Performance Evaluation of Organizations Based on Human Factor Engineering Using Fuzzy Data Envelopment Analysis (FDEA)

Document Type : Regular Article


1 Industrial and System Engineering Department, State University of New York at Binghamton, Binghamton, USA

2 School of Industrial and Systems Engineering, College of Engineering, University of Tehran, Iran


With the growing rate of incidents at the workplace and the consequent increase of staff’s dissatisfaction, this study attempts to examine an integrated ergonomic system in a pharmaceutical company. In this study, the organization performance is assessed at different levels. First, an ergonomic questionnaire determines the most effective factors in the efficiency of the system by the means of fuzzy data envelopment analysis (FDEA). The best FDEA model is selected by making perturbation in the data and calculating the correlation between rankings. Then, a standard questionnaire is distributed among the customers and the most important factor in customer satisfaction is discovered. At last, suppliers are ranked based on the most important criteria using Hierarchical TOPSIS method. Next, the most influential factors managers and expert’s performance in health, safety and environment section are measured and strategies are proposed for performance improvement. The information obtained from performance evaluation can identify the worker's performance efficiency.


Google Scholar


Main Subjects

[1]       Murphy LA, Robertson MM, Carayon P. The next generation of macroergonomics: Integrating safety climate. Accid Anal Prev 2014;68:16–24. doi:10.1016/j.aap.2013.11.011.
[2]       Fischer K, Hobelsberger C, Zink KJ. Human factors and sustainable development in global value creation. 17th World Congr Ergon IEA, 2009.
[3]       Hasle P, Jensen PL. Ergonomics and sustainability–challenges from global supply chains. Work 2012;41:3906–13.
[4]       Høivik D, Moen BE, Mearns K, Haukelid K. An explorative study of health, safety and environment culture in a Norwegian petroleum company. Saf Sci 2009;47:992–1001. doi:10.1016/j.ssci.2008.11.003.
[5]       Begdache L, Chaar M, Sabounchi N, Kianmehr H. Assessment of dietary factors, dietary practices and exercise on mental distress in young adults versus matured adults: A cross-sectional study. Nutr Neurosci 2019;22:488–98. doi:10.1080/1028415X.2017.1411875.
[6]       Begdache L, Kianmehr H, Sabounchi N, Chaar M, Marhaba J. Principal component analysis identifies differential gender-specific dietary patterns that may be linked to mental distress in human adults. Nutr Neurosci 2018:1–14. doi:10.1080/1028415X.2018.1500198.
[7]       Le May I, Deckker E. Reducing the risk of failure by better training and education. Eng Fail Anal 2009;16:1153–62. doi:10.1016/j.engfailanal.2008.07.006.
[8]       Choobineh A, Tabatabaei SH, Mokhtarzadeh A, Salehi M. Musculoskeletal Problems among Workers of an Iranian Rubber Factory. J Occup Health 2007;49:418–23. doi:10.1539/joh.49.418.
[9]       Hendrick HW. Future directions in macroergonomics. Ergonomics 1995;38:1617–24. doi:10.1080/00140139508925213.
[10]     Kärnä S. Analysing customer satisfaction and quality in construction–the case of public and private customers. Nord J Surv Real Estate Res 2004;2.
[11]     Vinodkumar MN, Bhasi M. Safety climate factors and its relationship with accidents and personal attributes in the chemical industry. Saf Sci 2009;47:659–67. doi:10.1016/j.ssci.2008.09.004.
[12]     Micklitz H-W. International Regulation on Health, Safety, and the Environment – Trends and Challenges. J Consum Policy 2000;23:3–24. doi:10.1023/A:1006302721189.
[13]     Zink KJ, Seibert S. Performance Measurement from a Macroergonomics Perspective. Ind Eng Ergon, Berlin, Heidelberg: Springer Berlin Heidelberg; 2009, p. 91–103. doi:10.1007/978-3-642-01293-8_7.
[14]     Azadeh A, Rouzbahman M, Saberi M, Valianpour F, Keramati A. Improved prediction of mental workload versus HSE and ergonomics factors by an adaptive intelligent algorithm. Saf Sci 2013;58:59–75. doi:10.1016/j.ssci.2013.03.004.
[15]     Azadeh A, Saberi M, Rouzbahman M, Saberi Z. An intelligent algorithm for performance evaluation of job stress and HSE factors in petrochemical plants with noise and uncertainty. J Loss Prev Process Ind 2013;26:140–52. doi:10.1016/j.jlp.2012.10.004.
[16]     Charnes A, Cooper W., Golany B, Seiford L, Stutz J. Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. J Econom 1985;30:91–107. doi:10.1016/0304-4076(85)90133-2.
[17]     Saati SM, Memariani A, Jahanshahloo GR. Efficiency analysis and ranking of DMUs with fuzzy data. Fuzzy Optim Decis Mak 2002;1:255–67.
[18]     Tong RM, Bonissone PP. A Linguistic Approach to Decisionmaking with Fuzzy Sets. IEEE Trans Syst Man Cybern 1980;10:716–23. doi:10.1109/TSMC.1980.4308391.
[19]     Ertugrul Karsak E, Tolga E. Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. Int J Prod Econ 2001;69:49–64. doi:10.1016/S0925-5273(00)00081-5.
[20]     Hwang C., Masud A. Methods and Applications: A State of the Art Survey. Lect Notes Econ Math Syst vol 164, Springer-Verlag, 1979.
[21]     Yuan Y. Criteria for evaluating fuzzy ranking methods. Fuzzy Sets Syst 1991;43:139–57. doi:10.1016/0165-0114(91)90073-Y.
[22]     Hendrick HW. Organizational design and macroergonomics. Handb Hum Factors Ergon 1997;2:594–627.
[23]     Hendrick HW. An overview of macroergonomics. Macroergonomics Theory, Methods, Appl 2002:1–23.
[24]     Hendrick HW, Kleiner BM. Macroergonomics: An introduction to work system design. Human Factors and Ergonomics Society; 2001.
[25]     Azadeh A, Gharibdousti MS, Firoozi M, Baseri M, Alishahi M, Salehi V. Selection of optimum maintenance policy using an integrated multi-criteria Taguchi modeling approach by considering resilience engineering. Int J Adv Manuf Technol 2015. doi:10.1007/s00170-015-7733-7.
[26]     Mejías Herrera SH, Huaccho Huatuco L. Macroergonomics intervention programs: Recommendations for their design and implementation. Hum Factors Ergon Manuf Serv Ind 2011;21:227–43. doi:10.1002/hfm.20229.
[27]     Herrera SM, Huatuco LH. Macroergomonics’ contribution to the effectiveness of collaborative supply chains. Work 2012;41:2695–700.
[28]     Woodson W. Human Factors Design Handbook. New York: McGraw-Hill. 1981.
[29]     Saurin TA, Guimarães LB de M, Costella MF, Ballardin L. An algorithm for classifying error types of front-line workers based on the SRK framework. Int J Ind Ergon 2008;38:1067–77. doi:10.1016/j.ergon.2008.02.017.
[30]     Saurin TA, Costella MG, Costella MF. Improving an algorithm for classifying error types of front-line workers: Insights from a case study in the construction industry. Saf Sci 2010;48:422–9. doi:10.1016/j.ssci.2009.12.014.
[31]     Kjellen U. Prevention of Accidents Through Experience Feedback. CRC Press; 2000. doi:10.1201/b17206.
[32]     Gharibdousti MS, Khasawneh MT, Friedman AL. Pre-Transplant Ventricular Assist Device (VAD) Impacts Heart Transplant (HT) Survival. Am J Transplant 19 (Suppl 3) Https//Atcmeetingabstractscom/Abstract/Pre-Transplant-Ventricular-Assist-Device-Vad-Impacts-Heart-Transplant-Ht-Survival/ Accessed June 12 2019.
[33]     Gharibdousti MS, Haider SM, Ouedraogo D, Susan LU. Breast cancer diagnosis using feature extraction techniques with supervised and unsupervised classification algorithms. Appl Med Informatics 2019;41:40–52.
[34]     Azadeh A, Nasirian B, Motevali Haghighi S. An intelligent framework for performance optimisation of integrated management system and resilience engineering in pharmaceutical plants. Total Qual Manag Bus Excell 2019;30:953–89. doi:10.1080/14783363.2017.1342532.
[35]     Noorul Haq A, Kannan G. Design of an integrated supplier selection and multi-echelon distribution inventory model in a built-to-order supply chain environment. Int J Prod Res 2006;44:1963–85. doi:10.1080/00207540500381427.