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The article proposes a bi-objective optimization approach for 

layup design of laminates. The optimization method 

combines the Particle Swarm Optimization (PSO) heuristics 

and Simulated Annealing (SA) optimization method. The 

minimum weight optimization is subjected to design 

constraints such as strength, stiffness, layup blending 

continuity, and several manufacturing design rules, which 

are combined as a single function and included within the bi-

objective formulation. Several composite materials design 

problems are included to show the capabilities and 

usefulness of the proposed method. The optimization 

analysis has also been connected to the finite element 

analysis to solve the problem of composite plate optimization 

with blending constraints. The plate is divided into some 

regions, and the blending constraints are imposed globally by 

using the concepts of the greater-than-or-equal-to blending to 

achieve continuity of laminate layups across the regions. The 

results generally showed that the proposed method led to 

excellent results, representing a promising approach for the 

design of laminated composite materials. 
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1. Introduction 

Composite materials are part of the advanced materials with growing applications in many 

engineering fields. These materials have specific functions, and their directional properties 

enable to tailor them for a specific application. Complex mechanical behavior associated with a 

large number of variables causes the structural design of composite materials much more 

difficult and laborious than the structures made of isotropic (metallic) materials. These 

characteristics have encouraged the use of mathematical optimization methods in determination 

of the optimum shape and layup stacking sequence of the structure in a more sophisticated way 

to attain the maximum material efficiency and performance. Efficiency and performance of 

composite materials are in close relationship with design methodologies to define lamina 

thickness and orientation, resin and fiber materials, manufacturing, etc. to achieve reliability and 

resonable strength-to-weight and stiffness-to-weight ratios [1]. 

Research on the subject of composite materials optimization has been reported extensively. 

Generally, research in the field of optimum composite design focuses on the three areas of 

modeling, analysis, and optimization method, each of which is reviewed briefly. 

● Modeling 

The first step in the design optimization of laminated composites is the choice of material 

behavior modeling. Undoubtedly, the simplest way to optimize composites is when material 

behavior is expressed by closed-form mathematical relationships. If a closed-form solution 

exists, cost function computation and the sensitivity analysis will be managed efficiently. Since 

closed-form solutions are only available in simple cases and they generally involve many 

assumptions, this approach is normally conducted in the design of laminates at the material level. 

Employing the Classical Lamination Theory (CLT), effective stiffness parameters, stresses, 

critical buckling loads, and some other physical characteristics of laminates can be expressed by 

closed-form equations. In material level optimization analysis, the thickness of lamina, fiber 

orientation, the volume percentage of fibers, and other parameters in lamina level are commonly 

considered as design variables. For the sake of simplicity and computational efficiency, much of 

the research in the field of composite optimization has focused on material-level design. 

Optimum weight design of laminates with given stiffness properties [2], maximizing buckling 

load-carrying capacity of laminated composite [3], optimum design of laminates against fatigue 

loads [4] are only a few examples from literature, in which closed-form solutions are used for 

optimization purposes. For more complicated models such as reinforced plates, plates with 

cutouts, structures with 3D fiber placement, curved shells and 3D structures numerical methods 

such as finite element method is currently used [5]. 

● Analysis 

To date, several theories have been developed to determine kinematic behavior and stress 

distributions in composite laminates. Robbins & Reddy (1993) [6] categorized the analysis 
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methods based on the displacements or stress distributions through the laminate thickness to two 

classes: Equivalent Single Layer (ESL) and Layer-wise (LW) theories. The main difference of 

these methods is on the assumption of shear stress distribution in the thickness direction and 

transverse deformation of the laminate. 

ESL-based theories, reduce a 3D problem to a 2D one by defining the displacement as a linear 

combination of pre-defined functions and mid-plane displacement components. ESL is further 

classified into CLT [7], First Order Shear Deformation (FSDT) [8], and Higher-order Shear 

Deformation (HSDT) theories [9]. 

Classical lamination theory ignores shear deformations through the thickness and involves only 

three variables. However, in FSDT, shear deformation in the thickness direction is estimated by a 

linear function and therefore, it involves five variables. The main drawback of FSDT is that the 

equilibrium equations are not satisfied in the upper and lower surfaces of the plate. To 

compensate for the difference between the linear assumed stress and the real stress distributions, 

a corrective coefficient is often necessary. This coefficient is a function of the stack sequence and 

cannot be defined uniquely. In contrast, HSDT uses non-linear functions such as cubic, 

trigonometric, or hyperbolic functions to describe shear deformation in the thickness direction of 

the laminate. HSDT satisfy equilibrium equations but contains more variables, and thus is more 

computationally expensive [10]. Although ESL may be adequate for analysis of most practical 

composite laminates design problems, they typically fail to describe accurately the 3D stress 

field at the ply level. This deficiency is primarily related to the assumption of continuous 

transverse strain components across the interface of the lamina, which causes discontinuity of the 

transverse stresses. 

In LW theories, each layer is treated separately, and specific displacement field expansions or 

constraints are applied within each layer to yield a sort of continuity across the layer interfaces 

and a more accurate description of the complete stress state [11]. For instance, in a research 

work, each layer of a laminate was considered as an independent plate, and the compatibility of 

displacements at layer interfaces have been enforced by using the Legendre polynomials [12]. 

In the optimization process, different layups are examined iteratively, and hence, the calculation 

of the shear stress correction factor is crucial and costly. In this respect, for thin laminates, CLT 

is the easiest choice. However, for thick laminates, FSDT or other high order theories with an 

approximate shear stress correction factor, or finite element analysis should be used, even though 

it enforces much computational cost to the analysis. 

● Optimization methods 

Mathematical optimization methods, both deterministic and evolutionary stochastic search 

approaches, are widely used in the design of composite structures [13]. In the most design cases, 

the objective is the minimization of the total thickness or weight of the structure subjected to 
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constraints such as stiffness, strength, natural frequencies, critical buckling loads, and 

manufacturing requirements. 

Deterministic methods usually require objective function to be continuous and differentiable. 

Moreover, these methods can readily converge to a local optimum points. However, the 

application of these methods in real large design problems involving discrete and/or integer 

variables is limited. On the other hand, stochastic random search optimization methods can 

handle combinations of continuous and non-continuous functions, and can approach to the global 

optimum solution. However, evolutionary search methods generally necessitate a large number 

of objective function evaluation for thorough exploration of the feasible region. Besides, an 

algorithm is always needed to prevent convergence to local optimum points [14]. 

For design optimization of composite laminates, stochastic search methods have been addressed 

broadly in the literature. Genetic Algorithm (GA) [15,16], Simulated Annealing (SA) [2,6], Ant 

Colony [17], Particle Swarm Optimization (PSO) [18,19] and hybrid methods such as PSO-SA 

[20] and PSO-GA [21] are among the methods that are referred to extensively. 

In this article, a bi-objective optimization procedure based on the hybrid PSO-SA method is 

proposed for the design of laminated composites. The adopted hybrid PSO-SA optimization 

method is inspired from the method previously developed by Javidrad, & Nazari (2017) [22] and 

implemented to design of laminates by using penalty functions [20]. Stiffness, strength, layup 

blending continuity, and several design and manufacturing rules were incorporated into the 

formulation. Both CLT solutions and finite element modeling were used to compute the stiffness 

and strength properties of the laminate. Three design problems, including A22 stiffness parameter 

maximization, weight optimization of a laminate under in-plane forces and moments, and weight 

optimization of a plate under bending loads including layup blending constraint were presented. 

2. Analysis of composite laminates 

Consider a laminated composite plate as shown in Fig. 1(a), with reference plane 0z   located 

at the mid-plane. Based on the Kirchhoff’s hypothesis, the displacement components are 
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where u, v and w are small displacements along the x, y and z directions, respectively. 
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Fig. 1. (a) Geometry of a laminate with global (xyz) and material (1-2) coordinate systems. (b) Definition 

of force and moment resultants. 

The forces and moments per unit length of the cross-section can be found by integrating stress 

components in the thickness direction. Eqs. 2 describes the in-plane stress resultant forces [Nx, 

Ny, Nxy]
T
, and resultant bending moments [Mx, My, Mxy]

T
. 
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where x, y and xy are two normal and shear stresses developed in lamina, respectively, and n 

represents the number of layers in the laminate. By implementing constitutive relations in global 

coordinates [23], the relationships between the resultant forces and resultant moments and the 

global mid-plane strains () and curvatures () can be derived as below: 
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where A, B and D are stiffness matrices. The components of these matrices are calculated as: 
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where ( )ij kQ denote components of the reduced stiffness matrix of the kth lamina in the global 

coordinate system. If the same materials is used for each lamina in a laminate, the stiffness 

matrices can also be expressed in invariant forms [23]. 

2.1. Stress-based failure analysis 

In the design of laminated composite materials, a comprehensive strength-based failure criterion 

is required. The failure criterion must be able to predict the failure of a laminate for any layup 

configuration. However, due to the interaction between the layers, accurate failure prediction of a 

laminated composite materials is rather complicated [24]. 

To date, several strength-based failure criteria have been suggested. Limit-based theories 

(maximum stress or strain) [25], polynomial-based theories [26,27], strain energy-based theories 

(e.g. Tsai-Hill failure criterion)[28], and direct mode determining theories [29,30] are among 

those that extensively used in practice. Rohwer (2015) [31] presented a review of the failure 

criteria for fiber composite materials. 

In this study, failure is determined by the “first ply failure” (FPF) approach following the 

maximum stress (MS) and Tsai-Wu (TW) ply-level failure criteria. In many references (e.g. [32]) 

certain combinations of failure theories have been suggested for actual failure analysis to limit 

shortcomings of each failure criterion. 

A micromechanical study [33] showed that for a lamina with fiber orientation angles between 0° 

and 30° the TW criterion is accurate enough, while for fiber orientation angles between 60° and 

90° the MS criterion can suitably predict the failure. However, for fiber orientation angles 

between 30° and 60°, a linear combination of the two failure criteria may be adopted as 

described by Eq. 4[20]. 

1 2( ) ( ) ( )mixed MS TWIF IF IF    (4) 

Where (IF)mixed denotes the mixed index factor. The index factor is the ratio of the stresses to 

strength in which the values of greater than 1 represent failure. 1 and 2 are the linear 

combination constants, which can be typically set to 0.9 and 0.1, respectively [20] . (IF)MS and 

(IF)TW denote respectively index factors associated with the MS and TW failure criteria defined 

as: 
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where Xt, Xc, Yt and Yc denote the ultimate tensile and compressive strengths in the fiber and the 

transverse directions, respectively. S denotes the in-plane shear strength of the lamina. 1, 2, and 

12 are two lamina normal and shear stresses in material coordinates. 

2.2. Composite laminate design for manufacturing guidelines 

Several guidelines have been established based on previous experience from design, test, and 

manufacturing to support the designer utilizing best the composite material strength. The purpose 

of these guidelines is to avoid the occurrence of critical failure modes and simultaneously 

guarantee a manufacturable design. These guidelines are usually defined on the ply level in 

thickness or the longitudinal direction. Bailie et al. (1997) [34] and Kin et al. (2005) [35] 

suggested several rules for stacking sequence design. Some of these design rules are described 

below: 

(1) Symmetry: In most of the real applications, the stack of a laminate are selected to be 

symmetric about its mid-plane to make the design analysis simple. Symmetry also offers 

simplicity in testing, the description of allowable properties, and manufacturing. In symmetric 

laminates components of membrane/bending matrix, as defined in Eq. (3b), are zero. Vannucci 

and Verchery (2001)[36] discussed a more general state for uncoupling of membrane/bending 

deformations in laminated composites. 

(2) Balancing: A balanced layup represents uncoupling in in-plane normal and shear responses. 

Moreover, balancing condition decreases the values of bending-twisting coupling terms in D 

matrix resulted in a simpler bending response of the laminate (see Eq. 3). Montemurro (2015) 

[37] discussed the conditions of a fully orthotropic laminate and uncoupled membrane and 

bending responses. 

(3) 10% rule: A practical laminate should have a minimum 10% of layers should have fiber 

orientations 0°, ±45°, and 90° [34] . This choice makes the laminate fiber dominated, and 

provide good damage tolerance and durability [38]. 
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(4) Contiguity constraint: The thickness of a lamina is directly related to the interlaminar stress, 

which affects the occurrence of free edge delamination. This design rule concerns a limitation to 

the thickness of adjacent plies with the same fiber orientation angle. According to Niu (2010) 

[39], for a laminate with a standard ply thickness (0.127 mm), not more than four contiguous 

plies should be used. 

(5) Separation of   layers: Separation of layers with   fiber orientations can lessen 

interlaminar shear stresses and therefore gives more delamination strength to the laminate [35] . 

(6) Disorientation constraint: when the relative fiber orientation angles difference between two 

successive layer is greater than a limit value, significant interlaminar stresses will be developed, 

which can promote failure. To postpone matrix cracking and the occurrence of delamination, it is 

better to use 45° as a limit for the ply angle difference between two adjacent plies [40]. 

3. Optimization method 

Particle swarm optimization (PSO) is a population-based random search technique motivated by 

the intelligent social behavior of animals. [41]. This method is first proposed by Kennedy and 

Eberhart (1995) [42]. The main idea behind the PSO algorithm is using a swarm to 

simultaneously search a large region in the feasible space coupled with artificial life 

characteristics. 

Consider a set of particles that are distributed uniformly across an n-dimensional search space. In 

each PSO iteration, the position of the particle k is updated by the addition of the vector vk, called 

velocity, to the previous position vector (Eq. 8). The velocity vector is calculated according to 

Eq. (9), in which two vectors representing the difference between the current and the best 

position of the particle, and the current and the global best position of the particle are 

incorporated. 

1 1i i i

k k kX X v    (8) 

1

1 1 2 2( ) ( )i i b i g i

k k k k kv v c R P X c R P X       (9) 

where 1 2[ , , , ]i i i i T

k nX X X X , 1 2[ , , , ]b b b b T
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state of particle k at iteration i, the best state of particle k in the search space, and the global best 

position reached by all particles, 1 2[ , , , ]g g g g T

nP P P P , respectively. R1 and R2 are two 

random numbers that vary between 0 and 1, and c1 and c2 are cognitive and social parameters 

which are problem-dependent constants. In fact, c1 and c2 control the magnitudes of particle 

velocity, and hence its movement, along the directions of a particle best position and the global 

best position of the swarm. A limit velocity, vmax, is usually defined to prevent particles from 

moving off the search space. Accordingly, the velocities are bounded as: 
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 is a multiplier, known as the inertia factor, used to further control the velocity by making a 

balance between exploration and exploitation. Exploration and exploitation are referred to as the 

ability of a particle movement across the entire search space and inside a local region, 

respectively. The balance between exploration and exploitation is important to approach the 

global optimum point by facilitating jumping out of the local optimum points. Although there are 

many suggestions for this function, a linear step function defined as Eq. 11 is usually used [43]. 

max min
max

max

i
i

 
 

 
   

 
 (11) 

where imax is the maximum allowable solution iteration number. max and min are two limit 

values of . 

The main shortcoming of the PSO algorithm is that it may trap into a local optimum if an 

improper balancing between exploration and exploitation is provided. Javidrad and Nazari 

(2017) [22] suggested a hybrid method to improve the social performance of a swarm by a 

systematic updating the global best position of the swarm. In this respect, when no further 

improvement in the global best position recognized in a PSO cycle, the SA algorithm is 

implemented to improve the global best position of the swarm. 

SA is a global optimization method based on the Metropolis Monte Carlo procedure. SA uses the 

Metropolis method to accept a state probabilistically with higher function value. The acceptance 

probability is defined as 

11 ( ) ( )

exp( / )

i if X f X
P

f T Otherwise

 
 


 (12) 

Where f is the variation of the function between two successive points, and T is the acceptance 

parameter called temperature. Temperature controls the exploitation capability of the SA 

algorithm by limiting the acceptance probability. In fact, by sequentially decreasing T, the 

exploitation ability of the SA is promoted [44]. There are many temperature change functions, 

such as linear, logarithmic, and exponential functions [45]. The most widely used temperature 

decrement rule is: 

1 .i T iT R T   (13) 

where RT is a positive decrement constant between 0.8 and 1. 

Referring to the literature, there are a few algorithms developed based on the combination of 

PSO and SA. Xia and Wu (2006)[46] introduced a hybrid PSO-SA method in which PSO 

generates an initial candidate point for the SA analysis. In another approach (Wang & Li, 

2004)[47], the position of each particle within the PSO optimization process is improved by the 

SA process. The integration of the Metropolis acceptance criterion with the PSO is another 

hybrid PSO-SA method, which has been suggested by Shieh et al. (2011) [48]. A more 
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comprehensive literature review on the subject of the hybrid PSO-SA optimization method has 

been given in Javidrad and Nazari (2017) [22]. 

The proposed hybrid algorithm essentially integrates good local search capability of the SA 

optimization method within the PSO. Fig. 2 shows the overall concept of this optimization 

method. 

 
Fig. 2. Conceptual model of the hybrid optimization method. 

This algorithm has been implemented and applied to unconstrained single objective optimization 

of several mathematical functions with various dimensions by Javidrad and Nazari (2017) [22]. It 

is reported that including SA within the PSO, upgrade stability and convergence rate of the 

solution process. 

In the present study, however, a modified SA is implemented within the PSO-SA hybrid method. 

In this modified version of SA, the temperature change is adaptively related to the function 

decrease which cause the inner loop of the SA is ignored [49]. It is noted that the inner loop of 

the SA algorithm is related to the length of the Markov chain representing temperature stability 

within each SA loop. 

4. Optimization problem description 

The optimization problem concerns the design of a minimum weight laminate under the stiffness 

and strength constraints and to satisfy conventional design rules. 

The optimization problem is formulated as a bi-objective problem as follows: 

( , )min W f  (14) 

where 

Generation of particles 

PSO algorithm 

SA local search for Pg 
F

ai
l 

C
o

n
v
erg

en
ce 

Shrink local 

search region 

(decrease 

temperature) 

Update global best point  

Improvements detected for a 

limited number of iterations 

Y
es

 



 F. Javidrad et al./ Journal of Soft Computing in Civil Engineering 4-1 (2020) 01-28 11 

1

NoL

i i

i

W A l t


   (15) 

max(0, ( )) 1,2,3 1,2, ,j if g X j i n    (16) 

2

1

1

( ) 0 1,2, ,
c rMP
m m

i r
m m

Sp Sp
g X i n

Sp




 
    

 
  (17) 

2

max( )
( ) 1 0, 1,2, ,

( )

mixed i
i

all

IF
g X i n

IF
     (18) 

3

1

( ) ( ) 0, 1,2, ,
MC

i k i

k

g X h X i n


    (19) 

where n and NoL denote the number of laminae and number of the local regions, respectively. ρ

, t, A, Sp
c
, Sp

r
, MP and,  are the density, lamina thickness, panel area, the required and 

calculated stiffness parameters, the number of stiffness parameters to be included in the analysis 

and the stiffness tolerance value, respectively. (IFmixed)i denotes the index factor determined for 

the ith lamina, and (IF)all is the allowable index factor. Similar to the factor of safety, the choice 

of the allowable index factor is dependent on the design and specific application. To provide an 

adequate margin of safety, in this work, the value of 0.83 has been chosen for the allowable 

index factor. This value gives a factor of safety of 1.2 to the failure of layers. MC is the number 

of design rules to be included in the design process, and Xi is the vector of design variables. It is 

noted that for a single lamina, three variables (t, , l) are incorporated into the optimization 

formulation. The first two are lamina thickness and orientation angle, which are continuous or 

discrete variables, and the third one is an integer contiguity variable that determines how many 

panels a lamina extended. The contiguity variable can be greater than one only for problems 

concerning blended laminate layup. 
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Where tl, tu, and NReg are the lower and upper limits of lamina thickness, and the number of 

regions in the laminate, respectively. hk is an integer function introduced to characterize the 

degree of the manufacturing constraints violation. hk varies between 0 for all constraints violated, 

and 5 for all constraints satisfied. The symmetry condition is always enforced in this analysis and 

thus is not included in hk. 

0 if th constraint issatisfied

1 if th constraint is not satisfied
k

k
h

k


 


 (21) 
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5. Implementation 

● Initial swarm is generated and distributed uniformly across the design space (i.e., within the 

lower and upper bound of the design variables). For all case studies discussed in this article, the 

population size was 50. 

● The parameters of the optimization analysis have been selected as in Table 1. It has been 

shown that these are optimized parameters for a range of mathematical and engineering problems 

[22]. These parameters remained constant in all case studies presented herein. 

Table 1 
The Optimized parameters of the proposed hybrid PSO-SA method. 

T0 RT max min c1 c2 
1.0 0.95 0.55 0.1 0.8 1.7 

 

● For each particle, the best position (P
b
) at iteration i are determined. Similarly, the global best 

position (P
g
) of the swarm is calculated. In the determination of these two positions, the 

following selection criteria are implemented: 

(1) If the value of f is zero for two particles, the particle with the lower W value is selected. 

(2) If the value of f is zero for one particle and nonzero for another, the particle with zero f is 

selected. 

(3) If the value of f is not zero for two particles, the particle with the lower f value is selected. 

At each iteration, every P
g
 with zero value of violence function f can be a potential optimum 

solution, i.e., Pareto solution. These solutions are stored for the final selection process. 

● The velocity and position of each particle are updated according to Eq. (8) and Eq. (9). The 

new swarm is designated by X
i+1

. 

● The procedure continues until no improvement found in the global best solution during a PSO 

cycle. Then the method shifts to the SA, and the solution procedure continues for P
g
. The SA 

loop length is pre-defined, and the final P
g
 determined during this loop returns to the PSO. The 

SA method used here is a modified one in which temperature is only updated when a move is 

accepted. By using this modified SA method, only one loop is necessary. 

● The following convergence criteria have been used to terminate the solution procedure: 

(1) The number of iterations reaches the prescribed maximum value. 

(2) The temperature reaches to a tolerance value (namely, 10
-3

). 

● When the solution process terminates, the point with minimum W is selected from the solution 

vector as the final optimum solution. 
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6. Numerical results 

6.1. Design of a laminate with maximum A22 stiffness coefficient 

In this example, we seek ply stacking sequence of a laminate with n continuous plies that 

maximize A22 coefficient for a graphite-epoxy laminate. The composite is assumed to be 

symmetric and balanced. This problem, which is a variation of a composite design problem 

undertaken by Grosset et al. (2005) [50], has been approached by Venter and Haftka (2010) [51]. 

A constraint on the effective Poisson’s ratio (eff) and limitations in fiber orientation angles and 

ply thicknesses have been considered. The optimization problem can be stated as 

* *
22 1 2 1 3 3( )

0.48 0.52

5 5

40 50

85 95

0.001 0.05

eff

k

k

k

k

Maximize A h U U V U V

Subjected to

or

or

t









 

 

 

  

 

  

 

 

 

 (22) 

where 

/2

*
{1,3}

10

2 2
{cos2 , cos4 } {cos2 , cos4 }

h n

k k k

k

V dz t
h h

   



    (23) 

*
4 3 311

* *
22 1 2 1 3 3

eff

U U VA

A U U V U V



 

 
 (24) 

and k and tk are ply angles and thicknesses (in inches), respectively. The Ui values are material 

invariants as given in Table 2. 

Table 2 
Invariant parameters of the graphite-epoxy composite. 

Parameter Value (psi) 

U1 0.8897×10
7
 

U2 1.0254×10
7
 

U3 0.2742×10
7
 

U4 0.3103×10
7
 

 

Choosing n=3, we have only six design variables. This problem has been examined by a variety 

of methods such as single objective PSO algorithm using exterior quadratic penalty function and 

the adaptive penalty method, multi-objective PSO (MO-PSO), The modified multi-objective 

PSO using the crowding distance as the second selection criterion, and the PSO-SA algorithm 

presented herein. A maximum of 3000 function evaluations and a temperature limit of 10
-8

 were 

set as the termination criteria. To attain statistical results, several independent optimization runs 

were performed. The results are summarized in Table 3. The success rates, which is defined as 

the ratio of successful runs to the failed runs, are also given in Table 3. The successful runs are 

those reached to the known global solution. 
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The calculated layup stacking sequence by the proposed bi-objective PSO-SA method is very 

close to that of the other methods. When compared to the other multi-objective formulations as 

given in Table 3, the calculated maximum A22 is close enough to the global solution, 1.25×10
6
 psi 

[51]. Typical variations of the A22 and eff are shown in Fig. 3 and Fig. 4, respectively showing 

that the method explores the design space thoroughly and then stably approaches to the global 

optimum point. 

Table 3 
Optimization results for A22 maximization problem. 

 
Fig. 3. Convergence behavior of A22 by the hybrid PSO-SA optimization method. 

 
Fig 4. Convergence behavior of eff by the hybrid PSO-SA optimization method. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500 3000

A
2
2
 (

×
1

0
6
) 

Number of function evaluation 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
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
ef

f 

Number of function evaluation 

Parameter 
Single objective PSO* 

MO-PSO* 
Modified 

MOPSO 

crowding* 

PSO-SA 

(present wok) Quadratic penalty Adaptive penalty 

Best layup 

orientation 

(degrees) 

[±95, ±44.3, ±44.5]s [±95, ±44.3, ±44.5]s [±95, ±43.7, ±42.3]s [±95, ±44.8, ±44.4]s [±95,±43.3, ±44.4]s 

Thickness (in) [0.0304, 0.05, 0.05]s [0.0304, 0.05, 0.05]s [0.0323, 0.05, 0.05]s [0.030, 0.05, 0.05]s [0.0312,0.05,0.05]s 

eff 0.4800 0.4800 0.4800 0.4800 0.4805 

Success rate (%) 97 37 29 100 100 

Maximum A22 1.2505 × 106 1.2506 × 106 1.2434 × 106 1.2503 × 106 1.2485× 106 
*
 Taken from Venter and Haftka (2010) [51]. 
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As a continuation of the problem, we implemented discrete fiber angle orientation, layer 

thickness, and design rules as described in Section 2.2 to find a better design. It is assumed that 

the laminate comprises 32 layers with the layer thickness of 0.0083. This assumption gives a 

weight near to the previous results. The results for two fiber orientation angle steps (5° and 15°) 

are summarized in Table 4. The results given in Table 2 show that including more design rules to 

the optimization analysis will affect the maximum value determined for A22. By reducing the 

design rules constraints, the maximum value of A22 can be greater than 1.25×10
6
. 

Table 4 
Optimization results for A22 maximization problem including discrete variables and design rules 

constraints. 

Angle Case
*
 Layup A22 ×10

6
 eff 

5
o 

1 [55,-50,-55,-50,45,-55,-652,-55,50,55,50,-45,55,652]S 1.385 0.4802 

2 [65,-60,-50,55,45,55,-50,-60,-65,60,50,-55,-45,-55,50,60]S 1.385 0.4822 

3 [-60,-55,-50,-602,-30,15,602,55,50,602,30,-15,-60]S 1.210 0.4809 

4 [-552,-50,-40,0,45,50,90,552,50,40,0,-45,-50,-90]S 1.177 0.4809 

15
o 

1 [-602,45,-45,-602,60,-45,602,-45,45,602,-60,45]S 1.359 0.4886 

2 [-60,-452,60,-60,-45,-602,60,452,-60,60,45,602]S 1.359 0.4886 

3 [-45,-60,-45,-603,-45,0,45,60,45,603,45,0]S 1.171 0.5084 

4 [-60,-453,0,45,90,45,60,453,0,-45,-90,-45]S 1.109 0.5165 
*
1: Including all design rules except the 10%, Contiguity and Disorientation design rules. 

2: Including all design rules except the 10% and Disorientation rules. 

3: Including all design rules except the 10% rule. 

4: Including all six design rules. 

  

6.2. Layup sequence design of a laminate under in-plane forces and moments 

As the second design case study, a laminate made of Kevlar 49/epoxy with two different load 

cases has been considered. The laminate is assumed to be consist of twenty-ply groups. The 

optimization problem is to find the minimum laminate thickness based on design rules, to have 

the prescribed effective engineering coefficients and not to fail under the given set of loads. 

To compare the results of this work with the published data, we set the material properties, load 

cases, and the prescribed engineering coefficients the same as those given by Javidrad et al. 

(2018a) [51] (see Tables 5-7). The Fiber orientation angle of each lamina was assumed to be 

multiples of 5°, 15°, and 45°. Two termination criteria were used: (i) the number of function 

evaluations exceeding 1×10
4
 and (ii) the temperature approaching less than 1×10

-8
. 

Table 5 
Typical elastic material constants of Kevlar 49/epoxy composite. 

E11 

(GPa) 

E22 

(GPa) 

G12 

(GPa) 
12 

Xt 

(MPa) 

Xc 

(MPa) 

Yt 

(MPa) 

Yc 

(MPa) 

S 

(MPa) 

ρ 

(kg/m
3
) 

76.0 5.5 2.3 0.34 1400 235 12 53 34 1450 
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Table 6 
Loading conditions. 

 Loading condition (1) Loading condition (2) 

Nx (N/m) 20000 2000 

Ny (N/m) 130000 1400 

Nxy (N/m) 0 0 

Mx (N.m/m) 0 0 

My (N.m/m)  0 150 

Mxy (N.m/m) 0 0 

 

Table 7 
The required effective engineering constants. 

0
xxE

 
(GPa) 

0
yyE  

(GPa) 

0
xyG  

(GPa) 

0
xy  

f
xxE

 
(GPa) 

f
yyE  

(GPa) 

f
xyG  

(GPa) 

f
xy   

26.0 19 14 0.55 16 20 10 0.35 

Superscript 0 and f stand for in-plane and flexural properties, respectively. 

 

The best layup sequences found for each set of loads together with the results of the single-

objective optimization process of Javidrad et al. (2018a) [51] are summarized in Table 8. The 

best layup sequences are those with zero function f (Eq. 16) and the least weight, which is 

selected from all potential optimum solutions. A comparison with this reference indicates better 

or similar results for all cases except case no. 6. In case no. 6, however, our index factor is lower 

than that given in the reference data. The effective engineering constants, as given in Table 9, 

show a minor difference with the required effective properties. 

Table 8 
The best calculated layup sequences. 

Loading 

condition 
Case Stacking sequence 

Fiber orientation angle 

step 

(Degree) 

Weight 

(kg/m
2
) 

Index 

factor 

(1) 

1 [45,90,45,403,0,-45,-90,-45,-403,0]s 5 5.278 0.824 

1
*
  [45,90,452,353,0,-45,-90,-452,-

353,0]s 

5 6.032 0.683 

2 [-452,-90,-45,-

302,0,452,90,45,302,0]s 

15 5.278 0.822 

2
*
 [-45,-90,-454,-

302,0,45,90,454,302,0]s 

15 6.786 0.563 

3 [-452,-90,-453,02,452,90,453,02]s 45 6.032 0.700 

3
*
 [-452,-90,-453,02,452,90,453,02]s 45 6.032 0.700 

(2) 

4 [-453,-90,-50,-

252,0,453,90,50,252,0]s 

5 6.032 0.741 

4
*
 [45,90,454,252,0,-45,-90,-454,-

252,0]s 

5 6.786 0.690 

5 [-453,-90,-452,-

15,0,453,90,452,15,0]s 

15 6.032 0.828 

5
*
 [452,90,454,02,-452,-90,-454,02]s 15 6.786 0.633 

6 [-452,-90,-454,02,452,90,454,02]s 45 6.786 0.622 

6
*
 [452,90,453,0,-452,-90,-453,0]s 45 5.278 0.760 

* represents the best results obtained from Javidrad et al. (2018a) [20]. 
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Table 9 
Effective engineering constants determined for each layup. 

Case 

0

xxE

(GPa) 

0

yyE  

(GPa) 

0

xyG  

(GPa) 

0

xy  
f

xxE  

(GPa) 

f

yyE  

(GPa) 

f

xyG  

(GPa) 

f

xy  

1 24.130 20.090 14.291 0.533 15.476 22.634 9.960 0.306 

2 28.248 20.062 13.291 0.523 17.267 20.823 10.078 0.338 

3 28.470 21.181 12.984 0.491 18.440 20.562 10.653 0.351 

4 28.145 20.178 13.292 0.520 17.251 19.118 10.347 0.369 

5 26.814 20.669 13.520 0.511 16.719 18.805 10.642 0.382 

6 26.473 20.232 13.698 0.524 17.239 19.687 10.719 0.370 

 

6.3. Design of plate under bending loads and blending constraints 

The optimum design of a composite plate with layup blending constraint is considered as the 

final example. In general, multi-region non-blended panel weight optimization with no 

continuity of laminate layup may be structurally non-profitable due to discontinuities. Although 

imposing the layup blending constraints gives rise to the complexity of the optimization process, 

it yields a more practical design. There are many approaches addressed in the literature for the 

design of composite laminates using layup blending concepts such as greater–than-or-equal-to 

blending [52] , sheared-layered blending [53], guide-based blending [54], and stacking sequence 

table based blending [55]. 

In the greater-than-or-equal-to blending method, a key panel is defined from which each ply 

emanates. The key panel is often the most loaded or the thickest region. Although each ply or 

lamina is allowed to be discontinued along the panel borders but once dropped, it is not allowed 

to be combined back into the other panels. Although this method is quite simple and can easily 

be implemented to the design process, it is not suitable for designing structures with several key 

panels. 

To date, most of the works in composite structures design by layup blending methods have been 

centered on the single objective optimization using GA. In this example, however, we aimed at 

designing a cantilever composite plate using the concepts of the greater-than-or-equal-to 

blending by the proposed PSO-SA optimization in the framework of the bi-objective 

formulation. The plate is shown in Fig. 5, which is decomposed into three local panels. 

As stated in Section 4, for a single lamina, three variables (t, , l) are incorporated into the 

optimization formulation. l is an integer contiguity variable that determines the extension of the 

lamina through the plate. In this example, we divided the plate into three equal panels, in which 

the Panel 1 is assumed to be the key region. In this respect, l=0 denotes that the lamina does not 

exist, l=1 designates the lamina only exists in the Panel 1, l=2 denote the lamina extended 

through the Panels 1 and 2, and finally, l=3 represents the lamina continues through all panels. 

The design optimization problem is stated as a minimum weight design of the plate subjected to 

the maximum global deflection (in the Z-direction), first ply failure, local ply contiguity, and 

conventional design rules. 
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Fig. 5. Geometry of the cantilever composite plate. 

In this example, the stiffness of the plate is represented by the global tip deflection in the Z-

direction. In this regard, Eq. 17 is substituted by 

max 1 0.01
w

w
   (25) 

where maxw and w  denote the maximum calculated deflection in the z-direction and the 

maximum allowable deflection, respectively. 

The in-plane material properties of the plate, which is made of carbon fiber epoxy laminate, are 

given in Table 10. The through-thickness material properties are assumed to be identical to those 

of the in-plane properties. A uniform distributed load of 0.1 kN/m is applied to the tip of the 

plate, as shown in Fig. 5. 

Table 10 
Typical elastic material properties of carbon/epoxy laminates. 

E11 

(GPa) 

E22 

(GPa) 

G12 

(GPa) 
12 

Xt 

(MPa) 

Xc 

(MPa) 

Yt 

(MPa) 

Yc 

(MPa) 

S 

(MPa) 


(kg/m
3
) 

168 9.5 4.6 0.27 826 118 37 27 20 1600 

 

A finite element uniform grid (25×15) consisting of 312 4-noded S4R composite shell element of 

ABAQUS software has been used to model the plate behavior. This shell element is well suited 

for moderate to thick composite plates since it accounts for transverse shear flexibility. The stress 

distribution through the thickness of each layer is determined by specifying several integration 

points through the thickness. 
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The optimization process has been linked to the finite element software to determine the 

maximum deflection and stresses as needed for the design optimization procedure. All 

parameters for the PSO-SA optimization analysis were set as given in Table 1. The maximum 

iteration was 9000. The results for 0.5 0.83IF   and 100w mm  are summarized in Table 11. 

Table 11 
The optimum blending layup sequences for all three panels. 

Solution 

No. 
panel Stacking sequence 

Index 

factor 

Weight 

(kg) 

Maximum Deflection 

(m) 

1 

1 [-452,-152,-30,03, 452,152,30,03]s 0.592 

7.6 0.1073 2 [-452,-152,03,452,152,03]s 0.564 

3 [-452,03 ,452,02]s 0.513 

2 

1 [-452,-152,-25,03,452,152,25,03]s 0.591 

7.6 0.106 2 [-452,-152,03,452 ,152,03]s 0.553 

3 [-452,03,452,03]s 0.506 

3 

1 [-452,-152 ,-30,03,452,152,30,03]s 0.592 

8.0 0.0986 2 [-452,-152,-30,03,452,152,30,03]s 0.560 

3 [-452,03,452,03]s 0.511 

4 

1 [-452,-152,-45,03,452,152, 45,03]s 0.595 

8.0 0.1009 2 [-452,-152,-45,03,452 ,152,45,03]s 0.576 

3 [-452,03,452,03]s 0.519 

5 

1 [-453,-20,-53,0,453,20,53,0]s 0.514 

8.4 0.101 2 [-453,-20,-53,0,453,20,53,0]s 0.564 

3 [-453,-20,0,453,20,0]s 0.518 

6 

1 [-45,-50,-152,-

204,0,45,50,152,204,0]s 
0.551 

8.4 0.087 2 [-45,-152,-204,0,45,152,204,0]s 0.519 

3 [-45,-152,0,45,152,0]s 0.512 

7 

1 [-452,-152,-454,0,452,152,454,0]s 0.581 

8.8 0.0986 2 [-452,-152,-454,0,452,152,454,0]s 0.666 

3 [-45,-152,0,45,152,0]s 0.600 

8 

1 [-453,-15,-354,0,453,15,354,0]s 0.510 

9.2 0.107 2 [-453,-15,-354,0,453,15,354,0]s 0.737 

3 [-453,-15,0,453,15,0]s 0.645 

 

Among the results given in Table 11, the best solution is the solution designated by No. 1, which 

can be regarded as the global optimum solution. It is noted that if the maximum number of 

iterations increases, better solutions may be found. All design rules except the 10% rule have 

been included in the analysis. When the 10% rule applied to the analysis, no feasible solution 

was determined. The variations of two objective functions, together with the optimum solution 

points are plotted in Fig. 6 in which the solutions with zero f are highlighted by solid bullets. It is 

seen that after finding a solution, the process explores the search space further to find other 

solutions. 
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Fig. 6. Variation of objective functions with respect to the solution iteration. (Solid bullets indicates the 

optimum points) 

7. Conclusions 

An optimization procedure based on a hybrid PSO-SA method has been presented for the design 

of laminated composites. It has previously been shown that the hybrid PSO-SA optimization 

method provides good exploration and exploitation behavior, which undoubtedly is significant 

for solving constrained problems with narrow search spaces. Stiffness, strength, continuous 

layup blending, and several design rules have been included in the analysis to enhance the 

applicability of the results for actual engineering problems. This formulation combines all 

constraints into an objective function and therefore has less complexity as compared to general 

single-objective constrained optimization approaches. Moreover, several optimum solutions may 

be determined for a particular problem, which increases the flexibility of the design. Three 

examples, including a composite plate bending problem with layup blending constraint, have 

been presented to show the effectiveness of the proposed method. It can be concluded that the 

proposed method describes an effective and relatively simple process for the design of laminates, 

and it can be used as a basis for the development of an sophisticated system for design of 

laminates. 
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8. Replication of results 

In this section, we provide a pseudo-code of the PSO-SA optimization method and some 

benchmarks for the validity of the proposed method. As stated previously in this article, the PSO-

SA method is a hybrid stochastic approach that integrates the good local search of the SA within 

the PSO. In this regard, improvements in the global best solution will be performed by the SA 

method, if certain conditions were met. A new version of the SA is implemented here in which 

temperature reduction is adaptive [49]. In the present pseudo-code, the parameters must be set 

according to those given in Section 5. In Section 5, we also explained the implementation of the 

proposed method in solving problems in composite materials design optimization. 

1. Procedure PSO-SA 

2. n  NumberParticles //{set initial parameters} 

3. max  MaxLimit 

4. min  MinLimit 

5. imax  MaxIterationNumber 

6. c  CognitiveParameter 

7. c  SocialParameter 

8. vmax  UpperVelocityLimit 

9. nmax  SALoopLength 

10.   SAInitialTemperature 

11. RT  SATemperatureDecrementParameter 

12. // {generate initial state} 

13. for i=1 to n // {initialize n particles} 

14.     X
k
  GenerateInitialParticles 

15.     Pbk  X
k
 

16. Endfor 

17. T=T0 

18. // {set Pg as the best of the initial population} 

19. Stopflag=.false. 

20. // {determine point of best solution} 

21. f(X
kmin

 )  min (f(X
k
)) 

22. P
g
  X

kmin 

23. for i from 1 to imax   //{main loop} 

24.   max-( max-min) ×i/ imax 

25.    for k from 1 to n 

26.       R1  Random(0,1) 

27.       R2  Random(0,1) 

28. // {update velocity and position of each particle} 

29.        v
 
k
i+1

  vk
i
+ c× R1 (Pbk

i
-Xk

i
)+ c× R2 (Pg

i
-Xk

i
) 

30.        Xk
i+1

  Xk
i
  vk

i+1
 

31. //{check velocity for upper limit} 

32.        If (v
 
k
i+1

.GE.vmax) v
 
k
i+1

=vmax 

33.        If (v
 
k
i+1

.LE.-vmax) v
 
k
i+1

=-vmax 

34. // {update best of each particle} 

35.       Pbi+1
k
  Pbi

k
 

36. // {compute the global best solution of the swarm, Pg
i
} 

37. // {if   Pg
i
 is not improved in a PSO cycle,

 
then send  it 

38. //   to the modified SA procedure for an improvement} 
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39. // {Modified SA Procedure} 

40. XSAi Pg
i
 

41.       for j from 1 to nmax //{SA loop) 

42.         XSAc  PickRandomState 

43. // {compare objective function values} 

44.          if (f(XSAc)=< f(XSAi) then 

45.             XSAi  XSAc  //{accept move} 

46.              T  T× RT //{temperature update} 

47.          Else 

48. //{check for Metropolis criteria} 

49.             R  Random(-1,1) 

50.             if (R<exp(-f(XSAc)+ f(XSAi))/T) then 

51.                XSAi  XSAc  //{accept move} 

52.                 T  T× RT //{temperature update} 

53.             Endif 

54.        Endif 

55. //{update global best} 

56.        Pg
i 
 XSAi 

57.      endfor 

58.     return // {to PSO} 

59. // {end SA procedure} 

60. //{check for stop criteria} 

61.      If Stopflag=.true. then return 

62. endfor 

63. end 

To verify the developed computer code and test the performance of the proposed bi-objective 

formulation, four mathematical constrained optimization problems have been resolved using the 

proposed bi-objective optimization analysis. The test functions and constraints are given in Table 

12. Kim and Myung (1997) [56] described seven algorithms for mathematical constrained 

optimization problems based on two evolutionary programming (EP) methods. For comparison 

purposes, we selected two of these algorithms for each test function, which resulted in the best 

and the worst solutions. The obtained optimum solutions, together with the results from the 

literature, are summarized in Table 13. It is noticeable that the proposed bi-objective algorithm 

presents good results when compared with these reference values. The convergence curves are 

shown in Fig. 7 through Fig. 10. 

Table 12 
Test functions. 

Function Objective Constraints Bounds 

F1 2 2 2
2 1 1100( ) (1 )x x x    

2
1 2

2
2 1

0

0

x x

x x

 

 
 

1

2

0.5 0.5

0 1

x

x

  

 
 

F2 1 2x x   
4 3 2

2 1 1 1

4 3 2
2 1 1 1 1

2 8 8 2

4 32 88 96 36

x x x x

x x x x x

   

    
 

1

2

0 3

0 4

x

x

 

 
 

F3 2
1 20.01x x  

1 2

2 2
1 2

25 0
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x x
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2

2 50

0 50

x

x
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F4 2 2
1 2( 2) ( 1)x x    

2
2 1

1 2

0

2

x x

x x

 

 
 ---------- 
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Table 13 
Comparison of the results for mathematical constrained optimization problems. 

Function Method
*
 Best Mean Worst 

F1 

Algorithm #4 0.25 0.25 0.25 

Algorithm #7 0.25 0.25 0.25 

Present 0.25001 ----- ----- 

F2 

Algorithm #1 -5.50801 -5.50801 -5.50679 

Algorithm #5 -5.50801 -5.50801 -5.50801 

Present -5.50801 ----- ----- 

F3 

Algorithm #2 5 5.12323 5.49622 

Algorithm #5 5 5.0002 5.00082 

Present 5 ----- ----- 

F4 

Algorithm #3 1 1 1 

Algorithm #7 1 1 1 

Present 1 ----- ----- 
* The results designated by Algorithm #1 thru Algorithm#5 and Algorithm#7 were taken from Kim 

& Myung (1997) [56]. 

 
Fig. 7. Convergence curves for the function F1. 

 
Fig. 8. Convergence curves for the function F2. 
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Fig. 9. Convergence curves for the function F3. 

 
Fig. 10. Convergence curves for the function F4. 

References 

[1] Soutis C. Introduction: engineering requirements for aerospace composite materials. Polym. 

Compos. Aerosp. Ind., Elsevier; 2015, p. 1–18. doi:10.1016/B978-0-85709-523-7.00001-3. 

[2] Javidrad F, Nouri R. A simulated annealing method for design of laminates with required stiffness 

properties. Compos Struct 2011;93:1127–35. doi:10.1016/j.compstruct.2010.10.011. 

0

1

2

3

4

5

6

7

8

9

10

11

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000

C
o

n
st

ra
it

s 
fu

n
ct

io
n
 

Number of function evaluation 

Constraints function

Objective function

O
b

jectiv
e fu

n
ctio

n
 

-1

0

1

2

3

4

5

6

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000

C
o

n
st

ra
im

ts
 f

u
n
ct

io
n
 

Number of function evaluation 

Constraints function

Objective function

O
b

jectiv
e fu

n
ctin

 



 F. Javidrad et al./ Journal of Soft Computing in Civil Engineering 4-1 (2020) 01-28 25 

[3] Kaveh A, Dadras A, Geran Malek N. Optimum stacking sequence design of composite laminates 

for maximum buckling load capacity using parameter-less optimization algorithms. Eng Comput 

2019;35:813–32. doi:10.1007/s00366-018-0634-2. 

[4] Deveci HA, Artem HS. Optimum design of fatigue-resistant composite laminates using hybrid 

algorithm. Compos Struct 2017;168:178–88. doi:10.1016/j.compstruct.2017.01.064. 

[5] Li X, Wang H, Li G. Reanalysis assisted metaheuristic optimization for free vibration problems of 

composite laminates. Compos Struct 2018;206:380–91. doi:10.1016/j.compstruct.2018.08.028. 

[6] Reguera F, Cortínez VH. Optimal design of composite thin-walled beams using simulated 

annealing. Thin-Walled Struct 2016;104:71–81. doi:10.1016/j.tws.2016.03.001. 

[7] Barbero EJ. Introduction to composite materials design. CRC press; 2017. 

[8] Belardi VG, Fanelli P, Vivio F. First-order shear deformation analysis of rectilinear orthotropic 

composite circular plates undergoing transversal loads. Compos Part B Eng 2019;174:107015. 

doi:10.1016/j.compositesb.2019.107015. 

[9] Adhikari B, Singh BN. An efficient higher order non-polynomial Quasi 3-D theory for dynamic 

responses of laminated composite plates. Compos Struct 2018;189:386–97. 

doi:10.1016/j.compstruct.2017.10.044. 

[10] Khandan R, Noroozi S, Sewell P, Vinney J. The development of laminated composite plate 

theories: a review. J Mater Sci 2012;47:5901–10. doi:10.1007/s10853-012-6329-y. 

[11] Guo Y, Nagy AP, Gürdal Z. A layerwise theory for laminated composites in the framework of 

isogeometric analysis. Compos Struct 2014;107:447–57. doi:10.1016/j.compstruct.2013.08.016. 

[12] Carrera E. CZ° requirements—models for the two dimensional analysis of multilayered structures. 

Compos Struct 1997;37:373–83. doi:10.1016/S0263-8223(98)80005-6. 

[13] Arora JS. Introduction to optimum design. (4th ed.). 707-738. Academic Press, (Chapter 18). 

Elsevier; 2018. 

[14] Guenin B, Könemann J, Tuncel L. A gentle introduction to optimization. Cambridge University 

Press; 2014. 

[15] An H, Chen S, Huang H. Laminate stacking sequence optimization with strength constraints using 

two-level approximations and adaptive genetic algorithm. Struct Multidiscip Optim 2015;51:903–

18. doi:10.1007/s00158-014-1181-0. 

[16] Li K, Liu X, Jin Y, Qi H, Liu X, Xu S. Structural Strength and Laminate Optimization of 

Composite Connecting Bracket in Manned Spacecraft Using a Genetic Algorithm. Appl Compos 

Mater 2019;26:591–604. doi:10.1007/s10443-018-9736-7. 

[17] Wang W, Guo S, Chang N, Zhao F, Yang W. A modified ant colony algorithm for the stacking 

sequence optimisation of a rectangular laminate. Struct Multidiscip Optim 2010;41:711–20. 

doi:10.1007/s00158-009-0447-4. 

[18] Zadeh PM, Fakoor M, Mohagheghi M. Bi-level optimization of laminated composite structures 

using particle swarm optimization algorithm. J Mech Sci Technol 2018;32:1643–52. 

doi:10.1007/s12206-018-0319-1. 



26 F. Javidrad et al./ Journal of Soft Computing in Civil Engineering 4-1 (2020) 01-28 

[19] Kathiravan R, Ganguli R. Strength design of composite beam using gradient and particle swarm 

optimization. Compos Struct 2007;81:471–9. doi:10.1016/j.compstruct.2006.09.007. 

[20] Javidrad F, Nazari M, Javidrad HR. Optimum stacking sequence design of laminates using a hybrid 

PSO-SA method. Compos Struct 2018;185:607–18. doi:10.1016/j.compstruct.2017.11.074. 

[21] Barroso ES, Parente E, Cartaxo de Melo AM. A hybrid PSO-GA algorithm for optimization of 

laminated composites. Struct Multidiscip Optim 2017;55:2111–30. doi:10.1007/s00158-016-1631-

y. 

[22] Javidrad F, Nazari M. A new hybrid particle swarm and simulated annealing stochastic 

optimization method. Appl Soft Comput 2017;60:634–54. doi:10.1016/j.asoc.2017.07.023. 

[23] Halpin JC. Primer on Composite Materials Analysis. Technomic Publishinf Company, Inc., USA. 

1984. 

[24] Sun CT, Tao QJ, Oplinger DW, J. HW. Comparative evaluation of failure analysis methods for 

composite laminates. In DOT/FAA/AR-95/109, Office of Aviation Research, Washington. 1996. 

[25] Daniel IM. Constitutive behavior and failure criteria for composites under static and dynamic 

loading. Meccanica 2015;50:429–42. doi:10.1007/s11012-013-9829-1. 

[26] Tsai SW, Wu EM. A General Theory of Strength for Anisotropic Materials. J Compos Mater 

1971;5:58–80. doi:10.1177/002199837100500106. 

[27] Kim CW, Song SR, Hwang W, Park HC, Han KS. On the failure indices of quadratic failure 

criteria for optimal stacking sequence design of laminated plate. Appl Compos Mater 1994;1:81–5. 

doi:10.1007/BF00567214. 

[28] Tsai SW. Strength Characteristics of Composite Materials. . NASA CR-224, USA. 1965. 

[29] Hoffman O. The Brittle Strength of Orthotropic Materials. J Compos Mater 1967;1:200–6. 

doi:10.1177/002199836700100210. 

[30] Dong H, Wang J, Karihaloo BL. An improved Puck’s failure theory for fibre-reinforced composite 

laminates including the in situ strength effect. Compos Sci Technol 2014;98:86–92. 

doi:10.1016/j.compscitech.2014.04.009. 

[31] Rohwer K. Predicting fiber composite damage and failure. J Compos Mater 2015;49:2673–83. 

doi:10.1177/0021998314553885. 

[32] Akbulut M, Sonmez FO. Design optimization of laminated composites using a new variant of 

simulated annealing. Comput Struct 2011;89:1712–24. doi:10.1016/j.compstruc.2011.04.007. 

[33] Zhu H, Sankar B V., Marrey R V. Evaluation of Failure Criteria for Fiber Composites Using Finite 

Element Micromechanics. J Compos Mater 1998;32:766–82. doi:10.1177/002199839803200804. 

[34] Bailie JA, Ley RP, Pasricha A. A summary and review of composite laminate design guidelines. 

NASA contract final report NAS1-19347, National Aeronautics and Space Administration, Langley 

Research Center, USA. 1997. 

[35] Kim J-S, Kim N-P, Han S-H. Optimal stiffness design of composite laminates for a train carbody 

by an expert system and enumeration method. Compos Struct 2005;68:147–56. 

doi:10.1016/j.compstruct.2004.03.009. 



 F. Javidrad et al./ Journal of Soft Computing in Civil Engineering 4-1 (2020) 01-28 27 

[36] Vannucci P, Verchery G. A special class of uncoupled and quasi-homogeneous laminates. Compos 

Sci Technol 2001;61:1465–73. doi:10.1016/S0266-3538(01)00039-2. 

[37] Montemurro M. An extension of the polar method to the First-order Shear Deformation Theory of 

laminates. Compos Struct 2015;127:328–39. doi:10.1016/j.compstruct.2015.03.025. 

[38] Middleton TH. Composite Materials in Aircraft Structures. John Wiley and Sons. 1990. 

[39] Niu MC-Y. Composite Airframe Structures, Third edition. Hong Kong Conmilit Press Ltd. 2010. 

[40] Todoroki A, Sasada N, Miki M. Object-Oriented Approach to Optimize Composite Laminated 

Plate Stiffness with Discrete Ply Angles. J Compos Mater 1996;30:1020–41. 

doi:10.1177/002199839603000904. 

[41] Wang D, Tan D, Liu L. Particle swarm optimization algorithm: an overview. Soft Comput 

2018;22:387–408. doi:10.1007/s00500-016-2474-6. 

[42] Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. IV, 1942–

1948., vol. 4, IEEE; 1995, p. 1942–8. doi:10.1109/ICNN.1995.488968. 

[43] Taherkhani M, Safabakhsh R. A novel stability-based adaptive inertia weight for particle swarm 

optimization. Appl Soft Comput 2016;38:281–95. doi:10.1016/j.asoc.2015.10.004. 

[44] Schneider JJ, Puchta M. Investigation of acceptance simulated annealing — A simplified approach 

to adaptive cooling schedules. Phys A Stat Mech Its Appl 2010;389:5822–31. 

doi:10.1016/j.physa.2010.08.045. 

[45] Atiqullah MM. An Efficient Simple Cooling Schedule for Simulated Annealing, 2004, p. 396–404. 

doi:10.1007/978-3-540-24767-8_41. 

[46] Xia W, Wu Z. A hybrid particle swarm optimization approach for the job-shop scheduling problem. 

Int J Adv Manuf Technol 2006;29:360–6. doi:10.1007/s00170-005-2513-4. 

[47] Xi-Huai Wang, Jun-Jun Li. Hybrid particle swarm optimization with simulated annealing. Proc. 

2004 Int. Conf. Mach. Learn. Cybern. (IEEE Cat. No.04EX826), vol. 4, IEEE; n.d., p. 2402–5. 

doi:10.1109/ICMLC.2004.1382205. 

[48] Shieh H-L, Kuo C-C, Chiang C-M. Modified particle swarm optimization algorithm with simulated 

annealing behavior and its numerical verification. Appl Math Comput 2011;218:4365–83. 

doi:10.1016/j.amc.2011.10.012. 

[49] Javidrad F, Nazari M, Javidrad HR. A variable Markov chain length strategy for improving 

simulated annealing convergence behavior: An experimental verification. In A. Scollen & T. 

Hargraves (Eds.), Simulated Annealing, Introduction, Applications and Theory n.d.:221–68. 

[50] Grosset L, LeRiche R, Haftka RT. A double-distribution statistical algorithm for composite 

laminate optimization. Struct Multidiscip Optim 2006;31:49–59. doi:10.1007/s00158-005-0551-z. 

[51] Venter G, Haftka RT. Constrained particle swarm optimization using a bi-objective formulation. 

Struct Multidiscip Optim 2010;40:65–76. doi:10.1007/s00158-009-0380-6. 

[52] Kristinsdottir BP, Zabinsky ZB, Tuttle ME, Neogi S. Optimal design of large composite panels 

with varying loads. Compos Struct 2001;51:93–102. doi:10.1016/S0263-8223(00)00128-8. 



28 F. Javidrad et al./ Journal of Soft Computing in Civil Engineering 4-1 (2020) 01-28 

[53] Liu D, Toroporov V V., Querin OM, Barton DC. Bilevel Optimization of Blended Composite Wing 

Panels. J Aircr 2011;48:107–18. doi:10.2514/1.C000261. 

[54] Adams DB, Watson LT, Gürdal Z, Anderson-Cook CM. Genetic algorithm optimization and 

blending of composite laminates by locally reducing laminate thickness. Adv Eng Softw 

2004;35:35–43. doi:10.1016/j.advengsoft.2003.09.001. 

[55] Irisarri F-X, Lasseigne A, Leroy F-H, Le Riche R. Optimal design of laminated composite 

structures with ply drops using stacking sequence tables. Compos Struct 2014;107:559–69. 

doi:10.1016/j.compstruct.2013.08.030. 

[56] Jong-Hwan Kim, Hyun Myung. Evolutionary programming techniques for constrained 

optimization problems. IEEE Trans Evol Comput 1997;1:129–40. doi:10.1109/4235.687880. 

 


	1. Professor, Department of Mechanical and Aerospace Engineering, Aeronautical University of Science and Technology, Tehran, Iran
	2. Graduate Student, Center for Postgraduate Studies, Aeronautical University of Science and Technology, Tehran, Iran
	3. Ph.D. Student, Department of Mechanical Engineering, University of Manitoba, Winnipeg, Canada
	Corresponding author: f.javidrad@gmail.com
	1. Introduction
	● Modeling
	● Analysis
	● Optimization methods

	2. Analysis of composite laminates
	2.1. Stress-based failure analysis
	2.2. Composite laminate design for manufacturing guidelines

	3. Optimization method
	4. Optimization problem description
	5. Implementation
	6. Numerical results
	6.1. Design of a laminate with maximum A22 stiffness coefficient
	6.2. Layup sequence design of a laminate under in-plane forces and moments
	6.3. Design of plate under bending loads and blending constraints

	7. Conclusions
	8. Replication of results
	References

