Padmanaban et al. 

[70] 
Kalman filter 

Estimated travel time of buses incorporating the bus 

stop dwell time 

Kieu et al. [71] Regression  The model was suitable for off-peak hours. 

Esawey and Sayed 

[66] 
Regression and Vissim Estimated car travel-time with an error of 17.6%. 

Zhan et al. [72] 

Link travel-time 

estimation using MNL 

model  

The link travel-time is estimated by minimizing the 

error between expected path travel-time and observed 

path travel-time 

Vasantha Kumar and 

Vanajakshi [64] 

Regression and 

correlation ratio method 

Estimated travel time between automobiles and buses 

by eliminating bus stop dwell time with acceleration 

and deceleration at bus stops. 

Zhou et al.[39]  
Regression analysis and 

frequency distribution 

Bus arrival prediction using a smart card system. The 

model calculated bus arrival time incorporating the 

passenger alighting and smart card swiping time  

Arhin and Stinson 

[73] 
Regression analysis 

The number of passengers alighting, passenger 

boarding, number of access approaches and 

signalized intersections was identified as significant 

parameters in bus arrival time estimation 

Sharmila et al. [74] 
Hybrid model using 

SVM-PF 

Used a bi-modal modeling for buses and cars. 

Estimated MAPE Value attained was 9.96 (car) and 

11.24 (bus) 

Kumar et al. [46] 

Time-space 

discretization using 

Kalman-filter 

A speed based traffic stream models was developed 

using the Godunov scheme. Kalman filter was used 

for prediction. Kalman filter method outperformed 

ANN, Regression and Historical average 

Zhang et al. [33] Pattern matching 
The Spatial-temporal traffic patterns are matched for 

multi-step travel-time forecasting.  
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3. Study corridor 

The chosen study corridor for this study consists of busy arterial roads of the Mumbai city 

covering a stretch of 59.48 kilometers. This study corridor is considerably long connecting the 

Jogeshwari –Vikhroli link road (10.6 km), the Western Expressway (25.33 km) and the Eastern 

Expressway (23.55 km) forming a triangular corridor around the IIT Bombay campus. The 

proposed study corridor contains nineteen bus stops and nine signalized intersections. Figure 1.a. 

shows the selected study corridor for this study. The data collection process for this study was 

performed by collecting real-time travel-time data from the field for the two modes- car and bus 

using onboard hand-held GPS (E-Trex 10) as shown in Figure 1.b. The data were collected for 

five days (Monday-Friday) for both the modes bus and car for the morning peak period (from 

8.00 am to 11.00 am). 

 

 

Fig. 1.a. Study corridor. 
Fig. 1.b. Data collection using hand-held 

GPS. 

3.1. Study parameters 

In order to achieve car travel-time using the bus as probes, enormous factors were considered for 

modeling the relationship between them. Out of which certain important parameters were 

grouped into two main categories such as traffic parameters (distance, speed, travel-time, 

intersection length) and road-way characteristics (road width, gradients bus stop halt time, 

passenger count, etc.). Table 2 gives the details of the variables used in this study, and these 

parameters were selected based on literature review and field conditions adaptable to the study 

corridor. 
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Table 2. 

List of variables affecting travel-time and their descriptions 

Variable Description 

Bus stop 

based 

segments 

The study corridor was segmented using the identified bus stop waypoints. 

Distance 
The haversine formula was used to calculate the distance of the links/segments with the 

help of the latitude and longitude positions obtained from the GPS data. 

Car travel-

time 
Segment travel time data for the car was obtained using the GPS enabled in the car. 

Bus travel-

time 

The segment travel-time for the buses was calculated using the handheld GPS device 

during data collection. 

Intersection 

length 

The intersections on the route were marked on the field, and their length was determined 

from the field and compared with the Google distance calculator to check for the 

accuracy of the measured intersection length and stop time for the red cycle at various 

intersections was determined from the field during the night survey conducted. 

Gradients 
Using the elevation information obtained from the GPS data the gradients were 

estimated. 

Lanes 

The number of lanes was identified throughout the corridor during the field study, and it 

was observed that the corridor contains a single lane to six lanes at different stretches of 

the road. The length of the road stretch for every lane was calculated. 

Halt time 
The bus dwell time was manually counted at each time the bus stopped at bus stops 

using hand-held GPS and stopwatch 

Passenger 

Count 

The number of passengers boarding and alighting the bus at every bus stop was also 

noted during the survey. 

 

The above-listed parameters in the table are chosen as the input parameters for both ANN and 

SVM modeling. These parameters are considered as the most important attributes which affect 

corridor level travel-time estimation. 

4. Methodology 

This study is oriented in determining the travel-time of different modes on the arterial corridor 

using buses as the probe vehicles. The idea of mode-wise travel time estimation is very less used 

due to the various complications involved in modeling when considered for two different modes. 

Therefore, this study aims at modeling mode-wise travel time by including all the relevant 

parameters that are influential with respect to the two modes (bus and car). Fig.2 illustrates the 

overall methodological framework of the proposed model. The basic interpretation of the 

proposed study is given as follows: 

( , , , , , , )CTT f BTT IL Gr DWT PC SPV SG  (1) 

Where, 

Desired output: CTT= Car travel time; Inputs for the model: BTT= Bus travel time; IL = 

Intersection length; Gr = Gradients; DWT: Dwell time; PC = Passenger count; SPV = Speed 

variation 
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Fig.2. Overall methodological framework 

4.1. ANN model development 

Although the basic training procedures of ANNs are almost similar, the accuracy of the result is 

greatly dependent on the type of input/output combinations. 

An artificial neural network mathematical model is written as: 

0 0( ) tanh( )i iy f U W W U B b       (2) 

Where y is the output of the neural network model, 

U is a column vector of size p that contains the p inputs of the process; 

Wo is a row vector of size n that contains the weights of the neural network model from the 

hidden layer to the output; 

Wi is a matrix that contains the weights of the neural network model from the inputs to the 

hidden layer. This matrix has n rows and p columns; 

Bi is a column vector of size n that contains the biases from the input to the hidden layer of 

the neural net model; 

SVM ANN 

Input data for modeling 

Normalizing the data and 

perform cross validation 

for optimizing parameters 

Choosing the training 

function and hidden 

neurons 

Dividing the data into 

appropriate training, 

validating and testing 

ratio 

Training the SVR model 

with tuned model 

parameters 

Predicting the travel time 

using trained model 

Using the trained data for 

testing the model 

Predicted outcome: 

Car travel time 
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bo is the bias (scalar) from the hidden layer to the output of the neural net model; and 

tanh is the activation function (in this study hyperbolic tangent function is used). 

The activation functions are needed to introduce the nonlinearity into the network. They 

determine the non-linear relationship between the input and the output layers. There are many 

activation functions used in practice (for example, piecewise linear, Gaussian and sigmoidal 

functions). The sigmoidal functions such as logistic and hyperbolic tangent functions (tan h) are 

the most common choices. Sigmoidal functions such as tanh or arc tan produce both positive and 

negative values tend to yield faster training than the other functions such as logistic functions 

that produce only positive values [75]. Hence, in this study, the tanh function is used to scale 

inputs and targets to (-1, 1). 

The activation function for tanh function is given by the following formula: 

(x)
x x

x x

e e
f

e e









 (3) 

The curve for tanh is very similar to sigmoid with the only real difference lies in output range for 

both activation functions. The tanh function can map input values to a range between -1 and 1. It 

is centered at 0. Like the logistic sigmoid, the tanh function is also sigmoidal (“s”-shaped), but 

instead outputs values that range (-1, 1) Thus strongly negative inputs to the tanh will map to 

negative outputs. Additionally, only zero-valued inputs are mapped to near-zero outputs. 

4.2. Training procedure: back propagation algorithm 

Backpropagation is a powerful algorithm that is used to train the multilayer perceptron and 

obtain the weight of each link. These synaptic weights enable the network to move closer to the 

desired response by frequent iterations. A most common measure of the error in the 

backpropagation is the mean square error. 

2

0

1

1
( )

n

i

i

MSE y y
n 

   (4) 

Where iy  is the predicted value and 0y is the observed value
 

The backpropagation algorithm is the most popular algorithm for transportation use[14] [16]. 

Hence, in this study, authors have resorted to using the backpropagation algorithm. 

4.3. Network architecture 

Existing literature consists of different types of ANN architectures for forecasting purposes. 

However, the multi-layer perceptron has gained popularity among all other structures [75]. In 

this study, an optimal ANN model was developed using different combinations of network 

architecture. The ANN (i,j,k) indicates a network architecture with i, j and k neurons in the input, 

hidden and output layers respectively. The hidden and output layers are responsible for the actual 



82 R.B. Sharmila, N.R. Velaga/ Journal of Soft Computing in Civil Engineering 4-1 (2020) 72-97 

processing in the network. As part of the training process, the weights and bias parameters are 

generated in the hidden layer. The nodes of the hidden layer capture the pattern of the data and 

perform a nonlinear mapping between the input and output variables. The MATLAB tool was 

used for determining the training sets, training ANNs and initializing the values of weights and 

biases using trial and error approach and optimizing for the best fit model. Table 3 and Table 4 

show the weights and biases values of the trained networks. 

Table 3 

Weights of the trained network. 

,

k

i jw  
K 

J 

i 1 2 3 4 5 6 7 8 9 

 

1 

1 1.448 1.683 -1.75 1.56 1.031 -1.76 -1.41 0.4993 2.005 

2 2.139 -1.42 2.209 1.725 -0.11 1.317 -2.27 -0.833 1.822 

 3 1.344 1.905 0.731 -1.72 2.720 1.904 1.13 2.745 1.065 

,

k

i jw  is the weight between j
th 

neuron of i
th
 layer and of the k

th
 neuron of the previous layer 

Table 4 

The bias of the trained network. 

j

iB  J 

i 1 2 3 4 5 6 7 8 9 

1 -2.91 -2.18 1.456 -0.72 0 -0.72 -1.45 2.184 2.912 

2 0.03 -1.5 -0.29 -1.18 0.07 -0.28 -0.12 -0.14 0.006 

j

iB  is the bias of j
th
 neuron of the i

th
 layer 

The weights and bias values were estimated as deliverables of the ANN modeling using the 

following equations: 

1

m

i i i

i

w y x


  (5) 

w  are the weights; i : Lagrange multipliers; ix are the inputs and the bias values are calculated 

as: 

1

1
(y . )

S

i

i

b w x
S 

   (6) 

Where S is the support vectors. 
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4.4. Data modelling using ANN 

In this study, authors are attempting to predict car travel-time using the buses as probe vehicles. 

It is appropriate to segregate the data as segments based on bus stop locations to understand the 

variation between the travel-time of buses and other modes (car). Hence for this study, bus stop 

locations were identified using GPS in the field. The GPS data for cars and buses were 

segmented based on these bus stop locations. There are 19 bus stops within the study corridor; 

which implies that there are 18 segments in total for ANN modeling. The input parameters 

considered for the ANN modeling are (1) length of the segments, bus travel-time, and bus stop 

details such as halt time and passenger count, intersection length and cycle time (red-time). The 

car travel-time is the desired output of the ANN model. These parameters were modeled in ANN 

using MATLAB software. The complete five days of segmented data were used as a training and 

testing data for the ANN model containing the input parameters as described above. The model 

used 80 % of the data for training purposes and the remaining data for testing and validation 

[17,54]. The number of neurons used for the model was 20 (optimized after several iterations). A 

backpropagation algorithm was used for training the model. The number of epochs used for this 

model was 500 (maximum limit obtained in the model). Car travel-time was obtained as the 

predicted outcome of the model. Fig.3. illustrates the details of the ANN algorithm and its 

specifications. 

 

Fig. 3. ANN algorithm and specifications. 

Specifications 

 

Input: [Bus-avg speed, Distance Bus-TT, 

intersection length, bus stop factors, signal 

timing] 

Output: [Car-TT] 

No. Of Input: 8 

No of Output: 1 

No. of Epochs: 500 

Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: 

%Making a Neural Network 

fitnet(20,'trainlm'); 

Step 2: 

%dividing the Data in Test and Validation ratios 

divideParam.trainRatio=.8; 

divideParam.valRatio=.1; 

divideParam.testRatio=.1; 

 

Step 3: 

%Training Data using ANN 

Train (ANN_Name,Input_Data,Output_Data); 

Step 4: 

%Getting Output of ANN 

ANN_Name(input')'; 

Output Analysis 

Observed: 3602.97 

Predicted: 3775.01 

Absolute Error: 15.25 

MAPE Value: 11.65 
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4.5. Support vector machine: mathematical formulation 

SVMs are learning systems that generalize on a hypothetical space of linear functions on a 

higher dimensional feature space using a trained learning algorithm [76]. The SVMs are used in 

fitting a hyper-plane to the training data through which the data is classified into two classes. The 

hyperplane acts as a decision surface as a margin of separation between the positive and negative 

classes. With these classes, the hyper-plane is obtained by maximizing the margin between the 

hyper-plane and the closest training samples, called the “Support vectors” [77]. The support 

vector machines work on the principle that the data points which are non-linearly separable are 

transferred to a higher dimension (D) with the help of kernel functions to make them linearly 

separable in a higher dimension scale. In the higher dimension, a hyperplane is constructed 

between data points to maximize the margin of separation. For additional details on the general 

concept of SVM, see Vapnik [78], Burges [79], and Scholkopf and Smola [80]. 

In a linear SVM model, the general SVM equation is given as: 

(x) w .x bf    (7) 

where w is weight vector and b is bias. f(x) is the function associated with the hyperplane. 

Let us assume the training data D has a set of n points as given by [77]. 

1{(x , ) , { 1, 1}d n

i i i i iD y x R y     
 (8) 

iy  belongs to -1 or 1, to which the point ix  belongs to in a d- dimensional feature space, 
dR . 

In cases, where the data points are not linearly separable, Cortes and Vapnik [81], using a 

modified SVM algorithm by adding a soft margin [77]. A sample form of the SVM function in a 

higher dimensional space, as illustrated in [76]: 

^

0 0

1

( , ) ( ) ( )
n

i i

i

y x w w x w w x w 
  



   
 (9) 

Where (x) represents the high dimensional feature spaces. By adopting the Lagrangian 

multiplier method, the parameters such as 0w  and w


 can are estimated. The details of 

optimization can be obtained 

2

, ,
0

min.{ }
2

n

i
w b

i

w
C






 
 (10) 

subject to ( . ) 1i i iy w x b     for i= 1……………………, N 

The factor C and the slack variable i  in the previous equation 
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The regularization parameter C takes into account the mislead points and maintains the shape of 

the function and the slack variable i  measures the degree of misclassification of the data points 

in ix . 

Finally, the maximum margin in the hyperplane after Lagrange minimization is given as below: 

( ) ( , )i i i j

i n

f x y k x x b


 
 (11) 

Where, 
( , )i jk x x

is the kernel function and i is the Lagrange multipliers, n= set of support 

vectors. 

In the cases where the data is not linearly separable, the kernel trick is applied to transform the 

feature space to a higher dimension space where the data is linearly separable. 

One common example of kernel function is the Gaussian radial basis function (x , )i jyK x  given by 

Rakshita et al. [82]: 

2
(x , ) exp( )

2

i j

i j

x x
yK x




 

 (12) 

Where, 
2 is the bandwidth of the kernel. In the present study, since the classes were overlapping, 

we used a soft-margin SVM with RBF kernel. 

4.6. Hyper-plane creation criteria 

The GPS data was classified based on the road geometrics such as a number of lanes and 

gradients. The complete corridor data was segmented based on the change of lanes observed 

throughout the study corridor. As per the field observations, it was identified that the whole 

corridor consists of single, two lanes, three lanes, four lanes, five lanes, and six lanes. Hence the 

study corridor was segmented based on the changes in the road width during the vehicle 

movement and the GPS data of bus and car was segregated based on lanes. Also, the gradients on 

the road were also determined through the elevation data obtained from GPS. Later the gradient 

of the road was used as a binary classifier to train the model using SVM. The negative gradients 

were labeled as 0 and the positive gradients were labeled as 1. This binary classification helped 

the SVM model to classify the data based on the gradients, and a hyper-plane was created to 

form the boundary between the negative and positive gradients. 

4.7. Model development using SVM 

In the second stage of modeling the data using SVM, a k-fold cross-validation technique was 

used in order to optimize the essential parameters and minimize the bias between the training and 

testing data. For this study, a radial basis function was used as a kernel function. The gamma g, 

cost function c and epsilon values taken for the model are g=2, c=256, e=0.1. The gamma and 
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cost function parameters used in the model were optimized using the k-fold cross-validation 

technique. The predicted output of the model is the car travel-time. The selection of parameters 

for the model is an important step in deciding the model’s accuracy. The performance and 

consistency of the model highly depend on the model parameters used in the model. For this 

study, the data was validated in two stages; initially, authors have performed analysis and 

validated data using the normal train/test split method (dividing the entire dataset into two sets; 

one training set and another testing set). The advantages of using this method are: (1) it trains 

faster than other existing methods like cross-validation etc.; (2) also, it is simpler to examine the 

detailed results of the testing process. However, this method does not account for the biases 

involved in the splitting of training and testing data. Therefore, to bring homogeneity in results 

for the model developed, the training and testing data was validated using the k-fold cross-

validation procedure. The five days data was taken for training the model, and the k-fold cross-

validation method was used in selecting the optimum parameters (Cost function and gamma). 

Kernel functions used in SVM modeling are responsible for the mapping of input data into 

feature space. Popular choices of kernel function include radial basis function (RBF), linear 

kernel, and a polynomial kernel function. However, in this study RBF kernel is used; because 

RBF is highly effective in mapping nonlinear relationships. There are two parameters for an RBF 

kernel: Cost function (C) and Gamma (γ). The C and Gamma values are usually chosen as user 

perceived values. There is no standard method available to determine the optimum values for the 

C and gamma parameters. Thus, it is essential to identify a method to optimize the parameters 

such that the model classifier can accurately predict unknown data (i.e., testing data). For solving 

this problem, common strategies (known as k-fold cross-validation) were used in this study. In 

the k-fold cross-validation, as the first step, the training data was divided into k subsets of equal 

size. Sequentially, one subset is tested using the classifier trained on the remaining k-1 subsets. 

The complete set of five days data was divided into five equal partitions (i.e., k equal to 5). Out 

of five days of data, four days of data were used as training data (Day 2, 3, 4, and 5) and the 

remaining one-day data was used as the testing data (Day 1). Then the least error was calculated 

for each segment of the day -1. The optimum C and Gamma values were obtained from the k-

fold cross-validation technique. A detailed algorithm with specifications of the SVM model is 

given in Figure 4. 

5. Results and discussions 

The results obtained from the developed ANN and SVM algorithms were compared with the 

observed travel-time data obtained from the field. The prediction was carried out from the five 

days of data collected for both bus and car modes. After the data is trained using the ANN and 

SVM models, then the next set of data was used for validation; and the output derived is the 

predicted data obtained as the result of the trained model. In this paper, authors have used the bus 

and car data as inputs for training and obtained the predicted results of car data with respect to 

buses used as probe vehicles. The prediction accuracy was measured in terms of the MAPE 

(Mean Absolute Percentage Error), MAD (Mean Absolute Deviation) and RMSE (Root Mean 
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Square Error) values. Figures 5 and 6 show the prediction results for ANN and SVM in 

comparison with the original field observed values. 

 

Fig. 4. Support Vector Machines algorithm and specifications. 

Mean absolute percentage error (MAPE) 

The two models were evaluated based on the MAPE, MAE and RMSE values 

MAPE value =
1

1
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ty  - predicted value, n number of observations. 

Mean average deviation (MAD) 

1

N

pred obs

i

x x

MAE
N








 (14) 

predx  is the predicted value; obsx  is the observed value; N is the total number of segments 

Specifications 

 

Input: [Bus-avg speed, Distance, Bus-TT, 

intersection length, bus stop factors, signal 

timing] 

Output: [Car-TT] 

No. Of Input: 5 

No of Output: 1 

Output Analysis 

Observed: 3602.97 

Predicted: 3775.01 

Absolute Error: 10.86 

MAPE Value: 10.78 

Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 1: 

Segregate the data into number of 

lanes and gradients as +1 and -1 

Step 2: 

Creating an instance matrix and label vector 

using Libsvm options 

Step 3: 

Scaling the data using Libsvm tool box and 

optimizing the parameters with cross validation 

Step 4: 

Using SVM command predicting the output 

data (test data) from the trained data 

Predicted output: Car travel time 
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Root mean square error (RMSE) 
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n
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t
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RMSE
n
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




 (15) 

iy  is the observed value; ty  is the predicted value and n is the total number of segments 

 
Fig. 5. Observed versus predicted travel-time: SVM model. 

 
Fig. 6. Observed versus predicted travel-time: ANN model. 

A weighted percentage error graph for the models developed (ANN and SVM) are plotted in 

Figure 7. Also, a comparison plot of the speed profiles for the different days is given in Figure 8. 
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Table 5 gives the statistical accuracy measures for the predicted data for the ANN and SVM 

models. The exact percentage accuracy of the model was tested using very common error 

measures namely, the mean absolute deviation, root mean square error and the mean absolute 

percentage error. 

 
Fig. 7. Weighted percentage error graph 

 
Fig. 8. Comparison graph for speed profile 

Table 5 

Measures of percentage accuracy for the model developed. 

A measure of accuracy (Day -1) ANN model SVM model 

MAPE (%) 11.65 10.78 

MAD (s) 13.06 9.85 

RMSE (s) 15.8 10.8 

Standard error (s) 15.25 10.86 
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It is inferred from Figures 5 that the actual values and the predicted values are almost close 

except for certain locations (segments) where the deviation in the values may be due to varying 

traffic congestion at a different location on different days. The MAPE values for ANN and SVM 

models are identified as 11.65 and 10.86 respectively. According to Lewis’ scale of interpretation 

of estimation accuracy [83], any forecast with a MAPE value of less than 10% can be considered 

highly accurate, 11–20% as good, 21–50% as reasonable, and 51% or more as inaccurate. Thus, 

the results obtained are reasonable for all with MAPE of less than 15%. 

6. Statistical validation of the proposed models using Kolmogorov-Smirnov 

test (K-S test) 

The Kolmogorov-Smirnov test is used as a statistical evaluation tool to compare the observed 

sample distribution and theoretical sample distribution. The cumulative distribution function for 

a variable with a specified distribution can be compared using this test. It was observed from chi-

square and joint t-tests that the travel-times follow the normal distribution. Here in this study, the 

Kolmogorov-Smirnov test is used as a tool to evaluate the differences in the cumulative 

distribution for the observed and the predicted values obtained from the ANN and SVM models. 

The null hypothesis assumes no difference between the observed and theoretical distribution. 

Acceptance Criteria: If the calculated value is less than the critical value, accept the null 

hypothesis. 

Rejection Criteria: If the calculated value is greater than the table (critical) value, reject the null 

hypothesis. 

The test results of the Kolmogorov-Smirnov test conducted for the observed and predicted values 

are depicted in the form of a cumulative frequency graph in Figures 9 and 10. Table 6 gives the 

test results for the Kolmogorov-Smirnov test conducted. 

Table 6 

Kolmogorov Smirnov (K-S) test. 

Kolmogorov Smirnov 

test 
Calculated value Tabulated value n value Alpha value Null hypothesis 

ANN model 0.028142 0.309 18 0.05 Accepted 

SVM model 0.047011 0.375 12 0.05 Accepted 

 

The max D value obtained for cumulative differences between the observed and predicted values 

for the ANN model is 0.028142 and the critical value obtained from the table is 0.309 (with a 

degree of freedom as 18 and alpha value as 0.05). Similarly, for the SVM model, the cumulative 

differences obtained are 0.047011 and the critical value obtained from the table is 0.375 (with a 

degree of freedom as 12 and alpha value as 0.05). It is observed that for both the models, the 
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calculated values are much lesser than the critical (table) values indicating that there are no 

major variations between the observed and predicted travel-times at a 95% confidence level. 

Hence the null hypothesis is accepted. 

 
Fig. 9. Cumulative differences graph for the K-S test for ANN model 

 
Fig. 10. Cumulative differences graph for the K-S test for SVM model. 

7. Summary and conclusions 

The present study carried out a detailed analysis of travel-time and it’s affecting parameters for 

mode-wise travel- time estimation. This study was conducted with a motive to predict mode-wise 

travel-time as it is considered advantageous for collecting individual data for all the modes. 

Therefore, this method solves the purpose of extensive data collection, which is tedious for a 

heterogeneous traffic condition. In this paper, authors have attempted to find the car travel-time 

considering buses as probe vehicles using ANN and SVM models. It is evident from the results 
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that corridor level travel-time can be estimated more efficiently by segmenting the corridor into 

bus stop sections and modeling using the Machine learning models. From the results, it can be 

seen that the ANN and SVM models give a reasonable MAPE value of 11.65 and 10.78 

respectively. It is observed that the obtained values are much lower compared to the models 

developed for travel-time estimation for Indian conditions. The significance of this study is 

modeling the travel-time affecting parameters and deriving a non-linear relationship model 

between the two modes. This study includes certain mode characteristics such as bus stop dwell 

time, passenger count, etc. The possibility of applying machine learning models and deriving an 

optimized parameter modeling is one of the research highlights of this study. Also in this study, 

the support vector machines are used as both classification and prediction tools. Thus, these 

models developed are highly optimized and efficiently used for mode-wise prediction under 

Indian traffic conditions. This study also includes the statistical evidence for validating the 

proposed model using the Kolmogorov-Smirnov test. It is observed that there are no major 

variations between the observed and predicted travel-times at a 95% confidence level. 
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