Comparison of Genetic Algorithm (GA) and Particle Swarm Optimization Algorithm (PSO) for Discrete and Continuous Size Optimization of 2D Truss Structures

Document Type : Regular Article


1 Assistant Professor, Civil Engineering Department, University of Kashan, Kashan, Iran

2 Ph.D. Candidate, Structure Engineering, Faculty of Civil Engineering, Semnan University, Semnan, Iran


Optimization of truss structures including topology, shape and size optimization were investigated by different researchers in the previous years. The aim of this study is discrete and continuous size optimization of two-dimensional truss structures with the fixed topology and the shape. For this purpose, the section area of the members are considered as the decision variables and the weight minimization as the objective function. The constraints are the member stresses and the node displacements which should be limited at the allowable ranges for each case. In this study, Genetic Algorithm and Particle Swarm Optimization algorithm are used for truss optimization. To analyse and determine the stresses and displacements, OpenSees software is used and linked with the codes of Genetic Algorithm and Particle Swarm Optimization algorithm provided in the MATLAB software environment. In this study, the optimization of four two-dimensional trusses including the Six-node, 10-member truss, the Eight-node, 15-member truss, the Nine-node, 17-member truss and the Twenty-node, 45-member truss under different loadings derived from the literature are done by the Genetic Algorithm and Particle Swarm Optimization algorithm and the results are compared with those of the other researchers. The comparisons show the outputs of the Genetic Algorithm are the most generally economical among the different studies for the discrete size cases while for the continuous size cases, the outputs of the Particle Swarm Optimization algorithm are the most economical.


Google Scholar


Main Subjects

[1]     Arora J, Haug E. Applied Optimal Design for Mechanical and Structural Systems.Wiley-Interscience Publication,New York. 1979.
[2]     Deb K, Gulati S. Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 2001;37:447–65.
[3]     Ohsaki M. Simultaneous optimization of topology and geometry of a regular plane truss. Comput Struct 1998;66:69–77.
[4]     Sivanandam SN, Deepa SN. Genetic Algorithms. Introd. to Genet. Algorithms, Berlin, Heidelberg: Springer Berlin Heidelberg; n.d., p. 15–37. doi:10.1007/978-3-540-73190-0_2.
[5]     Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS’95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., IEEE; n.d., p. 39–43. doi:10.1109/MHS.1995.494215.
[6]     Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. IV, 1942–1948., vol. 4, IEEE; 1995, p. 1942–8. doi:10.1109/ICNN.1995.488968.
[7]     Rajeev S, Krishnamoorthy CS. Discrete Optimization of Structures Using Genetic Algorithms. J Struct Eng 1992;118:1233–50. doi:10.1061/(ASCE)0733-9445(1992)118:5(1233).
[8]     Hajela P, Lee E. Genetic algorithms in truss topological optimization. Int J Solids Struct 1995;32:3341–57. doi:10.1016/0020-7683(94)00306-H.
[9]     Camp C, Pezeshk S, Cao G. Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm. J Struct Eng 1998;124:551–9. doi:10.1061/(ASCE)0733-9445(1998)124:5(551).
[10]    Fourie PC, Groenwold AA. The particle swarm optimization algorithm in size and shape optimization. Struct Multidiscip Optim 2002;23:259–67. doi:10.1007/s00158-002-0188-0.
[11]    Li LJ, Huang ZB, Liu F. A heuristic particle swarm optimization method for truss structures with discrete variables. Comput Struct 2009;87:435–43.
[12]    Kaveh A, Talatahari S. Size optimization of space trusses using Big Bang–Big Crunch algorithm. Comput Struct 2009;87:1129–40.
[13]    Kaveh A, Malakoutirad S. Hybrid genetic algorithm and particle swarm optimization for the force method-based simultaneous analysis and design 2010.
[14]    Kaveh A, Talatahari S. Optimal design of skeletal structures via the charged system search algorithm. Struct Multidiscip Optim 2010;41:893–911. doi:10.1007/s00158-009-0462-5.
[15]    Kaveh A, Talatahari S. Optimum design of skeletal structures using imperialist competitive algorithm. Comput Struct 2010;88:1220–9.
[16]    Kaveh A, Abbasgholiha H. Optimum design of steel sway frames using Big Bang-Big Crunch algorithm 2011.
[17]    Martini K. Harmony Search Method for Multimodal Size, Shape, and Topology Optimization of Structural Frameworks. J Struct Eng 2011;137:1332–9. doi:10.1061/(ASCE)ST.1943-541X.0000378.
[18]    Hajirasouliha I, Pilakoutas K, Moghaddam H. Topology optimization for the seismic design of truss-like structures. Comput Struct 2011;89:702–11.
[19]    Richardson JN, Adriaenssens S, Bouillard P, Filomeno Coelho R. Multiobjective topology optimization of truss structures with kinematic stability repair. Struct Multidiscip Optim 2012;46:513–32. doi:10.1007/s00158-012-0777-5.
[20]    Miguel LFF, Miguel LFF. Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl 2012;39:9458–67.
[21]    Makiabadi MH, Baghlani A, Rahnema H, Hadianfard MA. Optimal design of truss bridges using teachinglearning-based optimization algorithm 2013.
[22]    Miguel LFF, Lopez RH, Miguel LFF. Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv Eng Softw 2013;56:23–37.
[23]    Gandomi AH. Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 2014;53:1168–83.
[24]    Azad SK, Hasançebi O. An elitist self-adaptive step-size search for structural design optimization. Appl Soft Comput 2014;19:226–35.
[25]    Kaveh A, Mahdavi VR. Colliding bodies optimization: a novel meta-heuristic method. Comput Struct 2014;139:18–27.
[26]    Kaveh A, Mirzaei B, Jafarvand A. An improved magnetic charged system search for optimization of truss structures with continuous and discrete variables. Appl Soft Comput 2015;28:400–10. doi:10.1016/j.asoc.2014.11.056.
[27] n.d.
[28] n.d.
[29]    Kazemzadeh Azad S, Hasançebi O, Saka MP. Guided stochastic search technique for discrete sizing optimization of steel trusses: A design-driven heuristic approach. Comput Struct 2014;134:62–74. doi:10.1016/j.compstruc.2014.01.005.
[30]    Nanakorn P, Meesomklin K. An adaptive penalty function in genetic algorithms for structural design optimization. Comput Struct 2001;79:2527–39. doi:10.1016/S0045-7949(01)00137-7.
[31]    Coello Coello CA, Rudnick M, Christiansen AD. Using genetic algorithms for optimal design of trusses. Proc. Sixth Int. Conf. Tools with Artif. Intell. TAI 94, IEEE Comput. Soc. Press; n.d., p. 88–94. doi:10.1109/TAI.1994.346509.
[32]    Eskandar H, Sadollah A, Bahreininejad A. Weight optimization of truss structures using water cycle algorithm. Iran Univ Sci Technol 2013;3:115–29.
[33]    Kaveh A, Kalatjari V. Genetic algorithm for discrete-sizing optimal design of trusses using the force method. Int J Numer Methods Eng 2002;55:55–72. doi:10.1002/nme.483.
[34]    Kaveh A, Rahami H. Analysis, design and optimization of structures using force method and genetic algorithm. Int J Numer Methods Eng 2006;65:1570–84. doi:10.1002/nme.1506.
[35]    Hadidi A, Azad SK, Azad SK. Structural optimization using artificial bee colony algorithm. 2nd Int. Conf. Eng. Optim., 2010, p. 6–9.
[36]    Li LJ, Huang ZB, Liu F, Wu QH. A heuristic particle swarm optimizer for optimization of pin connected structures. Comput Struct 2007;85:340–9. doi:10.1016/j.compstruc.2006.11.020.
[37]    Koohestani K, Kazemzadeh Azad S. An Adaptive real-coded genetic algorithm for size and shape optimization of truss structures. Proc. First Int. Conf. Soft Comput. Technol. Civil, Struct. Environ. Eng. Civil-Comp Press. Stirlingshire, UK, Pap., vol. 13, 2009.
[38]    Khan MR, Willmert KD, Thornton WA. An Optimality Criterion Method for Large-Scale Structures. AIAA J 1979;17:753–61. doi:10.2514/3.61214.
[39]    Sabour MH, Eskandar H, Salehi P. Imperialist competitive ant colony algorithm for truss structures. World Appl Sci J 2011;12:94–105.
[40]    Sadollah A, Bahreininejad A, Eskandar H, Hamdi M. Mine blast algorithm for optimization of truss structures with discrete variables. Comput Struct 2012;102–103:49–63. doi:10.1016/j.compstruc.2012.03.013.
[41]    Zhang Y-N, Liu P, Liu B, Zhu C-Y, Li Y. Application of improved hybrid genetic algorithm to optimized design of architecture structures. Huanan Ligong Daxue Xuebai(Ziran Kexue Ban)/ J South China Univ Technol Sci Ed 2005;33:69–72.