
Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

How to cite this article: Chassiakos AP, Rempis G. Evolutionary algorithm performance evaluation in project time-cost

optimization. J Soft Comput Civ Eng 2019;3(2):16–29. https://doi.org/10.22115/scce.2019.155434.1091.

2588-2872/ © 2019 The Authors. Published by Pouyan Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at SCCE

Journal of Soft Computing in Civil Engineering

Journal homepage: www.jsoftcivil.com

Evolutionary Algorithm Performance Evaluation in Project Time-

Cost Optimization

A.P. Chassiakos
1*

, G. Rempis
2

1. Associate Professor, Department of Civil Engineering, University of Patras, Patras, Greece

2. Civil Engineer, Graduate, Department of Civil Engineering, University of Patras, Patras, Greece

Corresponding author: a.chassiakos@upatras.gr

 https://doi.org/10.22115/SCCE.2019.155434.1091

ARTICLE INFO

ABSTRACT

Article history:

Received: 08 November 2018

Revised: 24 June 2019

Accepted: 24 June 2019

The time-cost trade-off problem pertains to the assessment of

the best method of activity construction so that a project is

completed within a given deadline and at least cost.

Although several evolutionary-type of algorithms have

been reported over the last two decades to solve this NP-

hard combinatorial problem, there are not many

comparative studies independently evaluating several

methods. Such studies can provide support to project

managers regarding the selection of the appropriate

method. The objective of this work is to comparatively

evaluate the performance potential of a number of

evolutionary algorithms, each one with its own

variations, for the time-cost trade-off problem. The

evaluation is based on two measures of effectiveness,

the solution quality (accuracy) and the processing time

to obtain the solution. The solution is sought via a

general purpose commercial optimization software

without much interference in algorithm parameter

setting and fine-tuning in an attempt to follow the

anticipated project manager approach. The investigation

has been based on case studies from the literature with

varying project size and characteristics. Results indicate that

certain structures of genetic algorithms, particle swarm

optimization, and differential evolution method present the

best performance.

Keywords:

Evolutionary algorithm;

Optimization;

Project scheduling;

Time-cost trade-off;

Construction management.

https://doi.org/10.22115/SCCE.2019.155434.1091
https://doi.org/10.22115/SCCE.2019.155434.1091
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
mailto:a.chassiakos@upatras.gr
https://doi.org/10.22115/SCCE.2019.155434.1091
https://www.orcid.org/0000-0001-9175-4390

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 17

1. Introduction

The time-cost trade-off (TCT) problem aims to determine the best method of activity execution

so that the project finishes with the least cost and within any given completion deadline. The

problem has been extensively studied for more than five decades and has been recognized as a

particularly difficult combinatorial problem. Due to the problem size, which exponentially

increases with project size, evolutionary algorithms have been implemented and tested in recent

years for its solution. Several studies have been reported in the literature suggesting different

methods, each one depending on specific assumptions and parameter settings. In real practice,

however, the project manager does not have the ability to select the “best” method or perform

fine-tuning of algorithm parameters. Instead, it is more likely to use some commercial software

that implements such kind of algorithms.

The time-cost trade-off problem appears in two complementary forms. The first aims at

developing the optimal project time-cost curve which results from assessing the minimum cost

schedule at any feasible project duration. This curve provides the best schedule solution if a

specific project completion deadline is set. While the above curve results solely from activity

direct costs, if other indirect project costs, such as general project expenses, external consultancy

fees, opportunity costs from late project completion, etc., are considered in addition, the total cost

curve is developed by summing up direct and indirect costs along different project durations.

This curve exhibits a minimum value at a particular project duration that is known as the optimal

project duration.

The time-cost trade-off problem is considered as a NP-hard combinatorial problem and has been

studied since 1960s. Proposed solution schemes have employed both exact and approximate

methods. In the first category, linear programming (LP), integer programming (IP), or dynamic

programming (DP) methods have been used. Because of certain limitations of these methods

(especially in problems with large size), approximate methods have been developed which may

converge faster to a solution although they do not guarantee that this solution is optimal. In

recent years, the research on approximate methods has mainly focused on evolutionary-based

algorithms (within the framework of metaheuristics), such as genetic algorithms (GA), ant-

colony optimization (ACO) or particle swarm optimization (SPO) algorithms.

Among several mathematical programming methods, one can observe the work by Liu et al. [1]

who proposed an LP/IP hybrid method and found that the required computational effort is much

less than that of IP-alone based methods. In order to better simulate construction project

characteristics, Sakellaropoulos and Chassiakos [2] presented a mixed integer-linear

programming (MILP) method which aims to model generalized precedence relations among

activities, activity planning and time constraints, as well as bonuses/penalties for early/late

project completion respectively. An extension of this work was presented by Klansek and

Psunder [3] for the nonlinear discrete time-cost trade-off problem. Other methods have used

dynamic programming and network decomposition in which a project network is decomposed

into several sub-networks, which are separately scheduled and finally put together (De et al. [4],

18 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

Akkan et al. [5], Hazir et al. [6]). The decomposition methods reduce the computational effort

but they do not guarantee finding the optimal solution.

While exact methods can work satisfactorily in small networks, their effectiveness and efficiency

drops as the project size and complexity rises. In this case, approximate algorithms can perform

more efficiently even if they cannot guarantee the assessment of the optimal solution in any case.

Among evolutionary-based algorithms, genetic algorithms were tested first. Feng et al. [7]

presented such a method to develop the time-cost curve (Pareto front) via a multi-objective

model which included both time and cost as distinct objectives. The method was evaluated on an

18-activity project network and the results were compared to those of a full enumeration analysis

indicating that the algorithm could find almost all optimal values along the curve searching only

a small part of the solution space. Hegazy [8] developed a practical problem for TCT

optimization using the principle of genetic algorithms (GAs) and implementing it as a Visual

Basic Application (VBA) macro program. Li and Love [9] presented certain improvements on

existing GA methods in order to reduce computation times and increase algorithm effectiveness.

Later, Li et al [10] proposed the integration of a machine learning method with GA with the

former being used for the generation of quadratic time-cost curves from historical data in order

to generalize the linear time-cost relationships. Zeng et al. ([11], [12]) presented a multi-

objective model which integrates adaptive weights derived from previous generations and

induces a search pressure toward an ideal point.

Besides GA methods, other evolutionary-type of algorithms have also been used. Yang [13]

employed particle swarm optimization and adopted an elite archiving scheme to store non-

dominated solutions while using members of the archive to direct further search. Zhang and Li

[14] developed a multi-objective particle swarm optimization that adopts a combined scheme for

determining the global best of each particle where the candidate solutions are represented

through the multidimensional particles. Ng and Zhang [15] employed ant-colony optimization

(ACO) to solve the multi-objective time-cost optimization problem while Xiong and Kuang [16]

combined ACO with the modified adaptive weight approach to find the optimal solutions and

define the Pareto front. Afshar et al [17] presented a multi-colony ant algorithm as an attractive

alternative to the single ant colony optimization algorithm. Hybrid strategies have also been

proposed and, among them, Sonmez and Bettemir [18] developed a hybrid model using GA and

simulated annealing (SA) which is used to improve the hill-climbing ability of the GA.

While typical research efforts focus on examining certain methods and attempting to optimize

their use through structure and parameter tuning, there is a scarcity of comparative studies which

include several algorithms and formulations. One such study by Elbeltagi et al. [19] compared

five evolutionary-based algorithms (genetic algorithms, memetic algorithms, particle swarm, ant-

colony systems, and shuffled frog leaping) and, based on results from one test problem [7],

concluded that the PSO method performs better than other algorithms in terms of success rate

and solution quality, while being second best in terms of processing time. The lack of

comparative studies may be a serious shortcoming in real practice where the project manager

may not have the ability or willingness to search for the “best” method or perform fine-tuning of

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 19

algorithm structure and parameters. Instead, it is more likely that he/she will utilize some

common use commercial software that implements such kind of optimization algorithms.

The objective of this work is to investigate the performance potential of several evolutionary

algorithms for the time-cost trade-off problem. In particular, a number of existing algorithms,

each one with its own variations, are comparatively evaluated. The evaluation is based on two

measures of effectiveness, the solution quality (success rate and average of best solutions found

under multiple algorithm applications) and processing time (average run time under multiple

attempts). The solution is sought via a general purpose commercial optimization software with

little interference in algorithm parameter setting and fine-tuning following more or less the

expected project manager approach. The investigation has been done on case study projects from

the literature with varying size and characteristics and with the exact solutions to be known.

Numerical results and discussion is presented in the following sections.

2. Problem and algorithm description

The mathematical formultaion that describes the time-cost trade-off and minimum cost project

duration problems has an objective function of the following form:

00

Ai

ij fcc

minTC (1)

where TC is the total cost; i is the activity indicator; A is the group of project activities; j is the

indicator of the activity method of construction; cij is the direct cost of activity i corresponding to

method j and it directly related to the corresponding activity duration dij; f0 is the project finish

time; and c0 is the project indirect cost per time unit. The first term of the objective function

represents the project direct cost and the second one reflects the indirect cost. If indirect cost is

not considered (i.e., c0=0), the problem reduces to the time-cost trade-off problem. The problem

variables are the activity durations dij while the constraints refer to: (a) project network structure

and activity precedence relations, (b) activity duration-cost pairs for alternative construction

methods (c) potential project deadline, (g) other time constraints for particular activities or sub-

projects (e.g., “start no earlier than”).

Five evolutionary-based algorithms are considered in the comparative evaluation: hill climbing,

genetic algorithms, particle swarm, differential evolution, and artificial bee colony. Alternative

formulations are examined for some of these methods. A main concern when selecting methods

for evaluation was to remain within a single developer of the corresponding software as this may

guarantee a similar level of development sophistication and robustness of individual methods,

reducing thus the possibility for bias existence in the evaluation results that is due to software

capability discrepancies. In this regard, the XLOptimizer software [20], a generic optimization

tool which implements customizable metaheuristic algorithms and is compatible with Microsoft

Excel, was used. A short description of the examined algorithms and formulations are given

below.

20 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

2.1. Hill climber

Hill Climber is a local optimizer that can be applied to a binary chromosome [21]. It starts from a

random individual chromosome and performs repetitive mutations of the chromosome bits in the

form of flipping between 0 and 1 along the chromosome length. At each step, the objective value

of the mutant is compared to that of the currently best chromosome and, if better, it becomes the

currently best chromosome. The process ends when a full mutation loop along the chromosome

length is completed without any improvement in the objective value.

2.2. Genetic algorithms

Genetic Algorithms represent perhaps the first attempt to apply evolutionary algorithms for

problem optimization. They progressively develop better and better solutions based on previous

solutions that have been examined in the evolution process. Starting from an initial random

population of candidate solutions with individuals representing distinct problem solutions and

genes describing the problem parameters, new solutions evolve, generation by generation, using

techniques such as selection, mutation and crossover. In each generation, the fitness of every

individual (the objective function value associated with the individual) is evaluated. Next,

multiple individuals are stochastically selected from the current population (considering fitness

level) which are recombined (through crossover operation) or altered (through mutation) to

produce offspring and form a new population by keeping the old and new individuals with the

best fitness values within the population (retaining a constant size of it). Algorithm termination

criteria may be the consideration of a given number of generations, the realization of a specific

number of generations without an observable improvement of the fitness value or the

achievement of a satisfactory fitness level (if this is known).

There are four alternative formulations of the genetic algorithms in XLOptimizer:

 The standard version works with predefined parameter settings regarding the population size,

number of generation, crossover and mutation rate. A main disadvantage is that often

terminates prematurely (long before reaching the best value) and, for this reason, its results are

not presented in this study.

 In the custom version, the user can interfere and modify the genetic algorithm settings to fine-

tune with the problem examined.

 The saw tooth GA (STGA) adopts a varying population size approach resembling a saw-tooth

scheme [22]. In particular, the population size, starting from an initial value, is linearly

decreased along generations. When it reaches a minimum value, the size is restored to its

original value by the addition of randomly generated individuals.

 The micro GA (μGA) is a variant which utilizes a small population size of candidate solutions

(typically 5-10 individuals) to reduce the computational effort for fitness value evaluations and

memory storage requirement while the evolution is performed with crossover only [23]. At

some point that the population tends to become homogeneous, a restart of the population is

performed by keeping the best individuals of the existing population and replacing the rest by

new randomly generated individuals. Population restarting several times during the process

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 21

allows effective exploration of the search space and prevents premature convergence to a local

minimum.

2.3. Particle swarm optimization

Particle Swarm Optimization (PSO) is a computational method that optimizes a problem by

iteratively improving a candidate solution with regard to a given measure of quality [24]. A

initial population ("swarm") with random solutions is developed and PSO members of the swarm

("particles") move around in the search-space according to their current position and velocity.

The velocity represents a progressive adjustment of particle position towards its own personal

best position and the swarm's best position. This iterative process is expected to ultimately direct

the swarm toward the best problem solution.

Besides the above standard PSO algorithm (SPSO), an enhanced formulation (EPSO)

incorporates particle velocity restriction at the latest stages of the process to avoid overshooting

(i.e., going back and forth around the optimal solution without the capacity to local convergence)

which is a typical problem of PSO algorithms.

2.4. Differential evolution

Differential Evolution (DE) is a relatively new stochastic method that optimizes a problem by

maintaining a population of candidate solutions (called “agents”) subjected to iterations of

recombination, evaluation, and selection while trying to improve a candidate solution with regard

to a given measure of quality [25]. The agents move around in the search-space developing new

agents by combining the positions of existing agents from the population. In particular, new

candidate solutions are based on the weighted difference between two randomly selected

population members added to a third population member. This perturbs population members

relative to the spread of the broader population while the perturbation effect self-organizes the

sampling of the problem space, bounding it to known areas of interest. In the iterative process,

improved agent positions (based on fitness or score values) are accepted and become part of the

population (replacing worse solutions), otherwise they are discarded. The process is repeated

until a satisfactory solution is eventually revealed.

2.5. Artificial bee colony

Artificial Bee Colony (ABC) is a stochastic swarm intelligence algorithm inspired by the

foraging behavior of honey bees [26]. In ABC algorithm, the food source position represents a

possible solution of the optimization problem and the nectar amount of the food source is

associated with the quality (fitness value) of the corresponding solution. Three groups of

(artificial) bees are used in the process: employed bees, onlookers, and scouts. Employed bees

search for food around the food source in their memory and, when they find a new food source

position with higher nectar amount than that of the previous source, they memorize the new

source position and abandon the old one. Further, they communicate this information to the

onlookers which evaluate the nectar information taken from all employed bees and then choose a

food source depending on the nectar amount of sources. The sources abandoned are replaced by

https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Candidate_solution

22 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

new sources, randomly produced by scouts, i.e., a few employed bees which have abandoned

their food sources and search for new ones.

3. Algorithm performance evaluation

Three benchmark problems from the time-cost optimization literature have been used for the

comparative algorithm evaluation, in particular, a 7-activity project described in [1], an 18-

activity project presented in [7] and a 29-activity project analyzed in [2]. The first two cases

solve the time-cost trade-off problem considering only the project direct cost with best cost

solution to be 107,500 at a 78-day duration deadline and 106,270 at a 110-day duration deadline

respectively; the third problem examines the optimal project duration problem considering, in

addition, indirect cost as well as penalty/bonus parameters leading to a best cost solution of

45,500 at an 75-day project completion. Further, composite networks, including two single 18-

activity projects set in series or in parallel, have been structured and tested within the evaluation

effort. To obtain an indication of the problem size, the full enumeration of possible solutions

adds up to 4,860 alternative schedules for the 7-activity network, 5.9×10
9
 alternatives for the 18-

activity project, 8.3×10
9
 alternatives for the 29-activity project, and 3.5×10

19
 alternatives for

each composite network consisting of two single 18-activity projects.

To obtain a robust indication of the algorithm merits, ten trial runs were performed for each

problem and solution method (five for the composite projects). The performance of the compared

algorithms was evaluated based on two criteria, the solution quality and the required processing

time to reach the solution. The solution quality is determined by the success rate (i.e., the number

of trials that led to the known target value of the objective function) and the average value of the

objective function obtained in all trials. The processing time is recorded with its mean value and

standard deviation among several trials.

The run time values are considered in a relative scale rather than in absolute terms. There are two

reasons for such consideration. First, the computation time depends on the computer

characteristics and lower time is expected with high-performance computing. In this study, all

experiments took place on a laptop machine with Intel Core i5-460M processor, 2.5 GHz and 4

MB RAM (a rather typical configuration for the needs of a project manager). Second, from the

project manager perspective, the main analysis goal may be to obtain a near-optimal solution at a

reasonable computation time rather than waiting too long for a slightly better solution. In this

regard, two types of output were developed. The algorithms were allowed to run as long as they

were getting better values of the objective function (with a user-specified run time limit of half

an hour for the three simple case studies and one hour for the two composite problems, ranges

that may be barely acceptable for such project sizes). The run times that are reported in the result

tables below correspond to the last best value found within the above run time limits. In addition,

all intermediate solution upgrades were recorded within the calculation process and

computational time scale. To get the whole picture, the algorithm performance is then illustrated

with graphs showing the objective value evolution in time for representative cases.

The case study results are analytically presented in Tables 1 to 5 and graphically in Figures 1 and

2. Several indicative outcomes can be reported from the comparative evaluation. In particular:

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 23

Table 1

Evaluation results for the 7-activity project (best solution 107,500).

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec)

Hill Climber 4/10 110,190 2.5 1.1 0.3

GA 10/10 107,500 0 13 3

Saw Tooth GA 10/10 107,500 0 17 6

Micro GA 10/10 107,500 0 9 6

SPSO 10/10 107,500 0 7 4

EPSO 10/10 107,500 0 5 2

DE 10/10 107,500 0 8 3

ABC 10/10 107,500 0 22 11

Table 2

Evaluation results for the 18-activity project (best solution 106,270).

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec)

Hill Climber 10/10 106,270 0 6 1

GA 10/10 106,270 0 157 59

Saw Tooth GA 1/10 106,534 0.25 507 164

Micro GA 10/10 106,270 0 106 42

SPSO 6/10 106,505 0.22 74 21

EPSO 10/10 106,270 0 42 17

DE 10/10 106,270 0 64 9

ABC 10/10 106,270 0 180 30

Table 3

Evaluation results for the 29-activity project (best solution 45,500).

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec)

Hill Climber 2/10 45,573 0.16 5.5 0.5

GA 10/10 45,500 0 224 91

Saw Tooth GA 6/10 45,504 0.01 793 176

Micro GA 10/10 45,500 0 182 96

SPSO 1/10 45,608 0.24 86 32

EPSO 9/10 45,502 0.004 161 42

DE 10/10 45,500 0 85 10

ABC 10/10 45,500 0 405 71

The Hill Climber method is by far the fastest method in reaching its own best solution but it is

generally unreliable in terms of optimization effectiveness (solution quality) since it presents a

rather random performance with regard to problem size and other characteristics. In particular,

24 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

although in many cases the method reaches the absolute best, it cannot guarantee the best

solution finding even in small-size problems where one expects higher performance than in

larger projects. In addition, the method presents the highest deviations from the best solution

among all examined methods. Nevertheless, its response time makes the method preferable for a

fast solution approximation (at least in problems of these sizes).

Table 4

Evaluation results for two 18-activity projects in series (best solution 212,540).

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec)

Hill Climber 5/5 212,540 0 12 2

GA 2/5 212,579 0.02 2394 647

Saw Tooth GA 0/5 213,982 0.68 3166 329

Micro GA 5/5 212,540 0 1066 269

SPSO 0/5 214,010 0.69 422 45

EPSO 5/5 212,540 0 242 80

DE 5/5 212,540 0 214 30

ABC 5/5 212,540 0 864 53

Table 5

Evaluation results for two 18-activity projects in parallel (best solution 212,540).

Method Success rate Average solution Deviation from best (%) Average time (sec) STD time (sec)

Hill Climber 1/5 229,303 7.89 16 3

GA 3/5 212,798 0.12 2227 647

Saw Tooth GA 0/5 215,466 1.38 3416 173

Micro GA 2/5 213,525 0.46 2396 274

SPSO 0/5 221,998 4.45 50 5

EPSO 5/5 212,540 0 221 15

DE 5/5 212,540 0 226 24

ABC 0/5 220,454 3.72 1761 916

Among Genetic Algorithms, the custom GA has reached the best solutions in most cases

examined and at competitive computational speeds. The Saw Tooth GA presents deteriorating

performance in terms of solution accuracy and run time with the increase of the problem size (the

method has consistently found the optimal solution only in the 7-activity problem). The micro

GA has converged to the best solution in the majority of the cases with run time slightly lower in

general than those of the custom GA.

The standard PSO algorithm (SPSO) performs rather poorly compared to other methods both in

terms of solution accuracy and computational effectiveness with both indices to considerably

deteriorate with the problem size. The enhanced PSO algorithm (EPSO), on the other hand,

presents one of the best performances among the examined methods. In particular, the algorithm

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 25

has consistently found the best solutions in almost all case studies and attempts while its run time

is comparable to the best ones (excluding the fast-running Hill Climber algorithm). The superior

performance of the algorithm may be attributed to its capability to better manipulate the particle

velocities at the final stages prior to convergence.

Fig 1. Evaluation results in terms of solution quality.

Fig 2. Evaluation results in terms of time requirement.

26 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

The Differential Evolution (DE) method exhibits one of the most competitive performances

among all algorithms in terms of both solution quality and computational requirements. The

algorithm has successfully reached the best solution in all case studies and repetitive attempts

while its run times are among the lowest ones compared to other methods (with the exception of

the Hill Climber method).

Finally, the Artificial Bee Colony (ABC) algorithm performs generally well in finding the

optimal solution in almost all cases (with some degradation at larger problems), however, its

computational efficiency is rather moderate compared to more effective methods, such as EPSO

or DE.

In order to obtain a global perspective of method performance, Figures 3 and 4 illustrate the best

performing algorithms with regard to the objective function (cost) value and run time value for

the cases of the 18-activity and 29-activity networks. The point clouds for each method have

been developed from selected (representative) result points of the multiple trials performed.

The schematic representation of the comparative evaluation indicates a slight outperformance of

the enhanced PSO (EPSO) followed by the Differential Evolution (DE) and the micro GA

methods. The outperformance primarily refers to the processing time that allows these methods

to converge to their best solution faster than other methods. The custom GA presents a slower

response in comparison to previous methods, while the ABC method, although ultimately reach

the best solution (in most cases), generally takes more time than other methods to converge.

Fig 3. Evaluation results for best performing algorithms (18-activity network).

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 27

Fig 4. Evaluation results for best performing algorithms (29-activity network).

4. Conclusions

The time-cost trade-off problem is a typical problem of the project scheduling analysis and aims

to determine the best method of activity construction so that the project is completed with the

least cost and within any completion deadline. Due to the problem size, which exponentially

increases with project size, evolutionary algorithms have been implemented and tested in recent

years for the solution of the problem. Although several methods have been developed and tested

over the years, there are not many comparative studies independently evaluating several

methods. Such studies can provide support to project managers regarding the selection of the

appropriate method. The objective of this work is to investigate the performance potential of

several evolutionary algorithms for the time-cost trade-off problem. In particular, a number of

existing algorithms, each one with its own variations, are comparatively examined. The solution

is sought via a general purpose commercial optimization software without much interference in

algorithm parameter setting and fine-tuning. The investigation was based on three benchmark

case studies from the literature with varying size and characteristics. On the basis of the results

presented, the following indicative conclusions can be drawn:

 There is no unique method that clearly supersedes others in all aspects, effectiveness to find

the optimal solution and efficiency of computation (processing time). In fact, it appears that it

may be preferable to utilize different methods to increase the probability of obtaining optimal

results.

28 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29

 In the case studies that were analyzed, all methods found the optimal or a near optimal

solution with μGA, EPSO, DE to present a rather ideal behavior in converging to the best

solution and Hill Climber (on the other hand) to exhibit the lowest performance in this regard.

Regarding computational efficiency, the enhanced PSO and DE methods require the least time

while certain versions of GA and the ABC method show the worst performance.

 Comparing different versions of an algorithm (e.g., CGA, STGA, μGA) indicates that

experimenting with algorithm structure and parameter tuning leads to result improvement in

terms of solution effectiveness and/or efficiency.

 The employment of general purpose commercial software highly reduces the effort to set up

the problem, however, the results may be inferior to that of a tailor-made software

development for the particular problem.

References

[1] Liu L, Burns SA, Feng C-W. Construction Time-Cost Trade-Off Analysis Using LP/IP Hybrid

Method. J Constr Eng Manag 1995;121:446–54. doi:10.1061/(ASCE)0733-9364(1995)121:4(446).

[2] Sakellaropoulos S, Chassiakos AP. Project time–cost analysis under generalised precedence

relations. Adv Eng Softw 2004;35:715–24. doi:10.1016/j.advengsoft.2004.03.017.

[3] Klanšek U, Pšunder M. MINLP optimization model for the nonlinear discrete time–cost trade-off

problem. Adv Eng Softw 2012;48:6–16. doi:10.1016/j.advengsoft.2012.01.006.

[4] De P, James Dunne E, Ghosh JB, Wells CE. The discrete time-cost tradeoff problem revisited. Eur

J Oper Res 1995;81:225–38. doi:10.1016/0377-2217(94)00187-H.

[5] Akkan C, Drexl A, Kimms A. Network decomposition-based benchmark results for the discrete

time–cost tradeoff problem. Eur J Oper Res 2005;165:339–58. doi:10.1016/j.ejor.2004.04.006.

[6] Hazır Ö, Haouari M, Erel E. Discrete time/cost trade-off problem: A decomposition-based solution

algorithm for the budget version. Comput Oper Res 2010;37:649–55.

doi:10.1016/j.cor.2009.06.009.

[7] Feng C-W, Liu L, Burns SA. Using Genetic Algorithms to Solve Construction Time-Cost Trade-

Off Problems. J Comput Civ Eng 1997;11:184–9. doi:10.1061/(ASCE)0887-3801(1997)11:3(184).

[8] Hegazy T. Optimization of construction time-cost trade-off analysis using genetic algorithms. Can

J Civ Eng 1999;26:685–97. doi:10.1139/l99-031.

[9] Li H, Love P. Using Improved Genetic Algorithms to Facilitate Time-Cost Optimization. J Constr

Eng Manag 1997;123:233–7. doi:10.1061/(ASCE)0733-9364(1997)123:3(233).

[10] Li H, Cao J-N, Love PED. Using Machine Learning and GA to Solve Time-Cost Trade-Off

Problems. J Constr Eng Manag 1999;125:347–53. doi:10.1061/(ASCE)0733-

9364(1999)125:5(347).

[11] Zheng DXM, Ng ST, Kumaraswamy MM. Applying a Genetic Algorithm-Based Multiobjective

Approach for Time-Cost Optimization. J Constr Eng Manag 2004;130:168–76.

doi:10.1061/(ASCE)0733-9364(2004)130:2(168).

[12] Zheng DXM, Ng ST, Kumaraswamy MM. Applying Pareto Ranking and Niche Formation to

Genetic Algorithm-Based Multiobjective Time–Cost Optimization. J Constr Eng Manag

2005;131:81–91. doi:10.1061/(ASCE)0733-9364(2005)131:1(81).

 A.P. Chassiakos, G. Rempis/ Journal of Soft Computing in Civil Engineering 3-2 (2019) 16-29 29

[13] Yang I-T. Using Elitist Particle Swarm Optimization to Facilitate Bicriterion Time-Cost Trade-Off

Analysis. J Constr Eng Manag 2007;133:498–505. doi:10.1061/(ASCE)0733-

9364(2007)133:7(498).

[14] Zhang H, Li H. Multi‐objective particle swarm optimization for construction time‐cost tradeoff

problems. Constr Manag Econ 2010;28:75–88. doi:10.1080/01446190903406170.

[15] Ng ST, Zhang Y. Optimizing Construction Time and Cost Using Ant Colony Optimization

Approach. J Constr Eng Manag 2008;134:721–8. doi:10.1061/(ASCE)0733-9364(2008)134:9(721).

[16] Xiong Y, Kuang Y. Applying an Ant Colony Optimization Algorithm-Based Multiobjective

Approach for Time–Cost Trade-Off. J Constr Eng Manag 2008;134:153–6.

doi:10.1061/(ASCE)0733-9364(2008)134:2(153).

[17] Afshar A, Ziaraty AK, Kaveh A, Sharifi F. Nondominated Archiving Multicolony Ant Algorithm

in Time–Cost Trade-Off Optimization. J Constr Eng Manag 2009;135:668–74.

doi:10.1061/(ASCE)0733-9364(2009)135:7(668).

[18] Sonmez R, Bettemir ÖH. A hybrid genetic algorithm for the discrete time–cost trade-off problem.

Expert Syst Appl 2012;39:11428–34. doi:10.1016/j.eswa.2012.04.019.

[19] Elbeltagi E, Hegazy T, Grierson D. Comparison among five evolutionary-based optimization

algorithms. Adv Eng Informatics 2005;19:43–53. doi:10.1016/j.aei.2005.01.004.

[20] xlOptimizer software, www.xloptimizer.com, 2015.

[21] Eiben AE, Smith JE. Introduction to evolutionary computing. vol. 53. Springer; 2003.

[22] Koumousis VK, Katsaras CP. A saw-tooth genetic algorithm combining the effects of variable

population size and reinitialization to enhance performance. IEEE Trans Evol Comput 2006;10:19–

28. doi:10.1109/TEVC.2005.860765.

[23] Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization.

Intell. Control Adapt. Syst., vol. 1196, International Society for Optics and Photonics; 1990, p.

289–96.

[24] Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE Int. Conf. neural networks (Perth,

Aust., 1995, p. 1942–8.

[25] Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global

optimization. Springer Science & Business Media; 2006.

[26] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm. Appl Soft

Comput 2008;8:687–97. doi:10.1016/j.asoc.2007.05.007.

	1. Associate Professor, Department of Civil Engineering, University of Patras, Patras, Greece
	2. Civil Engineer, Graduate, Department of Civil Engineering, University of Patras, Patras, Greece
	Corresponding author: a.chassiakos@upatras.gr
	1. Introduction
	2. Problem and algorithm description
	2.1. Hill climber
	2.2. Genetic algorithms
	2.3. Particle swarm optimization
	2.4. Differential evolution
	2.5. Artificial bee colony

	3. Algorithm performance evaluation
	4. Conclusions
	References

