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In rock mechanics, mechanical properties of rock masses in 

nature imply complexity and diversity. The shear strength of 

rock mass is a key factor for affecting the stability of the 

rock mass. Then, the joint roughness coefficient (JRC) of 

rock indicates an important parameter in the shear strength 

and stability analysis of rock mass. Since the nature of the 

rock mass is indeterminate and incomplete to some extent, 

we cannot always express rock JRC by a certain/exact 

number. Therefore, this paper introduces neutrosophic 

interval statistical numbers (NISNs) based on the concepts of 

neutrosophic numbers and neutrosophic interval probability 

to express JRC data of the rock mass in the indeterminate 

setting. Then we present the calculational method of the 

neutrosophic average value and standard deviation of NISNs 

based on neutrosophic statistics. Next, by an actual case, the 

neutrosophic average value and standard deviation of the 

rock JRC NISNs are used to analyze the scale effect and 

anisotropy of the rock body corresponding to different 

sample lengths and measuring directions. Lastly, the analysis 

method of the scale effect and anisotropy for JRC NISNs 

shows its effectiveness and rationality in the actual case 

study. 
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1. Introduction 

In 1973, Barton [1] first put forward the concept of joint roughness coefficient (JRC) and 

indicated its important influence on the shear strength of rocks. It is used to express the empirical 

coefficient of rough surface undulation to indicate the shear strength of the rock mass structural 

plane [2]. However, mechanical parameters in nature, such as rock JRC, usually contain 

imprecise, incomplete, and uncertain information, which is difficultly expressed by certain/exact 

values. Thus, it is obvious that the classical statistical methods cannot be fit for the expression 

and analysis of the uncertain JRC data. So Ye et al. [3] first introduced the neutrosophic 

functions of JRC and shear strength for analyzing the scale effect and anisotropy of JRC and the 

shear strength of rock mass based on neutrosophic/interval functions [4]. Since the neutrosophic 

number (NN) introduced in [5–7] is very suitable for expressing the hybrid information of both 

certain and uncertain measuring values, Ye et al. [8] presented the expression and analysis 

method of JRC based on NN functions. Next, Chen et al. [9] utilized the NNs of JRC to analyze 

the scale effect and anisotropy of the uncertain JRC data using neutrosophic statistics [7]. Chen 

et al. [10] further proposed the concepts of neutrosophic interval probability (NIP) and 

neutrosophic interval statistical numbers (NISNs) based on the concepts of neutrosophic 

statistics and NNs, and then applied them to the expressions of uncertain JRC data (JRC NISNs). 

Unfortunately, there is no study on analyzing scale effect and anisotropy of JRC NISNs by using 

the neutrosophic statistical analysis method of JRC NISNs in existing literature [3–10]. To solve 

this gap, this study proposes the calculational method of the neutrosophic average value (NAV) 

and neutrosophic standard deviation (NSD) of NISNs based on neutrosophic statistics for the 

first time, and then applies them to analyze the scale effect and anisotropy of the rock mass based 

on the measured data of rock mass in Changshan County, Zhejiang Province, China as an actual 

case. However, the analysis method of the scale effect and anisotropy for JRC NISNs can 

provide an effective and reasonable way under uncertain environments. 

In order to do work, Section 2 reviews some basic concepts of NN, NIP, and NISN. In Section 3, 

we present the calculational method of NAV and NSD for NISNs based on neutrosophic 

statistics. In Section 4, the indeterminate JRC data are represented by NISNs based on an actual 

case, and then the scale effect and anisotropy of the JRC NISNs are analyzed by using NAVs and 

NSDs of JRC NISNs. Lastly, conclusions and next work are indicated in Section 5. 

2. Basic concepts of NNs and NISNs 

2.1. Neutrosophic numbers 

The JRC property of rock surface shape is usually uncertain and incomplete in the measuring and 

data processing process due to a lack of known/exact information in the indeterminate setting. 

We cannot always express it by a certain/exact value, which limits the possibility of the exact 

expression and analysis to some extent. Then NN [5–7] can express the problem of partial 

certainty and/or partial uncertainty because it can be simply expressed as y = p+qI (p and q are 

any real numbers), where p is the certain part and qI is the uncertain part with its indeterminacy 

I. Obviously, NN easily represents the certain and/or uncertain information in indeterminate 
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setting. For instance, y = 3+2I for I  [0,1] or I  [2,3] indicates y  [3,5] or y  [7,9], which 

implies a changeable interval number depending on I. Hence, NN show its convenient and 

flexible advantage in the expression of certain and/or uncertain information [8–10]. 

2.2. Neutrosophic interval probability 

Chen et al. [10] first proposed the concept of NIP to express the NIP of uncertain JRC data in the 

indeterminate setting. 

Set a = [a
l
, a

u
] as the interval range of measuring data for a group of samples. Chen et al. [10] 

defined a NIP N and expressed it as N = <[a
l
, a

u
], (Tp, Ip, Fp)>, where Tp is its truth probability in 

the certain interval, Ip is its indeterminate probability in the uncertain interval; and Fp is its falsity 

probability in the almost impossible/failure interval, for Tp + Ip + Fp = 1. 

For instance, suppose that there is a group of n samples regarding the same size. Then we 

calculate the average value m and standard deviation  of the JRC data obtained from the n 

samples. Thus, the interval value a = [a
l
, a

u
] is obtained when a

l 
is the minimum value (the lower 

bound) of the measuring data and a
u
 is the maximum value (the upper bound) of the measuring 

data. Then, we can define [m, m+] as the confident/truth interval, [m3, m)  (m+, 

m+3] as the uncertain intervals, and [𝑎𝑙, 𝑚 − 3σ) ∪ (𝑚 + 3σ, 𝑎𝑢] as the remaining/incredible 

intervals. Hence, we can calculate the truth probability Tp = nT/n for the frequency nT in [m, 

m+], the uncertain probability Ip = nI/n for the frequency nI in [m3, m)  (m+, m+3], 

and the falsity probability Fp = nF/n for the frequency nF in [a
l
, m3)  (m+3, a

u
]. 

2.3. Neutrosophic interval statistical numbers 

Chen et al. [10] also presented the concept of NISN and used it for the expression of JRC with 

uncertain information corresponding to the NN and confidence degree. 

Chen et al. [10] defined the following confidence degree: 

𝑐 =  𝑇𝑝/√𝑇𝑝
2 + 𝐼𝑝

2 + 𝐹𝑝
2, (1) 

and then presented a NISN, which is expressed as 

𝑆 = 𝑚 + (1  c)I for I  [I
l
, I

u
], (2) 

where m and  are the average value and standard deviation of a group of JRC data, respectively. 

Firstly, we consider that the indeterminate JRC value is represented by NISN based on an actual 

example below. 

Example 1. In an actual example, we take a group of 290 measured data (n = 290) of the sample 

length L = 100cm and measuring direction 0
o
, and then express the indeterminate JRC value by 

NISN. Thus, Table 1 indicates the statistical values of the obtained JRC data. 

Table 1 

Statistical data of the obtained JRC data for the actual example. 

n 𝑚 σ [𝑎𝑙 , 𝑎𝑢] 𝑛𝑇 𝑛𝐼 𝑛𝐹 

290 13.20 4.35 [4.63, 25.82] 205 70 15 
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Hence, the indeterminate JRC value is expressed by NISN below. 

From Table 1, we can calculate the truth, indeterminacy, and falsity probabilities in the interval 

[4.63, 25.82] as follows: 

𝑃𝑇  = 205/290 = 0.71, 𝑃𝐼 = 70/290 = 0.24, 𝑃𝐹 = 15/290 = 0.05. 

Then, the NIP of JRC is expressed as N = <[4.63, 25.82], (0.71, 0.24, 0.05)>. 

By Eq. (1), the confidence degree is 

c = 𝑇𝑝/√𝑇𝑝
2 + 𝐼𝑝

2 + 𝐹𝑝
2 =

0.71

√0.712+0.242+0.052
= 0.9065. 

By Eq. (2) the NISN of JRC is expressed as 

𝑆 = 𝑚 + (1  c)I = 9.8725+0.09354.35I = 9.8725+0.4067I. 

Suppose the indeterminacy I is specified as I  [1, 1]. Then, there is S = [9.4658, 10.2792]. 

3. Neutrosophic statistics of NISNs 

In this section, we propose the neutrosophic statistical method to calculate the NAV and NSD of 

NISNs. 

For a group of Si = mi + (1  ci)iI for I  [I
l
, I

u
] and i = 1, 2, …, n, we set bi = (1  ci)i, then 

there is Si = mi + biI for I  [I
l
, I

u
]. Thus the NAV of Si is presented as the following formula: 

𝑆𝑚 = 𝐴𝑚 + 𝐵𝑚𝐼 for I  [I
l
, I

u
], (3) 

where 𝐴𝑚 = 1

𝑛
∑ 𝑚𝑖

𝑛
𝑖=1  and 𝐵𝑚 = 1

𝑛
∑ 𝑏𝑖

𝑛
𝑖=1  for the average value mi and the indeterminacy 

coefficient bi = (1  ci)i. 

Then, the NSD of NISNs Si is proposed as 

 = √1

𝑛
∑ (𝑆𝑚 − 𝑆𝑖)2𝑛

𝑖=1 , (4) 

where 𝑆𝑚 − 𝑆𝑖 is calculated by  

𝑆𝑚 − 𝑆𝑖 = 𝐴𝑚 − 𝑚𝑖 + (𝐵𝑚 − 𝑏𝑖)𝐼 for I  [I
l
, I

u
], (5) 

and then there is the following result: 

(𝑆𝑚 − 𝑆𝑖)
2 = {𝑚𝑖𝑛[(𝐴𝑚 + 𝐵𝑚𝐼𝑙)(𝑚𝑖 + 𝑏𝑖𝐼

𝑙), (𝐴𝑚 + 𝐵𝑚𝐼𝑙)(𝑚𝑖 + 𝑏𝑖𝐼𝑢),  (𝐴𝑚 + 𝐵𝑚𝐼𝑢)(𝑚𝑖 +

𝑏𝑖𝐼
𝑙), (𝐴𝑚 + 𝐵𝑚𝐼𝑢)(𝑚𝑖 + 𝑏𝑖𝐼

𝑢)], 𝑚𝑎𝑥[(𝐴𝑚 + 𝐵𝑚𝐼𝑙)(𝑚𝑖 + 𝑏𝑖𝐼
𝑙), (𝐴𝑚 + 𝐵𝑚𝐼𝑙)(𝑚𝑖 +

𝑏𝑖𝐼
𝑢),  (𝐴𝑚 + 𝐵𝑚𝐼𝑢)(𝑚𝑖 + 𝑏𝑖𝐼

𝑙), (𝐴𝑚 + 𝐵𝑚𝐼𝑢)(𝑚𝑖 + 𝑏𝑖𝐼𝑢)]}  

for I  [𝐼𝑙 , 𝐼𝑢]. (6) 

4. Scale effect and anisotropic analysis of rock JRC NISNs 

In order to reflect the scale effect and anisotropy of rock JRC data with uncertain information in 

different sample sizes and different measuring directions, this section expresses and analyzes 
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JRC NISNs from different sample lengths (from 10cm to 100cm) and different measuring 

directions (from 0𝑜to 345𝑜). Thus the JRC NISNs can be yielded by using Eqs. (1) and (2) from 

the obtained JRC data, and then analyzed by the proposed neutrosophic statistical method. 

4.1. Scale effect of JRC NISNs regarding various sample lengths 

In each sample length Lj (cm) (j = 1, 2, …, 10), there is a group of 24 JRC NISNs Sji = mji + bjiI 

for I  [1, 1] (j = 1, 2, …, 10; i = 1, 2, …, 24) in 24 measured directions, where bji = (1  cji)ji. 

Thus, by Eqs. (3)-(6) we can get the NAVs 𝑆𝑚𝑗 = 𝐴𝑚𝑗 + 𝐵𝑚𝑗𝐼 for I  [1, 1], where 𝐴𝑚𝑗 =

1

24
∑ 𝑚𝑗𝑖

24
𝑖=1  and 𝐵𝑚𝑗 = 1

24
∑ 𝑏𝑗𝑖

24
𝑖=1 , and the NSDs 𝑗 = √ 1

24
∑ (𝑆𝑚𝑗𝑖 − 𝑆𝑗𝑖)

224
𝑖=1  (j = 1, 2, …, 10) for 

the 24 NISNs of JRC, and then the detailed statistical results are shown in Table 2. The NAVs Smj 

and NSDs j (j = 1, 2, …, 10) regarding the different sample lengths of Lj (cm) (j = 1, 2, …, 10) 

are indicated in Figures 1 and 2. 

Table 2 

Neutrosophic statistical results of JRC NISNs in different sample lengths for I  [1, 1]. 

Lj (cm) Amj Bmj Smj j 

10 9.8725 0.9065 9.8725+0.4067I [1.2765,1.6548] 

20 9.3768 0.8653 9.3768+0.4276I [1.1056,1.3976] 

30 9.1636 0.9354 9.1636+0.4316I [0.9783,1.1976] 

40 8.7572 0.8569 8.7572+0.4637 I [0.8759,1.0862] 

50 8.6584 0.8593 8.6584+0.3985I [0.8237,0.9856] 

60 8.4975 0.8368 8.4975+0.3975I [0.7927,0.9286] 

70 8.3975 0.9156 8.3975+0.4028I [0.7659,0.8858] 

80 7.9763 0.8563 7.9763+0.4217I [0.7376，0.8525] 

90 7.5694 0.8529 7.5693+0.4816I [0.7068,0.8158] 

100 7.3539 0.8625 7.3539+0.3978I [0.6895,0.7913] 

 
Fig. 1. NAVs of JRC NISNs in different sample lengths for I  [1, 1]. 
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As it can be seen from Figure 1, the NAVs of JRC NISNs indicate a decreasing trend with 

increasing sample length, which is in accordance with the previous results [8–10], and then show 

their scale effect in different sample lengths. Hence, the bigger the sample length L is, the 

smaller the NAV of JRC NISNs is, i.e., the smaller the scale effect is. It is clear that the NAVs of 

JRC NISNs can describe the scale effect in different sample lengths. 

Since NSD can reflect the dispersion degree of the NAVs of JRC NISNs, the characteristics of 

the scale effect in different sample lengths can be indicated by the NSDs of JRC NISNs. In 

Figure 2, as the sample length increases, the NSDs of JRC present a decreasing tendency and 

narrow the deviation range, which shows their scale effect nature in different sample lengths. 

Obviously, the bigger the sample length L is, the smaller the NSD value/range of JRC NISNs is, 

i.e., the smaller the dispersion degree of the NAVs of JRC NISNs is. It is clear that the NSDs of 

JRC NISNs can also describe the scale effect in different sample lengths. What’s more, the NSD 

value and range of the JRC NISNs may demonstrate the stable tendency to some extent when the sample length is 

large enough. 

From the above analyses, we can see that the NAVs and NSDs of JRC NISNs can indicate the 

scale effect of the JRC NISNs in different sample lengths. 

 
Fig. 2. NSDs of JRC NISNs in different sample lengths for I  [1, 1]. 

4.2. Anisotropy of JRC NISNs regarding different measuring directions 
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o
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and NSDs i (i = 1, 2, …, 24) regarding the different measuring directions of i (
o
) (i = 1, 2, …, 

24) are indicated in Figures 3 and 4. 

Table 3 

Neutrosophic statistical results of JRC NISNs in different measuring directions for I  [1, 1] 

i Ami Bmi Smi i 

0
o
 8.2857 0.1137 8.2857+0.3083I [0.3652,0.8562] 

15
o
 8.5632 0.1248 8.5632+0.3258I [0.4026,0.7856] 

30
o
 8.3628 0.1211 8.3628+0.4027I [0.5142,0.8756] 

45
o
 7.9768 0.1579 7.9768+0.3973I [0.4982,0.7063] 

60
o
 7.3762 0.3786 7.3762+0.4126I [0.5317,0.9157] 

75
o
 7.8549 0.2747 7.8549+0.3347I [0.3876,0.7964] 

90
o
 7.8361 0.3048 8.2651+0.4021I [0.1785,0.5742] 

105
o
 8.7693 0.2368 7.9693+0.3964I [0.2867,0.7652] 

120
o
 7.5736 0.1248 7.8736+0.3351I [0.4875,0.8745] 

135
o
 6.7427 0.2371 8.1027+0.4147I [0.6725,0.9652] 

150
o
 7.7542 0.1348 7.7542+0.3782I [0.7821,1.0476] 

165
o
 7.9654 0.1651 7.9654+0.4624I [0.6756,0.9752] 

180
o
 8.5218 0.1737 8.5218+0.3853I [0.5672,0.8527] 

195
o
 8.7652 0.2374 8.7652+0.3972I [0.3786,0.7635] 

210
o
 8.9217 0.2149 8.6217+0.4371I [0.1045,0.5752] 

225
o
 7.9762 0.1368 7.9762+0.4214I [0.3028,0.8368] 

240
o
 7.6582 0.2482 7.6582+0.3958I [0.5162,0.8263] 

255
o
 7.3813 0.0284 7.3813+0.4083I [0.7251,1.0517] 

270
o
 6.8724 0.0482 6.8724+0.4524I [0.8162,1.2635] 

285
o
 6.7632 0.2069 6.9632+0.3895I [0.6328,0.9732] 

300
o
 7.6652 0.1372 7.8652+0.4628I [0.7231,1.2742] 

315
o
 7.8653 0.1269 7.8653+0.3731I [0.4823,0.8136] 

330
o
 7.8972 0.2039 7.8972+0.3961I [0.6731,0.9851] 

345
o
 8.6328 0.1049 8.6328+0.4951I [0.4719,0.8937] 

 

 
Fig. 3. NAVs of JRC NISNs in different measuring directions for I  [1, 1]. 
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According to Figure 3, the NAVs of JRC NISNs in different measuring directions are very 

different in every orientation. The changing curves show some volatility, which looks somewhat 

like the curves of trigonometric functions, and the anisotropy of JRC NISNs in different 

measuring directions. 

 
Fig. 4. NSDs of JRC NISNs in different measuring directions for I  [1, 1]. 

In Figure 4, the NSDs of JRC NISNs in different measuring directions are very different in every 

orientation, which shows different dispersion degrees of JRC NISNs in every orientation. Then, 

the changing curves also show some volatility, which looks somewhat like the curves of 

trigonometric functions, and the anisotropy of JRC NISNs. Obviously, the NSDs of JRC NISNs 

also fluctuate in different measuring directions, which can also reflect the anisotropic nature to 

some extent. 

From the above analyses, we can see that the NAVs and NSDs of JRC NISNs can also indicate 

the anisotropic nature of the JRC NISNs in different measuring directions.  

Therefore, the neutrosophic statistical analysis method of JRC NISNs contains much more 

information and then is more reasonable and effective than the existing statistical analysis 
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and a neutrosophic confident degree in indeterminate situations. Furthermore, the neutrosophic 

statistical analysis method of JRC NISNs further extends our previous study in the reference [10] 

that did not use the neutrosophic statistical analysis method in this study for the scale effect and 

anisotropic analysis of JRC NISNs. 
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5. Conclusion 

Since NISNs can effectively express JRC data with uncertain information from the viewpoint of 

the neutrosophic probability and statistics, for the first time this study proposed the neutrosophic 

statistical method of NISNs to calculate the NAVs and NSDs of NISNs. Then, the NAVs and 

NSDs of JRC-NISNs were utilized to analyze the scale effect and anisotropy of JRC NISNs in 

different sample lengths and measuring directions by an actual case study. Main advantages of 

this study are that: (1) the NAVs and NSDs of JRC NISNs contain much more useful information 

to overcome the insufficiency of losing useful information produced in existing expression and 

analysis methods of uncertain JRC data, (2) the scale effect and anisotropy of JRC NISNs 

analyzed by both the NAVs and NSDs of JRC NISNs are more reasonable and more effective 

than those methods expressed and analyzed by JRC NNs [8,9], and (3) the scale effect and 

anisotropy of JRC-NISNs analyzed by both the NAVs and NSDs of JRC NISNs can extend 

existing expression and analysis methods of JRC NNs [8,9] and overcome the insufficiency 

without the neutrosophic statistical analysis of JRC NISNs in [10]. Obviously, the scale effect 

and anisotropy of JRC NISNs analyzed by using the neutrosophic statistical method of JRC 

NISNs are effective and reasonable in this case study and extend existing various analysis 

methods. The next work will extend the neutrosophic interval probability and statistics to the 

expression and analysis of the shear strength of rock mass in rock mechanics. 
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