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Several dynamic modulus (E*) predictive models of asphalt 

mixtures have been developed as an alternative to laboratory 

testing. The 1999 I-37A Witczak equation is one of the most 

commonly used alternatives. This equation is based on 

mixtures laboratory results in the U.S. In Latin American 

countries there are significant differences in material 

properties, traffic information, and environmental conditions 

compared to the U.S.; therefore, there is a limitation is the 

use of this equation using local conditions. The National 

Laboratory of Materials and Structural Models at the 

University of Costa Rica (Lanamme UCR) has previously 

performed a local calibration of this equation based on 

results from different types of Costa Rican mixtures. 

However, there was still room for improvement using 

advanced regression techniques such as neural networks 

(NN). The objective of this study was to develop an 

improved and more effective dynamic modulus regression 

model for mixtures in Costa Rica using Neural Networks. 

Results indicated that the new and improved model based on 

neural networks (E* NN-model) not only met the model 

adequacy checking criteria but also exhibited the best 

goodness of fit parameters and the lowest overall bias. 

Keywords: 

Neural network; 

Dynamic modulus; 
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Pavements; 

Master curves. 

 

1. Introduction 

The most important asphalt concrete mixture property influencing the structural response of a 

flexible pavement is the dynamic modulus (E*). For a specific mixture, temperature, rate of 
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loading and aging significantly influence this property. E* is also the primary hot-mix asphalt 

(HMA) material property input at all three hierarchical levels in the new AASHTOware 

Pavement ME Design Guide or formerly known as mechanistic empirical pavement design guide 

(MEPDG) [1]. 

Various E* predictive models have been developed to estimate E* as an alternative to laboratory 

testing. The most widely used model is the 1999 I-37A Witczak predictive model based on 

conventional multivariate regression analysis of laboratory test data. Because of this, the Witczak 

model has been evaluated using many different datasets and has been calibrated to several 

regions. However, use of the model with no calibration for local mixtures should be limited. 

The results of a study conducted at MnROAD indicated that the Witczak predictive equation 

fitted the data relatively well in some locations at intermediate and low temperatures, but for 

other locations the differences were significant [2]. The authors concluded that the Witczak 

equation should be used with caution and they also recommended further research to adjust and 

validate this equation for mixtures and local conditions found in Minnesota. 

A study at the University of Florida [3], evaluated the same equation using 28 mixtures from 

Florida. The results of this study indicated that the Witczak equation was slightly bias for the 

mixtures investigated. The results also allowed the correction of the bias between predicted and 

measured E* by means of statistical calibration. Authors also found that E* predicted values at 

higher temperatures generally were closer to measured values than predictions at lower 

temperatures. Authors pointed out that the database used to develop the Witczak model could be 

constrained to predicting the modulus of mixtures tested at higher temperatures. 

41 mixtures commonly used in North Carolina were used to evaluate the prediction accuracy of 

the Witczak equation and the influence of some mixture variables in the prediction of E* [4]. The 

study showed that Witczak’s predictions for cooler temperatures were better than at warmer 

temperatures. This is the opposite of what was observed in Florida and thus highlights the 

importance of proper calibration. 

Another study by Schwartz in 2005 [5] evaluated the accuracy and robustness of the Witczak 

predictive equation through a set of sensitivity and validation analyses. The same database used 

to create the Witczak equation and an independent set of laboratory E* test data for 26 other 

mixtures were used for calibration purposes. The validation analysis of the Witczak equation 

against the independent set of data showed a good match between predicted and measured E* 

values that was nearly as good as for the calibration data set, but with a slight positive bias which 

was higher for lower stiffness/higher temperature conditions. 

The University of Arkansas studied 12 commonly used mixtures in Arkansas and found a good 

correlation between Witczak predicted E* values and laboratory measured results [6]. The 

goodness-of-fit statistics showed that the prediction of E* for the mixtures used in the study 

ranged from very good to excellent, according to the subjective criteria used. 

Robbins and Timm in 2011 [7], evaluated three E* predictive models (Witczak 1-37A, Witczak 

1-40D, and Hirsch) with using 18 plant-produced, lab-compacted mixtures. These mixtures were 

placed at the 2006 National Center for Asphalt Technology Test Track. The Hirsch model for 

estimating asphalt mixture modulus is based on a law of mixtures for composite materials [8] 
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which utilizes the shear modulus of the binder, G*, and volumetric properties of the mix to 

predict E*. E* estimaded values were obtained at three temperatures and three frequencies for 

direct comparison with laboratory measured results. Results indicated that the Witczak equation 

had the greatest deviation from measured values, and the Witczak 1-40D model overestimated 

E* values by approximately 61%. The Hirsch model most accurately predicted the moduli for the 

2006 Test Track mixtures. 

Singh et al. in 2011 [9], also evaluated the Witczak equation for estimating the dynamic modulus 

of selected asphalt mixtures commonly used in Oklahoma. Analyses of the results indicated that 

a calibration factor was needed for the model to obtain an accurate estimates of dynamic 

modulus. El-Badawy et al. in 2012 [10], also indicated that the accuracy of this equation can be 

further enhanced by adding a local calibration factor. 

In the case of Costa Rica, a similar analysis was performed to ensure that the Witczak model 

could be readily applied to local mixtures [11]. The Witczak model was identified to produce 

slightly biased predictions of E* when compared to several gradations, mostly of typical use in 

the country. As was the case with some of the previous studies, the model showed positive bias at 

higher stiffness/lower temperature conditions. Consequently, a calibrated Witczak model was 

fitted using nonlinear regression. 

Far et al. in 2009 [12], developed a new, rational, and effective set of dynamic modulus E* 

predictive models. These predictive models used artificial neural networks (ANNs) trained with 

the same set of parameters used in the Witczak equation. E* values from several mixtures were 

collected from existing national efforts and from data obtained at North Carolina State 

University. The results showed that the predicted and measured E* values were in close 

agreement when ANN models were used. 

A paper presented by Ceylan et al. in 2009 [13], discussed the accuracy and robustness of the 

various models including an ANN based models. The ANN-based E* models showed 

significantly better overall prediction accuracy, better local accuracy at high and low temperature 

extremes, less prediction bias, and better balance between temperature and mixture influences 

compared to the ordinary least squares (OLS) regression-based approach. Authors indicated that 

the ANN models were better able to rank mixtures in the same order as measured E* for fixed 

environmental and design traffic conditions. 

In summary, the I-37A Witczak predictive model has worked well in some cases and not so well 

in others. Calibration of this equation has also been implemented by several researchers while 

others decided to utilize the 2006 Witczak model or decided to adopt a different approach such as 

the Hirsh model. Finally, the use of more advanced regression techniques has also proven to be a 

more attractive alternative to calibration of the Witczak equation. 

2. Objective 

The objective of this study was to create a neural network (NN) based models to improved 

accuracy and reduce bias in the prediction of dynamic modulus (E*) for asphalt mixtures in 

Costa Rica. 
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3. Mixture characterization and evaluation 

In 2011, LanammeUCR conducted a laboratory evaluation of the applicability of the Witczak 

Model to a typical aggregate source and one type of asphalt binder produced in Costa Rica [11]. 

The flow chart presented in Figure 1 summarizes the experimental plan of the study, where 10 

different gradations were selected using one aggregate source and specimens were compacted 

using the Superpave gyratory compactor. 

The study involved one aggregate source (from a northeast region of the country called 

Guápiles). The aggregate is extruded from igneous deposits along a river. The aggregate 

properties are shown in Table 1. 

In Costa Rica only one type of asphalt is produced. The binder viscosity classification 

corresponds to an unmodified AC-30. Based on the Superpave specification, the binder classifies 

as a PG64-22. The properties for the asphalt binder are shown in Table 2. 

 
Fig. 1. Flow Chart for the Experimental Plan. 
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Table 1 
Physical Properties of the Aggregates Used in the Study. 

Property Test Method Value Unit Specifications 

Coarse Aggregate 

L.A. Abrasion  AASHTO T 96 21.21 % 37% max.
1 

Specific Gravity AASHTO T 85 2.652  2.85 max.
1 

Absorption AASHTO T 85 1.69 % 4% max.
1
 

Faces Fractured 

1 face ASTM D 5821 

100 % 90% min.
2
 

2 or more  99.8 % 75% min.
2
 

Fine Aggregate 

Plasticity index AASHTO T 90 NP  10% max.
1
 

Sand equivalent AASHTO T 176 78  - 

Angularity AASHTO TP 304 37.2 % - 

Specific Gravity AASHTO T 84 2.549  2.85% max.
1
 

Absorption AASHTO T 84 3.283 % - 
1 Nevada DOT Standard Specifications for Road and Bridge Construction, 2001. 
2 Standard Specifications for Constructions of Roads and Bridges on Federal Highways Projects, FP-03 

 

Table 2 
Physical Properties of the Used Asphalt Binder. 

Aging State Property Unit Asphalt Binder AC-30 

Original 

Density at 25ºC g/cm
3
 1.030 

Absolute viscosity at 60ºC Poise 3330 

Kinematic viscosity at 125ºC centiPoise 961 

Kinematic viscosity at 135ºC centiPoise 565 

Kinematic viscosity at 145ºC centiPoise 347 

VTS, regression slope of viscosity temperature susceptibility - 3.43 

Regression intercept - 10.26 

RTFO 

Absolute viscosity at 60ºC Poise 11512 

Kinematic viscosity at 125ºC centiPoise 1712 

Kinematic viscosity at 135ºC centiPoise 938 

Kinematic viscosity at 145ºC centiPoise 550 

 

3.1. E* specimen preparation 

Ten different types of asphalt mixtures were designed in the laboratory. Three dense graded 

mixtures (G1, G2 and G3) below the “prevention zone” (also called Superpave’s restricted zone); 

two dense graded mixtures (G6 and G7) above the “prevention zone”; two dense graded mixtures 

(G4 and G5) thru the “prevention zone”; one Stone Matrix Asphalt (SMA) mixture (G9); one 

micro surface asphalt mixture (G8), and a typical plant dense graded mixture (G10). The 

gradations are presented in Table 3. The design air void content was fixed to 4%. Two mixture 

design methodologies were used: Marshall and Superpave. The optimum asphalt content by dry 

weight of aggregate (DWA) and by total weight of mixture (TWM), voids in the mineral 

aggregate (VMA), the voids filled with asphalt (VFA), and the effective asphalt content (Pbe) 

based on both methodologies are shown in Table 4. 
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Table 3 
Studied Aggregate Gradations. 

ASTM 

Sieve 

Sieve 

(mm) 

Studied Gradation 

Below the prevention zone 
Thru the 

prevention zone 

Above the 

prevention zone 
Micro  SMA Plant 

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

3/4 19.0 100 100 100 100 100 100 100 100 100 100 

1/2 12.5 95 100 90 95 95 98 90 100 90 95 

3/8 9.5 88 95 78 90 90 92 65 81 45 79 

N°4 4.75 37 62 40 45 70 67 45 32 28 48 

N°8 2.36 28 33 32 37 50 47 42 27 23 32 

N°16 1.18 20 23 20 29 27 32 37 22 22 22 

N°30 0.60 13 16 14 22 15 23 30 18 19 16 

N°50 0.30 9 12 9 14 8 17 20 14 16 12 

N°100 0.15 7 9 7 9 6 12 12 10 13 8 

N°200 0.075 5 7 6 6 5 8 5 8 10 5 

 

Table 4 
Summary Volumetric Properties of the Mix for All the Aggregate Gradations Studied. 

Description Gradation Mix design Va Pb (DWA) Pb (TWM) Pbe VMA VFA 

Below the 

prevention zone 

G1 
Superpave 4.0% 7.20 6.80 5.69 17.32 77.66 

Marshall 4.0% 6.41 6.02 5.18 15.74 74.66 

G2 
Superpave 4.0% 7.40 6.90 6.06 17.44 76.12 

Marshall 4.0% 6.84 6.40 5.49 16.51 75.78 

G3 
Superpave 4.0% 6.40 6.00 5.25 15.68 73.40 

Marshall 4.0% 6.01 5.67 4.83 15.15 71.93 

Thru the 

prevention zone 

G4 
Superpave 4.0% 5.50 5.30 4.31 12.14 73.20 

Marshall 4.0% 5.44 5.16 4.17 13.90 69.53 

G5 
Superpave 8.0% 7.50 7.00 6.00 20.90 61.60 

Marshall 8.8% 6.50 6.10 5.12 20.08 55.50 

Above the 

prevention zone 

G6 
Superpave 4.0% 5.50 5.20 4.35 14.10 72.10 

Marshall 4.0% 5.84 5.52 4.41 14.52 70.50 

G7 
Superpave 4.0% 5.00 4.80 3.32 12.32 63.20 

Marshall 4.0% 5.50 5.21 4.13 13.74 70.50 

Micro surfacing G8 
Superpave 4.0% 5.60 5.30 4.29 14.06 78.68 

Marshall 4.0% 5.99 5.65 4.51 14.82 71.00 

SMA G9 
Superpave 4.0% 4.90 4.70 3.74 12.44 68.86 

Marshall 4.0% 5.19 4.93 4.01 13.34 71.00 

Plant G10 
Superpave 4.0% 6.00 5.70 4.76 15.00 73.00 

Marshall 4.0% 5.65 5.35 4.46 14.50 71.10 

 

4. Dynamic modulus of asphalt mixtures 

In order to evaluate the dynamic modulus of the different mixes, all specimens were prepared 

following the standard method ASTM D3496 “Practice for Preparation of Bituminous 

Specimens for Dynamic Modulus Testing”. The testing was performed according to ASTM 

D3497 “Standard Test Method for Dynamic Modulus of Asphalt Mixtures” and AASHTO T 62 

"Determining Dynamic Modulus of Hot Mix Asphalt". 
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The experimental design included four factors; the first factor was the gradation with the ten 

levels (G1, G2, G3, G4, G5, G6, G7, G8, G9 and G10), the second factor was the temperature 

with five levels (-5, 5, 20, 40 and 55°C), the third factor was the loading frequency with six 

levels (0.1, 0.5, 1, 5, 10 and 25 Hz), and the fourth factor was the compaction effort with three 

levels (30 gyrations of the Superpave gyratory compactor (SGC), 80 gyrations of SGC, and 

specimens compacted with 7% air voids). 

4.1. Master curves 

The master curves and the corresponding shift factors were developed directly from the dynamic 

modulus tests. Microsoft Excel Solver was used to optimize the calibration coefficients. It 

involved nonlinear optimization using the sigmoidal function shown in Equations 1 and 2. Both 

equations describe the time dependency of the modulus. As summary of the regression 

parameters is shown in Table 5 and Figure 2 shows the Dynamic Modulus Master Curves of all 

10 gradations used in the study. 

)(log
1

*
rte

ELog








  (1) 

where, 

E* = dynamic modulus. 

tr = time of loading at the reference temperature. 

,  = estimated parameters; for a given set of data,  represents the minimum value of E* and 

+ represents the maximum value of E*. 

,  = parameters describing the shape of the sigmoidal function. 

rt

t
Ta )(    ,     )(log)log()log( Tattr   (2) 

where, 

tr = time of loading at the reference temperature. 

t = time of loading at a given temperature of interest. 

a(T) = Shift factor as a function of temperature. 

T = temperature of interest. 

Table 5 
Summary of the Fitting Parameters for the Construction of the E* Master Curves. 

Gradation 
Parameter 

   

G1 1.8155 2.3618 -0.5631 0.4766 

G2 1.8647 2.4533 -0.3800 0.5018 

G3 1.8542 2.3952 -0.3458 0.4784 

G4 1.8013 2.5136 -0.7055 0.4589 

G5 2.1775 1.8860 -0.1475 0.5982 

G6 1.7743 2.7039 -0.5207 0.4182 

G7 2.1687 2.3301 -0.5388 0.4960 

G8 2.0420 2.0748 -0.6264 0.5309 

G9 2.0682 2.3802 -0.6617 0.5529 

G10 1.5471 2.7260 -0.7342 0.4276 
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Fig. 2. Dynamic Modulus Master Curves for the Gradations Used in the Study. 

5. Quality of fitted Witczak model on Costa Rican mixes 

For Level 2 and Level 3 analysis of the mechanistic-empirical design guide, the master curves 

would be developed directly from the dynamic modulus Witczak I-37A predictive equation 

shown in equation 3. This equation is intended to predict E* values of asphalt mixtures over a 

wide range of temperatures, rates of loading, and aging conditions based on information that is 

readily available from material specifications or volumetric design of the mixture [1]. 

logE∗ = 3,750063 + 0,02932ρ200 − 0,001767(ρ200)2 − 0,002841ρ4 − 0,058097Va 

−0,802208 (
𝑉𝑏𝑒𝑓𝑓

𝑉𝑏𝑒𝑓𝑓+𝑉𝑎
) +

3,871977−0,0021𝜌4+0,003958𝜌38−0,000017(𝜌38)2+0,005470𝜌34

1+𝑒(−0,603313−0,31335 log(𝑓)−0,393532 log(𝜂))  (3) 

where: 

E* = dynamic modulus, psi, 

 = bitumen viscosity, 106 Poise, 

f = loading frequency, Hz, 

Va = air void content, %, 

Vbeff = effective bitumen content, % by volume, 

ρ34 = cumulative % retained on the ¾ in sieve, 

ρ38 = cumulative % retained on the 3/8 in sieve, 

ρ4 = cumulative % retained on the No. 4 sieve, 

ρ200 = % passing the No. 200 sieve. 
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Overestimation of E* values for mixtures in Costa Rica (Figure 4) was first reported by Loría 

and his associates in 2011 [11]. The application of this model on mixtures in Costa Rica not only 

over predicted E* values but also failed to comply one of the assumptions of OLS regression and 

ANOVA: a constant variance of the error term. In the residual versus the fitted values plot, the 

errors should have constant variance when the residuals are scattered randomly around zero. In 

this case, the residuals increase or decrease with the fitted values in a pattern that looks like a 

funnel or uneven spreading of residuals across fitted values, the errors may not have constant 

variance (Figure 3). A curvilinear pattern in the residual versus fitted values plot also indicated 

that a higher-order term to has to be added model. 

  
Fig. 3. Evaluation of the Witczak Model. 

As mentioned previously, the Witczak-Lanamme model was developed to adjust or calibrate the 

Witczak model based on the E* results of several mixtures used in Costa Rica. This new model 

was suggested based on a nonlinear approach that significantly improved the model fit 

(R
2
=0.9355, standard deviation of error term=1,494.4 and SSE=5.1997). The model is shown in 

Equation 4. 

2

200 200 4

2
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The application of the Witczak-Lanamme model not only fixed the overestimation of E* values 

but also in the residual versus the fitted values plot, the errors had constant variance with the 

residuals scattered randomly around zero (Figure 4). However, further investigation showed that 

high errors were still obtained from some mixtures and the variance of the predictions was not 

uniform. Ideally, in the plot of actual E* values versus predicted ones, a small and random 

deviation from the line of equality is desired for all data points. As an attempt to reach this ideal 

scenario, the artificial neural networks (NN) methodology was implemented using the same 

dataset. 

0

10000

20000

30000

40000

0 10000 20000 30000 40000

P
re

d
ic

te
d

 E
*,

 M
p

a

E* Lab, MPa

E* Witczak

Equality
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5

R
es

id
u

al
s 

-W
it

cz
ak

 M
o

d
el

 

Fitted Log(E*) - Witczak Model



10 F. Leiva-Villacorta, A. Vargas-Nordcbeck/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 01-15 

  
Fig. 4. Evaluation of the Witczak-Lanamme Model. 

6. Development of the E* - NN model 

A neural network is a massively parallel distributed processor that has a natural propensity for 

storing experimental knowledge and making it available for use [14]. Knowledge is acquired by 

the network through a learning (training) process. The strength of the interconnections between 

neurons is implemented by means of the synaptic weights used to store the knowledge. The 

learning process is a procedure of adapting the weights with a learning algorithm in order to 

capture the knowledge. In other words, the aim of the learning process is to map a given relation 

between inputs and outputs of the network. 

The learning method used to develop the NN model was a feed-forward back propagation with 

the sigmoidal function (Equation 5) as the transfer function. It was found that the two-layer 

network with 10 nodes in the hidden layer was the most appropriate for this dataset (Figure 5). 

The structure of the network is given by Equations 5 through 7. A single index indicates an array; 

dual indices represent a matrix with the first letter indicating the values in the row and the second 

letter indicating the values in the column. The index i represents the input parameters and the 

index k represents the hidden layer. 

𝑓(𝑇) =
2

1+𝑒−2𝑇 − 1 (5) 
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1 = 𝐵𝑘

1 + ∑ 𝑊𝑖𝑘
𝑚
𝑖=1 𝑃𝑖 (6) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑛(𝐸∗) = 𝑓(𝐵𝑂 + ∑ 𝐻𝑘
1𝑊𝑘

𝑚
𝑗=1 ) (7) 

where; 

T = placeholder variable, 

𝐻𝑘
1 = transferred value of nodes at the hidden layer, 

Pi = input variables (200, 4, 38, Va, Vbeff , loglog(η), temperature and frequency), 

𝑊𝑖𝑘 = weight factors for the hidden layer, 

𝑊𝑘= weight factors for the output layer, 
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𝐵𝑘
1 = bias factors for first layer, 

B0 = bias factor for outer layer, 

m = number of nodes in hidden layer 

Ln(E*) = natural logarithm of E*. 

 
Fig. 5. Schematic of model development process. 

6.1. Model weights and bias values 

Weight matrices and bias vectors of the NN model are shown as follows: 

Bias factors for first layer, 

𝐵𝑘
1 = [2.3134    4.0247    2.1380  − 11.9793    0.3330   − 6.3721   − 5.0298   − 0.2873  − 10.6756   10.3805] 

Weight factors for the hidden layer, 

𝑊𝑖𝑘

= 
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-10.8394   -2.4254   -5.4623    4.0784   -0.0272   -2.1539   -7.4460    0.0250    0.0073  -17.2411 

7.5808    5.2567    7.6583  -22.1995    0.1250   -2.7495    0.8265   -0.1192   -0.0303   -5.5932 
-15.3861   26.5062   -1.7360    3.2115    0.1505    0.9341  -18.8182   -0.1521   -0.0390   -3.5607 

2.3739   -5.2556    8.2966   -4.0598    0.1879    3.7634    3.6738   -0.1812   -0.0185    5.0671 
-0.3161   -6.6774   -4.7862    0.2819    0.4871    1.6285   -0.4955   -0.4942   -1.8913    4.2234 
-0.1810  -14.1131   -8.9340    2.1166    1.3467    2.3166   -0.5999   -1.3313   -1.8068    2.0520 
0.0159    0.6328    0.4785   -0.1558   -0.3746   -0.1602    0.0106    0.3321   -8.0241    0.1222 

Weight factors for the output layer and bias factor for outer layer,  

𝑊𝑘 = 

0.2402 
0.0377 
0.0410 
0.0722 
6.6041 
-0.0695 
-0.2727 
7.6429 

-13.6531 
0.0456 

B0 = -13.6918 
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Relative importance based on Garson's formula indicated that all input variables can be 

considered significant to explain output variable. Temperature was found to be the most 

important input variable. This was expected since dynamic modulus of asphalt mixtures are 

highly susceptible to small changes in temperature. Relative importance results were computed 

in percentage format as follows: 

 14.9% 

4 11.7% 

38 12.3% 

Va 15.6% 

Vbeff 9.2% 

loglog (η) 9.1% 

temperature 17.5% 

frequency 9.8% 

 

Potential overfitting on the model was controlled by constraining the complexity of the model 

and by monitoring the performance of the model during training. The first one was accomplished 

by changing the network structure (number of weights). The second one was accomplished by 

evaluating performance on both a training dataset and on a holdout validation dataset. Learning 

curves will show a line for the training dataset that drops and may plateau and a line for the 

validation dataset that drops at first, then at some point begins to rise again. This was an 

indication of potential overfitting. 

As an example, if these parameters are substituted into Equations 5 through 7 with 200 = 5, 4 

= 63, 38 = 12, Va = 7.41, Vbeff = 5.69, loglog(η) = 3.7859, temperature = -3.4 and frequency = 

25, the predicted ln(E*) value of 9.31415 and the E* value of 11,402 MPa would be calculated 

from this recommended model. 

The results of the application of the NN model on the entire E* database are shown in Figure 6. 

In the plot of actual E* values versus predicted ones, a small-constant deviation from the line of 

equality was acquired for all data points. In addition, in the residual versus the fitted values plot, 

the errors had constant variance with the residuals scattered randomly around zero. 

  
Fig. 6. Evaluation of the E* - NN Model. 
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The slope of the measured versus predicted curve for all three models was used to perform a bias 

analysis. As shown in Figure 7 the highest deviation from the line of equality in terms of the 

slope was obtained for the Witczak I-37A model. On average, predicted E* values were deviated 

from the equality line by 35%. In second place, the Witczak-Lanamme model predicted E* 

values with a slight deviation from the equality line (about 4%). Finally, the E* - NN had the 

lowest deviation from the line of equality with only 1%. 

 
Fig. 7. Comparison of Predictive Models. 

The accuracy of the three predictive models was also analyzed by means of goodness of fit 

parameters in arithmetic space. Table 6 shows the calculated parameters for all the models along 

with the respective criteria. The lowest coefficient of determination (R
2
) in arithmetic space and 

the highest standard error of the estimate/standard deviation value (Se/Sy) for the Witczak model 

confirmed its limited ability to predict E* values for mixtures in Costa Rica. A significant 

improvement in the prediction of E* values, with respect to the Witczak model was obtained 

with the use of the Witczak-Lanamme model (59% improvement in the R2 value and 29% 

reduction in the Se/Sy value). However, the best results were obtained for the E* - NN model 

with the highest R
2
 and lowest Se/Sy values (69% improvement in the R

2
 value and 77% 

reduction in the Se/Sy value with respect to the Witczak model). 

Table 6 
Goodness of Fit Parameters. 

Parameters Goodness of Fit (Witczak et al. 2002) 

Model R
2
 R

2
 adj. 

Se/Sy 

arithmetic 
Criteria R

2
 Se/Sy 

Witczak 0.592 0.589 0.372 Excellent > 0.90 < 0.35 

Witczak-Lanamme 0.935 0.934 0.262 Good 0.70 - .089 0.36 - 0.55 

E* - NN Model 0.993 0.992 0.086 Fair 0.40 - 0.69 0.56 - 0.75 

 Poor 0.20 - 0.39 0.76 - 0.90 

y = 1.3484x

y = 0.962x

y = 0.9937x
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In summary, overestimation of E* values for Costa Rican mixtures by the Witczak I-37A model 

led to its local calibration (Witczak-Lanamme model). An additional model adequacy checking 

performed on these two models led to the construction of a new and improved model based on 

artificial neural networks (E* - NN model). This final model not only met the model adequacy 

criteria but also had the best overall goodness of fit parameters. 

7. Conclusions and recommendations 

The results of this study led the research team to the following conclusions: 

 Even when a local calibration of the Witczak I-37A model was performed for 10 mixtures 

in Costa Rica, there was still room for improvement. Further investigation showed that 

high errors were still obtained from some mixtures when using the calibrated model. 

 The data clearly indicated that calibration of the E* models, based on direct application of 

standard regression techniques such as OLS was not adequate since several of the 

assumptions made when using this technique were violated, rendering the estimated values 

as inefficient (variance in the model can be further improved). 

 The application of artificial neural networks proved to be a most appropriate methodology 

to improve the predictability of E* values. The E* - NN model complied with the model 

adequacy criteria, had the best goodness of fit parameters and exhibited the lowest overall 

bias (69% improvement in the R
2
 value and 77% reduction in the Se/Sy value with respect 

to the Witczak model). 

 In order to further improve this prediction model for Costa Rica, future calibration and 

verification efforts are necessary; therefore, it is recommended to increase the number of 

tests performed (increase the E* database). 
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