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Many empirical models have been introduced by scientists 

during the recent decades for estimating longshore sediment 

transport rate, but these approaches have been calibrated and 

applied under limited conditions of the bed profile and 

specific range of the bed sediment size. The existing 

empirical relations are linear or exponential regressions 

based on the observation and measurements data, and there’s 

a great potential to build more accurate models to predict 

sediment transport phenomena using soft computation 

approach. This paper presents a novel case study application 

of the adaptive Neuro-fuzzy inference system (ANFIS) as a 

superior modeling technique for estimation of the longshore 

sediment transport rate in the southern shorelines of the 

Caspian Sea. The results will be compared with the top three 

popular existing empirical equations. Daily grab samples 

from four stations were collected from March 2012 through 

June 2012. The trained ANFIS model outperformed the 

existing regression-type empirical equations for the 

estimation of the alongshore sediment transport rate due to 

the adaptive structure of the ANFIS model to better fit 

complex systems. 
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1. Introduction 

Sediment transport along the shore is one of the most important coastal processes that largely 

specify the coastal morphology, control and erosion, sedimentation, and sustainability. The 

alongshore current has an important role in sediment transport in the surf zone. This current is 

generated by obliquely incident breaking waves. Although the rate of transport and the direction 

of the sediment transport in certain parts of the coast are variable according to wave parameters, 

it indicates the annual sediment transport net rate and annual total alongshore sediment transport.  

Several popular semi-empirical methods have been proposed to estimate the alongshore sediment 

transport rate (LSTR), including Bijker (1971), CERC Shore Protection Manual (1984), Kraus et 

al. (1989), Walton and Bruno (1989), and Kamphuis (1991), Watanabe (1999), Bayram et al. 

(2001), van Rijn (2002), and Kumar et al. (2003) [1–9]. The alongshore sediment transport is 

episodic and unpredictable because of coastal wind events that occur at irregular intervals [10–

12]. Furthermore, the wave energy and angle with respect to the coastline, have the greatest 

influence on the alongshore sediment transport rate [13–15]. 

Soft computing techniques are a useful tool to increase the performance of the modeling. More 

recent studies have used power machine learning approaches such as artificial neural networks 

(ANN) and adaptive Neuro-fuzzy inference systems (ANFIS) to estimate the alongshore 

sediment transport rate [10,12,16–21]. 

In this study, the ANFIS model is developed for estimation of alongshore sediment transport rate 

in Noor coastal zone (Caspian Sea southern coasts) using wave parameters including height, 

period, and breaking wave angle as model input and the sediment transport rate as model output. 

The prediction accuracy of the trained ANFIS model is compared with the top three popular 

existing semi-empirical formulas, including the CERC (1984), Walton and Bruno (1989), and 

Kamphuis (1991) methods for estimation of the LSTR [2,4,5]. 

2. Methodology 

2.1. Study area 

The present study is carried out in the Noor coastal zone (located in the Caspian Sea southern) 

with length segment 2.4 km located in latitude N 36 ° 52 ‘5/20 to 37°17 ‘40/93’’ and longitude E 

53° 27’27/18’’ to 50°32’17/16’’ in four stations from March 2012 through June 2012. The data 

recording stations were situated on the coastline in spanning around 600m in proper intervals, 

and sampling was performed daily at given time for each site and then measured data were 

averaged, and relevant data were obtained (Fig.1). 

2.2. Sampling method 

In order to carry out the present study, the important parameters including the breaking wave 

height (𝐻𝑏), the breaker angle (𝛼𝑏), the wave period (T), wave approaching the coast angle (𝛽), 

surf zone width (W) were measured and recorded using field observations from 20 March 2012 
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through 21 July 2012 at four stations. The height of the breaking wave varied between 0.01 to 

0.91 m, and the period of the wave varied from 2.3 to 7 s, the average breaker angle value was 

23.5°, the wave approaching the coast angle was 93.5° and the average surf zone width was 84 

m. The measurement of alongshore current velocity (V) was calculated using currethe nt meter 

(model 1205, Germany), and coastal slope (S) at each station with mathethe matical formula of 

slop with measuring water depth and horizthe ontal distance between coastline and depth of one 

meter. The sampling from sediment across the zone to analyze the sediment grain size 

distribution (D) on the coastline and in depths of 0 m, 5 m, and 10 m using grapple were taken 

and delivered to laborthe atory. After washing and drying with shaker and various sieves, 

according to Britain standard (BSI; 1967, 1986), the grain size distribution (Table 1) was carried 

out (Fig. 2). 

 
Fig. 1. Illustration of the Study area (Noor coastal zone located in the Caspian Sea southern). 

The alongshore current velocity in the surf zone is not uniform. Then, this velocity is calculated 

with dye injection method and in terms of distance and time traveled from dye injection point to 

the coastline. The measurement of breaking wave height is made with field observations and 

according to US Army Coastal Engineering Manual [22]. Obtain the wave period, the time 

interval between two consecutive waves is measured with a chronometer, and the average of 

three values obtained from this method is considered as wave’s period. The breaker angle related 

to the coastline was measured with observation and using a protractor [22]. 
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Table 1 

The Statistical characteristics of grain diameter in various depths (𝜇𝑚) in cothe ast of Caspian Sea, Noor 

City. 
Depth (m) 𝐷10(𝜇𝑚) 𝐷50(𝜇𝑚) 𝐷90(𝜇𝑚) 

0 154.3 219.2 590.3 

5 92.15 173.7 283.6 

10 60.02 117.0 577.0 
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Fig. 2. The measured parameters (A): wave period, (B): breaking wave height, (C): width surf zone, (D): 

current longshore velocity, (E): coastal slope, (F): wave approaching the coast angle. 

 

2.3. Measurement of longshore sediment transport rate (LSTR) 

In order to begin sediment sampling, the trap is installed on a line spanning the surf zone, such 

that the trap opening is toward the current and it is installed in the bed and sampling was carried 

out for an hour. Then, the trap is transported to the coast and the sediment trapped is discharged 

in suitable containers, and was delivered to the laboratory for purposes of drying (for 24 hours at 

temperature 105℃) and sediment distribution. The LSTR is calculated by Kraus et al. method in 

final report DUCK 85 (Fig. 3) [23]. 
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Fig. 3. The observed values of sediment transport rate using the trap in Noor coast. 

2.4. Alongshore sediment transport rate 

The current along the shore is caused by obliquely incident breaking waves and has a significant 

role in sediment transport in a region of the seabed relatively close to a shore. The alongshore 

current is one of the key parameters in most coastal engineering studies. In stormy conditions, 

transport of sediment happens for a relatively short time in the surf zone. In mild wave 

conditions, the least transport rate of sediment occurs for an extended period, often in the swash 

zone. Since, hydrodynamic processes are entirely different in two points, indicate that single 

parametric model in two conditions, may not be well performed. 

The three different sediment transport zone include: 

A) Initial breaker zone, 

B) Surf zone, 

C) Swash zone. 

The coastal breaking waves that occur in the surf zone are specified with the reversible 

transformation from organized wave travel and scales including disturbance, vorticity, waves 

with low frequencies and currents [24]. The greatest transport is occurred by overtopping waves 

in the initial breaker zone. This breaking type carries the most suspended sediments available by 

mid currents.  

2.4.1. The coastal engineering research center (CERC) formula 

The Coastal Engineering Research Center [2] approach is one of the most common and simplest 

models for calculating LSTR, which is given by Eq.1: 

𝑄 = 𝐾𝐴
𝜌𝑔2

64𝜋
𝑇𝐻𝑏

2 sin 2𝛼𝑏 (1) 

where Q = the alongshore transport rate volume, K = 0.39, which is the constant dimensionless 

relating sand transport to alongshore energy flux, 𝐴 = 1/[𝜌𝑠 − 𝜌)𝑔(1 − 𝑝)], 𝜌𝑠 = the sediment 

mass density, 𝜌 = seawater mass density (1025 kg/m
3
), 𝑝 = sediment porosity, T = wave period 
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(s), 𝐻𝑏 =breaking wave height (m), and 𝛼𝑏 = breaker angle with respect to coastline [2]. LSTR 

is proportional to energy flux in this model (energy flux factor alongshore in breaker 

condition,𝑃1𝑏 = (𝐸𝑤𝐶𝑔)𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼, where 𝑃1𝑏 is the energy factor alongshore in the breaker 

point; 𝐸𝑤 denotes the wave energy and 𝐶𝑔 indicates group velocity of the wave). The previous 

researches of this work are [25,26]. For more information, refer to [27]. 

2.4.2. Walton and Bruno formula 

The breaker height, the width of the surf zone, and the average current velocity of the alongshore 

in the surf zone were considered by Walton and Bruno [4] for calculation of LSTR: 

𝑄 =
𝐾𝐴𝜌𝑔𝐻𝑏𝑊𝑉𝐶𝑓

0.87(
5𝜋

2
)(

𝑣

𝑣0
)𝐿𝐻

 (2) 

where 𝐶𝑓 =  0.005, which is the friction coefficient, W = the width of the surf zone in m, V= the 

measured current velocity of the longshore (m/s), and (𝑣/𝑣𝑜)𝐿𝐻 = theoretical dimensionless 

longshore current velocity with the mixing parameter as 0.4 [28]. This model is chosen based on 

parameters that are easily measured, and consequently it is ,expected that in this field, the study 

of model performance evaluation is well carried out [4].  

2.4.3. Kamphuis formula 

The Kamphuis formulas include the effects of the wave period, the coastal slope and the size of 

the grain [5]: 

𝑄 = 6.4 × 104𝐻𝑏
2𝑇1.5𝑚𝑏

0.75𝐷−0.25𝑠𝑖𝑛0.6(2𝛼𝑏) (3) 

where 𝑄 = the alongshore sediment transport rate (m
3
/year); 𝐻𝑏 = the height of the breaking 

wave; T= the period of the wave, 𝛼𝑏 = the breaker angle; 𝑚𝑏= the coastal slope; and D = the 

grain size. 

2.4.4. Analysis of the sediment transport rate 

The traps are used to measure sediment flux, for example, sand weight and sand discharged from 

the nozzle in certain cross section at the time of sampling. If sampling is used unidirectional 

current that is the case here, the flux can directly obtain with developed current using predicted 

formulas [3]. The sediment flux in column K is given as: 

𝐹(𝐾) =
𝑆(𝐾)

∆ℎ∆𝑤∆𝑡
 (4) 

where F = sediment flux (𝐾𝑔/𝑚2. 𝑠); K= number of traps, increasing in bed (K=1) and 

decreasing in column (K=N); S = Dried sediment weight (in kg); ∆ℎ= Nozzle column height 

(0.15 m in this study); ∆𝑤 =Trap nozzle width (0.25 m in this study); ∆𝑡 =Sampling time 

interval (in s). 

2.4.5. Adaptive Neuro-fuzzy inference system (ANFIS) 

The networks based on adaptive Neuro-fuzzy inference system suggest a useful approach from 

network to solve the problems of an approximate function. The fuzzy set theory is designed for 
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systems that can deal with complicated processes, effectively. The elements of a fuzzy set can be 

mapped individually using membership values to the theory of function. The elements of the 

fuzzy theory can be extended to actual values in the interval [0, 1]. Dividing data as training, and 

validation and testing are necessary for the fuzzy inference system (FIS) and ANFIS models.  

The aim of using validation data is to evaluate and validate the model. If there is a noticeable 

difference between training and validation data, the deficiency of evaluated model will be 

revealed. For estimation of developed sediment transport, the wave period, breaker angle, and 

breaking wave height were used as input data and LSTR as output data. To analyze the 

performance of the ANFIS model, subtractive clustering method was used to divide data into 

clustering groups. The acceptable values for the radius of each cluster are varied between 0.15 to 

0.40. 

In this study, the structure of ANFIS model is: (a) Sugeno one fuzzy order model, it leads to rules 

IF-THEN in linear equations, (b) an operator with norms T for the fuzzy approach as an 

algebraic product, and (c) membership functions that are organized regarding Gaussian functions 

[29]. 

The different numbers of membership function (Trapezoidal, Triangular, Gaussian, etc.) are used 

to determine the degree of the membership function. The Gaussian membership function is used 

as: 

𝜇𝐴𝑖(𝑥) = exp [− (
𝑥−𝑐𝑖

𝑎𝑖
)

2

] (5) 

where, 𝜇𝐴𝑖(𝑥) = membership function; x= new inputs to i
th  

node ; {𝑎𝑖, 𝑐𝑖} membership function 

parameters which are set of membership function variations. These parameters are considered as 

assumed parameters. 

2.4.6. Error statistical indices for evaluation and comparison of results  

The criteria used to measure model performance, including the coefficient of efficiency (CE), the 

root mean square error (RMSE), and the correlation coefficient (R
2
) is determined as follows: 

𝐶𝐸 =  1 −
∑ (Oi−Pi)n

i=1

∑ (Oi−O̅m)n
i=1

 (6) 

𝑅𝑀𝑆𝐸 = √
1

N
∑ (Pi − Oi)2N

i=1  (7) 

R2 =  
∑ (Oi−Om)(Pi−Pm)N

i=1

(∑ (Oi−Om)2)N
i=1

0.5
(∑ (Pi−Pm)2)N

i=1

0.5 (8) 

where, 𝑅2= The  Correlation coefficient, 𝑃𝑚 = predicted values average, 𝑃𝑖= predicted value, 

𝑄𝑖= observational value. The root mean square error (RMSE) is varied between 0 and 1, the 

closer the 0 indicates the high prediction accuracy. The scattering index is in % and indicates the 

scattering of predicted data relative to actual values, and 0 indicates the lack of scattering in the 

prediction. Also, the correlation values (R) is varied between -1 to 1 and 1 indicates the 

prediction without error. CE ranges from negative infinite (poor model) to 1 (good model). 
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3. Results and discussion 

The statistical results obtained from systematic observations of parameters (Table 2). 

Table. 2 
Statistical parameters of measured data in Noor coast. 

Parameter Number Maximum Minimum Mean 
Standard 

Deviation 

Variation 

Coefficient 

H(m) 123 0.87 0.01 0.3 0.18 0.6 

T(sec) 123 7 2.3 4.56 0.9 0.2 

𝛼(𝑑𝑒𝑔) 123 45 5 27.8 11.5 0.41 

W(m) 123 170 30 84 31.6 0.38 

V(m/s) 123 0.5 0.1 0.2 0.09 0.45 

S 123 0.26 0.08 0.14 0.045 0.32 

D(Φ) 123 5.12 0.2 1.22 1.25 1.02 

 

The performance of LSTR calculated by CERC, Walton, and Bruno, and Kamphuis formula and 

ANFIS approach were evaluated. The performance evaluation criteria are shown in Table 3. 

Table. 3 
Obtained statistical indices values from the empirical formula and ANFIS approach. 

Formula Type N RMSE R
2
 CE 

CERC 

training 87 8.4×10
-3

 0.59 0.39 

validation 18 2.3×10
-2

 0.58 0.38 

testing 18 1.4×10
-2

 0.58 0.38 

Walton and Bruno 

training 87 5.6×10
-3

 0.75 0.29 

validation 18 4.3×10
-3

 0.73 0.24 

testing 18 7×10
-3

 0.79 0.23 

Kamphuis 

training 87 1.1×10
-1

 0.6 0.32 

validation 18 6.7×10
-2

 0.54 0.38 

testing 18 7.6×10
-2

 0.56 0.35 

ANFIS 

training 87 7.3×10
-3

 0.98 0.99 

validation 18 3.2×10
-3

 0.83 0.99 

testing 36 5.6×10
-3

 0.88 0.99 

 

By using the measurement of the scattering index, the root means square error (RMSE) is 

calculated according to Eq. 9: 

σrms =  [
∑ [log(qc)− log (qm)]2n

1

n−1
]0.5 (9) 
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where n= number of data; 𝑞𝑐 = LSTR calculated by emthe pirical formula; 𝑞𝑚 = LSTR 

measured.  

The correlation coefficient (R) between calculated and measured LSTR values is obtained. The 

RMSE between calculated and measured LSTR values by CERC formula is 1.8 and correlation 

coefficient (R) is 0.25. The smaller RMSE means less scattering. Kamphuis (1986) using results 

obtained by CERC formula, observed the grain sizes between 0.2 to 0.6 mm. In this study, the 

grain size means varied between 0.03 to 0.9 mm, but standard deviation between measured and 

calculated LSTR by CERC formula is more [24]. Wang (2002) showed that the estimated value 

from the semi-empirical method is more than measured ones [30,31]. The RMSE between 

measured and calculated LSTR by Walton and Bruno formula is 1.7, and the correlation 

coefficient (R) is 0.73. The RMSE between measured and calculated LSTR values by Kamphuis 

formula is 0.89 and correlation coefficient (R) is 0.76.  

In Neuro-fuzzy modeling and for training models, it was tried for various combinations of the 

input parameters (i.e., breaking wave height, wave period, alongshore current velocity, coastal 

slope, surf zone width, grain size distribution). For this purpose, the combination training (error 

back propagation, least squares of errors) and Sugeno one-order system were used. In models 

with large R
2
, the real behavior of LSTR is very close to linear behavior. With various results 

from investigations, a combination consisting of the breaking wave height, wave period as input 

parameters and LSTR as output parameter is considered. In Table 3, the results of statistical 

errors from training and testing in the ANFIS model in two prediction and observation modes are 

listed. In Table 3, the calculated statistical errors from LSTR in two prediction and observation 

modes by ANFIS model and measured LSTR by sediment trap are given. On average, the 

measured LSTR parameter for data training is equal to 0.96 times of the predicted one. The 

comparison of the predicted and measured LSTR for ANFIS model in training and predicted 

steps were illustrated in Figs 4, 5, 6. 

 
Fig. 4. The predicted and observed parameters of LSTR by using developed ANFIS model (training). 
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Fig .5. The predicted and observed parameters of LSTR by using established ANFIS model (prediction). 

 
Fig. 6. The fitting of observational and estimated data of the network in the training, validation and test 

phase. 
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For evaluating the performance of CERC, Walton and Bruno and Kamphuis formula, the models 

are trained and then are used for the estimation of LSTR using data sets. Therefore, we expect 

that the breaking wave height in sediment transport is greater than to other parameters (i.e., wave 

period and breaker angle, consistent with semi-empirical formula). The results suggest that the 

ANFIS approach in the modeling and estimation of LSTR is very better than other semi-

empirical approaches tested for these data sets. There is an equilibrium between wave height, 

wave period, breaker angle, and by using ANFIS model, we can appropriate estimate with 

measured data. This model is a useful tool for estimation of LSTR from wave parameters.  

4. Conclusion 

The applications of the soft computing have been widely considered in the field of water 

engineering [30,32–37]. The estimation of sediment transport is a complicated process [38]. In 

the present case study, the applicability of the powerful ANFIS model as a superior tool for 

prediction of the sediment transport rate along the shorelines of the southern Caspian Sea has 

been studied. The accuracy of the ANFIS model compared with the empirical formulas using 

criteria including bias, root mean squared error (RMSE), scattering index (SI) and correlation 

coefficient (R) has been analyzed.  

The results indicated that the ANFIS model outperformed the semi-empirical models for the 

estimation of the alongshore sediment transport rate in the southern shorelines of the Caspian 

Sea. The scattering indices of Kamphuis, Walton, and Bruno, and the CERC empirical models 

for the estimation of LSTR respectively are 85.5 %, 72.3 %, and 80.6 %, while the scattering 

indices of ANFIS model for evaluation of LSTR is 27.32 %. However, it can be suggested that 

other machine learning approaches such as the artificial neural networks, gene expression 

programming, time series, fuzzy logic, and wavelet analysis could be used and their results 

compared with ANFIS in the next studies. 
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