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The time-cost trade-off problem pertains to the assessment of 

the best method of activity construction so that a project is 

completed within a given deadline and at least cost. 

Although several evolutionary-type of algorithms have 

been reported over the last two decades to solve this NP-

hard combinatorial problem, there are not many 

comparative studies independently evaluating several 

methods. Such studies can provide support to project 

managers regarding the selection of the appropriate 

method. The objective of this work is to comparatively 

evaluate the performance potential of a number of 

evolutionary algorithms, each one with its own 

variations, for the time-cost trade-off problem. The 

evaluation is based on two measures of effectiveness, 

the solution quality (accuracy) and the processing time 

to obtain the solution. The solution is sought via a 

general purpose commercial optimization software 

without much interference in algorithm parameter 

setting and fine-tuning in an attempt to follow the 

anticipated project manager approach. The investigation 

has been based on case studies from the literature with 

varying project size and characteristics. Results indicate that 

certain structures of genetic algorithms, particle swarm 

optimization, and differential evolution method present the 

best performance. 
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1. Introduction 

The time-cost trade-off (TCT) problem aims to determine the best method of activity execution 

so that the project finishes with the least cost and within any given completion deadline. The 

problem has been extensively studied for more than five decades and has been recognized as a 

particularly difficult combinatorial problem. Due to the problem size, which exponentially 

increases with project size, evolutionary algorithms have been implemented and tested in recent 

years for its solution. Several studies have been reported in the literature suggesting different 

methods, each one depending on specific assumptions and parameter settings. In real practice, 

however, the project manager does not have the ability to select the “best” method or perform 

fine-tuning of algorithm parameters. Instead, it is more likely to use some commercial software 

that implements such kind of algorithms. 

The time-cost trade-off problem appears in two complementary forms. The first aims at 

developing the optimal project time-cost curve which results from assessing the minimum cost 

schedule at any feasible project duration. This curve provides the best schedule solution if a 

specific project completion deadline is set. While the above curve results solely from activity 

direct costs, if other indirect project costs, such as general project expenses, external consultancy 

fees, opportunity costs from late project completion, etc., are considered in addition, the total cost 

curve is developed by summing up direct and indirect costs along different project durations. 

This curve exhibits a minimum value at a particular project duration that is known as the optimal 

project duration. 

The time-cost trade-off problem is considered as a NP-hard combinatorial problem and has been 

studied since 1960s. Proposed solution schemes have employed both exact and approximate 

methods. In the first category, linear programming (LP), integer programming (IP), or dynamic 

programming (DP) methods have been used. Because of certain limitations of these methods 

(especially in problems with large size), approximate methods have been developed which may 

converge faster to a solution although they do not guarantee that this solution is optimal. In 

recent years, the research on approximate methods has mainly focused on evolutionary-based 

algorithms (within the framework of metaheuristics), such as genetic algorithms (GA), ant-

colony optimization (ACO) or particle swarm optimization (SPO) algorithms. 

Among several mathematical programming methods, one can observe the work by Liu et al. [1] 

who proposed an LP/IP hybrid method and found that the required computational effort is much 

less than that of IP-alone based methods. In order to better simulate construction project 

characteristics, Sakellaropoulos and Chassiakos [2] presented a mixed integer-linear 

programming (MILP) method which aims to model generalized precedence relations among 

activities, activity planning and time constraints, as well as bonuses/penalties for early/late 

project completion respectively. An extension of this work was presented by Klansek and 

Psunder [3] for the nonlinear discrete time-cost trade-off problem. Other methods have used 

dynamic programming and network decomposition in which a project network is decomposed 

into several sub-networks, which are separately scheduled and finally put together (De et al. [4], 
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Akkan et al. [5], Hazir et al. [6]). The decomposition methods reduce the computational effort 

but they do not guarantee finding the optimal solution. 

While exact methods can work satisfactorily in small networks, their effectiveness and efficiency 

drops as the project size and complexity rises. In this case, approximate algorithms can perform 

more efficiently even if they cannot guarantee the assessment of the optimal solution in any case. 

Among evolutionary-based algorithms, genetic algorithms were tested first. Feng et al. [7] 

presented such a method to develop the time-cost curve (Pareto front) via a multi-objective 

model which included both time and cost as distinct objectives. The method was evaluated on an 

18-activity project network and the results were compared to those of a full enumeration analysis 

indicating that the algorithm could find almost all optimal values along the curve searching only 

a small part of the solution space. Hegazy [8] developed a practical problem for TCT 

optimization using the principle of genetic algorithms (GAs) and implementing it as a Visual 

Basic Application (VBA) macro program. Li and Love [9] presented certain improvements on 

existing GA methods in order to reduce computation times and increase algorithm effectiveness. 

Later, Li et al [10] proposed the integration of a machine learning method with GA with the 

former being used for the generation of quadratic time-cost curves from historical data in order 

to generalize the linear time-cost relationships. Zeng et al. ([11], [12]) presented a multi-

objective model which integrates adaptive weights derived from previous generations and 

induces a search pressure toward an ideal point. 

Besides GA methods, other evolutionary-type of algorithms have also been used. Yang [13] 

employed particle swarm optimization and adopted an elite archiving scheme to store non-

dominated solutions while using members of the archive to direct further search. Zhang and Li 

[14] developed a multi-objective particle swarm optimization that adopts a combined scheme for 

determining the global best of each particle where the candidate solutions are represented 

through the multidimensional particles. Ng and Zhang [15] employed ant-colony optimization 

(ACO) to solve the multi-objective time-cost optimization problem while Xiong and Kuang [16] 

combined ACO with the modified adaptive weight approach to find the optimal solutions and 

define the Pareto front. Afshar et al [17] presented a multi-colony ant algorithm as an attractive 

alternative to the single ant colony optimization algorithm. Hybrid strategies have also been 

proposed and, among them, Sonmez and Bettemir [18] developed a hybrid model using GA and 

simulated annealing (SA) which is used to improve the hill-climbing ability of the GA. 

While typical research efforts focus on examining certain methods and attempting to optimize 

their use through structure and parameter tuning, there is a scarcity of comparative studies which 

include several algorithms and formulations. One such study by Elbeltagi et al. [19] compared 

five evolutionary-based algorithms (genetic algorithms, memetic algorithms, particle swarm, ant-

colony systems, and shuffled frog leaping) and, based on results from one test problem [7], 

concluded that the PSO method performs better than other algorithms in terms of success rate 

and solution quality, while being second best in terms of processing time. The lack of 

comparative studies may be a serious shortcoming in real practice where the project manager 

may not have the ability or willingness to search for the “best” method or perform fine-tuning of 
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algorithm structure and parameters. Instead, it is more likely that he/she will utilize some 

common use commercial software that implements such kind of optimization algorithms. 

The objective of this work is to investigate the performance potential of several evolutionary 

algorithms for the time-cost trade-off problem. In particular, a number of existing algorithms, 

each one with its own variations, are comparatively evaluated. The evaluation is based on two 

measures of effectiveness, the solution quality (success rate and average of best solutions found 

under multiple algorithm applications) and processing time (average run time under multiple 

attempts). The solution is sought via a general purpose commercial optimization software with 

little interference in algorithm parameter setting and fine-tuning following more or less the 

expected project manager approach. The investigation has been done on case study projects from 

the literature with varying size and characteristics and with the exact solutions to be known. 

Numerical results and discussion is presented in the following sections. 

2. Problem and algorithm description 

The mathematical formultaion that describes the time-cost trade-off and minimum cost project 

duration problems has an objective function of the following form: 

00

Ai

ij fcc 


minTC  (1) 

where TC is the total cost; i is the activity indicator; A is the group of project activities; j is the 

indicator of the activity method of construction; cij is the direct cost of activity i corresponding to 

method j and it directly related to the corresponding activity duration dij; f0 is the project finish 

time; and c0 is the project indirect cost per time unit. The first term of the objective function 

represents the project direct cost and the second one reflects the indirect cost. If indirect cost is 

not considered (i.e., c0=0), the problem reduces to the time-cost trade-off problem. The problem 

variables are the activity durations dij while the constraints refer to: (a) project network structure 

and activity precedence relations, (b) activity duration-cost pairs for alternative construction 

methods (c) potential project deadline, (g) other time constraints for particular activities or sub-

projects (e.g., “start no earlier than”). 

Five evolutionary-based algorithms are considered in the comparative evaluation: hill climbing, 

genetic algorithms, particle swarm, differential evolution, and artificial bee colony. Alternative 

formulations are examined for some of these methods. A main concern when selecting methods 

for evaluation was to remain within a single developer of the corresponding software as this may 

guarantee a similar level of development sophistication and robustness of individual methods, 

reducing thus the possibility for bias existence in the evaluation results that is due to software 

capability discrepancies. In this regard, the XLOptimizer software [20], a generic optimization 

tool which implements customizable metaheuristic algorithms and is compatible with Microsoft 

Excel, was used. A short description of the examined algorithms and formulations are given 

below. 
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2.1. Hill climber 

Hill Climber is a local optimizer that can be applied to a binary chromosome [21]. It starts from a 

random individual chromosome and performs repetitive mutations of the chromosome bits in the 

form of flipping between 0 and 1 along the chromosome length. At each step, the objective value 

of the mutant is compared to that of the currently best chromosome and, if better, it becomes the 

currently best chromosome. The process ends when a full mutation loop along the chromosome 

length is completed without any improvement in the objective value. 

2.2. Genetic algorithms 

Genetic Algorithms represent perhaps the first attempt to apply evolutionary algorithms for 

problem optimization. They progressively develop better and better solutions based on previous 

solutions that have been examined in the evolution process. Starting from an initial random 

population of candidate solutions with individuals representing distinct problem solutions and 

genes describing the problem parameters, new solutions evolve, generation by generation, using 

techniques such as selection, mutation and crossover. In each generation, the fitness of every 

individual (the objective function value associated with the individual) is evaluated. Next, 

multiple individuals are stochastically selected from the current population (considering fitness 

level) which are recombined (through crossover operation) or altered (through mutation) to 

produce offspring and form a new population by keeping the old and new individuals with the 

best fitness values within the population (retaining a constant size of it). Algorithm termination 

criteria may be the consideration of a given number of generations, the realization of a specific 

number of generations without an observable improvement of the fitness value or the 

achievement of a satisfactory fitness level (if this is known). 

There are four alternative formulations of the genetic algorithms in XLOptimizer: 

 The standard version works with predefined parameter settings regarding the population size, 

number of generation, crossover and mutation rate. A main disadvantage is that often 

terminates prematurely (long before reaching the best value) and, for this reason, its results are 

not presented in this study. 

 In the custom version, the user can interfere and modify the genetic algorithm settings to fine-

tune with the problem examined. 

 The saw tooth GA (STGA) adopts a varying population size approach resembling a saw-tooth 

scheme [22]. In particular, the population size, starting from an initial value, is linearly 

decreased along generations. When it reaches a minimum value, the size is restored to its 

original value by the addition of randomly generated individuals. 

 The micro GA (μGA) is a variant which utilizes a small population size of candidate solutions 

(typically 5-10 individuals) to reduce the computational effort for fitness value evaluations and 

memory storage requirement while the evolution is performed with crossover only [23]. At 

some point that the population tends to become homogeneous, a restart of the population is 

performed by keeping the best individuals of the existing population and replacing the rest by 

new randomly generated individuals. Population restarting several times during the process 
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allows effective exploration of the search space and prevents premature convergence to a local 

minimum. 

2.3. Particle swarm optimization 

Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by 

iteratively improving a candidate solution with regard to a given measure of quality [24]. A 

initial population ("swarm") with random solutions is developed and PSO members of the swarm 

("particles") move around in the search-space according to their current position and velocity. 

The velocity represents a progressive adjustment of particle position towards its own personal 

best position and the swarm's best position. This iterative process is expected to ultimately direct 

the swarm toward the best problem solution. 

Besides the above standard PSO algorithm (SPSO), an enhanced formulation (EPSO) 

incorporates particle velocity restriction at the latest stages of the process to avoid overshooting 

(i.e., going back and forth around the optimal solution without the capacity to local convergence) 

which is a typical problem of PSO algorithms. 

2.4. Differential evolution 

Differential Evolution (DE) is a relatively new stochastic method that optimizes a problem by 

maintaining a population of candidate solutions (called “agents”) subjected to iterations of 

recombination, evaluation, and selection while trying to improve a candidate solution with regard 

to a given measure of quality [25]. The agents move around in the search-space developing new 

agents by combining the positions of existing agents from the population. In particular, new 

candidate solutions are based on the weighted difference between two randomly selected 

population members added to a third population member. This perturbs population members 

relative to the spread of the broader population while the perturbation effect self-organizes the 

sampling of the problem space, bounding it to known areas of interest. In the iterative process, 

improved agent positions (based on fitness or score values) are accepted and become part of the 

population (replacing worse solutions), otherwise they are discarded. The process is repeated 

until a satisfactory solution is eventually revealed. 

2.5. Artificial bee colony 

Artificial Bee Colony (ABC) is a stochastic swarm intelligence algorithm inspired by the 

foraging behavior of honey bees [26]. In ABC algorithm, the food source position represents a 

possible solution of the optimization problem and the nectar amount of the food source is 

associated with the quality (fitness value) of the corresponding solution. Three groups of 

(artificial) bees are used in the process: employed bees, onlookers, and scouts. Employed bees 

search for food around the food source in their memory and, when they find a new food source 

position with higher nectar amount than that of the previous source, they memorize the new 

source position and abandon the old one. Further, they communicate this information to the 

onlookers which evaluate the nectar information taken from all employed bees and then choose a 

food source depending on the nectar amount of sources. The sources abandoned are replaced by 

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution
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new sources, randomly produced by scouts, i.e., a few employed bees which have abandoned 

their food sources and search for new ones. 

3. Algorithm performance evaluation 

Three benchmark problems from the time-cost optimization literature have been used for the 

comparative algorithm evaluation, in particular, a 7-activity project described in [1], an 18-

activity project presented in [7] and a 29-activity project analyzed in [2]. The first two cases 

solve the time-cost trade-off problem considering only the project direct cost with best cost 

solution to be 107,500 at a 78-day duration deadline and 106,270 at a 110-day duration deadline 

respectively; the third problem examines the optimal project duration problem considering, in 

addition, indirect cost as well as penalty/bonus parameters leading to a best cost solution of 

45,500 at an 75-day project completion. Further, composite networks, including two single 18-

activity projects set in series or in parallel, have been structured and tested within the evaluation 

effort. To obtain an indication of the problem size, the full enumeration of possible solutions 

adds up to 4,860 alternative schedules for the 7-activity network, 5.9×10
9
 alternatives for the 18-

activity project, 8.3×10
9
 alternatives for the 29-activity project, and 3.5×10

19
 alternatives for 

each composite network consisting of two single 18-activity projects. 

To obtain a robust indication of the algorithm merits, ten trial runs were performed for each 

problem and solution method (five for the composite projects). The performance of the compared 

algorithms was evaluated based on two criteria, the solution quality and the required processing 

time to reach the solution. The solution quality is determined by the success rate (i.e., the number 

of trials that led to the known target value of the objective function) and the average value of the 

objective function obtained in all trials. The processing time is recorded with its mean value and 

standard deviation among several trials. 

The run time values are considered in a relative scale rather than in absolute terms. There are two 

reasons for such consideration. First, the computation time depends on the computer 

characteristics and lower time is expected with high-performance computing. In this study, all 

experiments took place on a laptop machine with Intel Core i5-460M processor, 2.5 GHz and 4 

MB RAM (a rather typical configuration for the needs of a project manager). Second, from the 

project manager perspective, the main analysis goal may be to obtain a near-optimal solution at a 

reasonable computation time rather than waiting too long for a slightly better solution. In this 

regard, two types of output were developed. The algorithms were allowed to run as long as they 

were getting better values of the objective function (with a user-specified run time limit of half 

an hour for the three simple case studies and one hour for the two composite problems, ranges 

that may be barely acceptable for such project sizes). The run times that are reported in the result 

tables below correspond to the last best value found within the above run time limits. In addition, 

all intermediate solution upgrades were recorded within the calculation process and 

computational time scale. To get the whole picture, the algorithm performance is then illustrated 

with graphs showing the objective value evolution in time for representative cases. 

The case study results are analytically presented in Tables 1 to 5 and graphically in Figures 1 and 

2. Several indicative outcomes can be reported from the comparative evaluation. In particular: 
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Table 1 

Evaluation results for the 7-activity project (best solution 107,500). 

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec) 

Hill Climber 4/10 110,190 2.5 1.1 0.3 

GA 10/10 107,500 0 13 3 

Saw Tooth GA 10/10 107,500 0 17 6 

Micro GA 10/10 107,500 0 9 6 

SPSO 10/10 107,500 0 7 4 

EPSO 10/10 107,500 0 5 2 

DE 10/10 107,500 0 8 3 

ABC 10/10 107,500 0 22 11 

 

Table 2 

Evaluation results for the 18-activity project (best solution 106,270). 

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec) 

Hill Climber 10/10 106,270 0 6 1 

GA 10/10 106,270 0 157 59 

Saw Tooth GA 1/10 106,534 0.25 507 164 

Micro GA 10/10 106,270 0 106 42 

SPSO 6/10 106,505 0.22 74 21 

EPSO 10/10 106,270 0 42 17 

DE 10/10 106,270 0 64 9 

ABC 10/10 106,270 0 180 30 

 

Table 3 

Evaluation results for the 29-activity project (best solution 45,500). 

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec) 

Hill Climber 2/10 45,573 0.16 5.5 0.5 

GA 10/10 45,500 0 224 91 

Saw Tooth GA 6/10 45,504 0.01 793 176 

Micro GA 10/10 45,500 0 182 96 

SPSO 1/10 45,608 0.24 86 32 

EPSO 9/10 45,502 0.004 161 42 

DE 10/10 45,500 0 85 10 

ABC 10/10 45,500 0 405 71 

 

The Hill Climber method is by far the fastest method in reaching its own best solution but it is 

generally unreliable in terms of optimization effectiveness (solution quality) since it presents a 

rather random performance with regard to problem size and other characteristics. In particular, 
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although in many cases the method reaches the absolute best, it cannot guarantee the best 

solution finding even in small-size problems where one expects higher performance than in 

larger projects. In addition, the method presents the highest deviations from the best solution 

among all examined methods. Nevertheless, its response time makes the method preferable for a 

fast solution approximation (at least in problems of these sizes). 

Table 4 

Evaluation results for two 18-activity projects in series (best solution 212,540). 

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec) 

Hill Climber 5/5 212,540 0 12 2 

GA 2/5 212,579 0.02 2394 647 

Saw Tooth GA 0/5 213,982 0.68 3166 329 

Micro GA 5/5 212,540 0 1066 269 

SPSO 0/5 214,010 0.69 422 45 

EPSO 5/5 212,540 0 242 80 

DE 5/5 212,540 0 214 30 

ABC 5/5 212,540 0 864 53 

 

Table 5 

Evaluation results for two 18-activity projects in parallel (best solution 212,540). 

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec) 

Hill Climber 1/5 229,303 7.89 16 3 

GA 3/5 212,798 0.12 2227 647 

Saw Tooth GA 0/5 215,466 1.38 3416 173 

Micro GA 2/5 213,525 0.46 2396 274 

SPSO 0/5 221,998 4.45 50 5 

EPSO 5/5 212,540 0 221 15 

DE 5/5 212,540 0 226 24 

ABC 0/5 220,454 3.72 1761 916 

 

Among Genetic Algorithms, the custom GA has reached the best solutions in most cases 

examined and at competitive computational speeds. The Saw Tooth GA presents deteriorating 

performance in terms of solution accuracy and run time with the increase of the problem size (the 

method has consistently found the optimal solution only in the 7-activity problem). The micro 

GA has converged to the best solution in the majority of the cases with run time slightly lower in 

general than those of the custom GA. 

The standard PSO algorithm (SPSO) performs rather poorly compared to other methods both in 

terms of solution accuracy and computational effectiveness with both indices to considerably 

deteriorate with the problem size. The enhanced PSO algorithm (EPSO), on the other hand, 

presents one of the best performances among the examined methods. In particular, the algorithm 
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has consistently found the best solutions in almost all case studies and attempts while its run time 

is comparable to the best ones (excluding the fast-running Hill Climber algorithm). The superior 

performance of the algorithm may be attributed to its capability to better manipulate the particle 

velocities at the final stages prior to convergence. 

 
Fig 1. Evaluation results in terms of solution quality. 

 
Fig 2. Evaluation results in terms of time requirement. 
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The Differential Evolution (DE) method exhibits one of the most competitive performances 

among all algorithms in terms of both solution quality and computational requirements. The 

algorithm has successfully reached the best solution in all case studies and repetitive attempts 

while its run times are among the lowest ones compared to other methods (with the exception of 

the Hill Climber method). 

Finally, the Artificial Bee Colony (ABC) algorithm performs generally well in finding the 

optimal solution in almost all cases (with some degradation at larger problems), however, its 

computational efficiency is rather moderate compared to more effective methods, such as EPSO 

or DE. 

In order to obtain a global perspective of method performance, Figures 3 and 4 illustrate the best 

performing algorithms with regard to the objective function (cost) value and run time value for 

the cases of the 18-activity and 29-activity networks. The point clouds for each method have 

been developed from selected (representative) result points of the multiple trials performed. 

The schematic representation of the comparative evaluation indicates a slight outperformance of 

the enhanced PSO (EPSO) followed by the Differential Evolution (DE) and the micro GA 

methods. The outperformance primarily refers to the processing time that allows these methods 

to converge to their best solution faster than other methods. The custom GA presents a slower 

response in comparison to previous methods, while the ABC method, although ultimately reach 

the best solution (in most cases), generally takes more time than other methods to converge. 

 
Fig 3. Evaluation results for best performing algorithms (18-activity network). 
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Fig 4. Evaluation results for best performing algorithms (29-activity network). 

4. Conclusions 

The time-cost trade-off problem is a typical problem of the project scheduling analysis and aims 

to determine the best method of activity construction so that the project is completed with the 

least cost and within any completion deadline. Due to the problem size, which exponentially 

increases with project size, evolutionary algorithms have been implemented and tested in recent 

years for the solution of the problem. Although several methods have been developed and tested 

over the years, there are not many comparative studies independently evaluating several 

methods. Such studies can provide support to project managers regarding the selection of the 

appropriate method. The objective of this work is to investigate the performance potential of 

several evolutionary algorithms for the time-cost trade-off problem. In particular, a number of 

existing algorithms, each one with its own variations, are comparatively examined. The solution 

is sought via a general purpose commercial optimization software without much interference in 

algorithm parameter setting and fine-tuning. The investigation was based on three benchmark 

case studies from the literature with varying size and characteristics. On the basis of the results 

presented, the following indicative conclusions can be drawn: 

 There is no unique method that clearly supersedes others in all aspects, effectiveness to find 

the optimal solution and efficiency of computation (processing time). In fact, it appears that it 

may be preferable to utilize different methods to increase the probability of obtaining optimal 

results. 
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 In the case studies that were analyzed, all methods found the optimal or a near optimal 

solution with μGA, EPSO, DE to present a rather ideal behavior in converging to the best 

solution and Hill Climber (on the other hand) to exhibit the lowest performance in this regard. 

Regarding computational efficiency, the enhanced PSO and DE methods require the least time 

while certain versions of GA and the ABC method show the worst performance. 

 Comparing different versions of an algorithm (e.g., CGA, STGA, μGA) indicates that 

experimenting with algorithm structure and parameter tuning leads to result improvement in 

terms of solution effectiveness and/or efficiency. 

 The employment of general purpose commercial software highly reduces the effort to set up 

the problem, however, the results may be inferior to that of a tailor-made software 

development for the particular problem. 
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