Artificial Neural Networks for Construction Management: A Review

Document Type : Regular Article


1 Associate Professor, Vishwakarma Institute of Information Technology, Pune, India

2 Professor, Vishwakarma Institute of Information Technology, Pune, India

3 Professor, Indian Institute of Technology, Mumbai, India


Construction Management (CM) has to deal with a variety of uncertainties related to Time, Cost, Quality, and Safety, to name a few. Such uncertainties make the entire construction process highly unpredictable. It, therefore, falls under the purview of artificial neural networks (ANNs) in which the given hazy information can be effectively interpreted in order to arrive at meaningful conclusions. This paper reviews the application of ANNs in construction activities related to the prediction of costs, risk, and safety, tender bids, as well as labor and equipment productivity. The review suggests that the ANN’s had been highly beneficial in correctly interpreting inadequate input information. It was seen that most of the investigators used the feed forward back propagation type of the network; however, if a single ANN architecture was found to be insufficient, then hybrid modeling in association with other machine learning tools such as genetic programming and support vector machines were much useful. It was however clear that the authenticity of data and experience of the modeler are important in obtaining good results.


Google Scholar


Main Subjects

[1]     ADELI H, YEH C. Perceptron Learning in Engineering Design. Comput Civ Infrastruct Eng 2008;4:247–56. doi:10.1111/j.1467-8667.1989.tb00026.x.
[2]     Liang P, Bose NK. Neural Network Fundamentals with graphs, algorithms, and applications. 1996.
[3]     Wasserman PD. Advanced methods in neural computing. John Wiley & Sons, Inc.; 1993.
[4]     Artificial Neural Networks in Hydrology. I: Preliminary Concepts. J Hydrol Eng 2000;5:115–23. doi:10.1061/(ASCE)1084-0699(2000)5:2(115).
[5]     Maier HR, Dandy GC. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Model Softw 2000;15:101–24. doi:10.1016/S1364-8152(99)00007-9.
[6]     Dawson CW, Wilby RL. Hydrological modelling using artificial neural networks. Prog Phys Geogr 2001;25:80–108. doi:10.1177/030913330102500104.
[7]     Jain M, Pathak K. Applications of artificial neural network in construction engineering and management-a review. Int J Eng Technol Manag Appl Sci 2014;2:134–42.
[8]     Kim G-H, Shin J-M, Kim S, Shin Y. Comparison of school building construction costs estimation methods using regression analysis, neural network, and support vector machine. J Build Constr Plan Res 2013;1:1–7.
[9]     Kim G-H, An S-H, Kang K-I. Comparison of construction cost estimating models based on regression analysis, neural networks, and case-based reasoning. Build Environ 2004;39:1235–42. doi:10.1016/j.buildenv.2004.02.013.
[10]    Luu V., Kim S. Neural Network Model for Construction Cost Prediction of Apartment Projects in Vietnam. Korean J Constr Eng Manag 2009;10:139–47.
[11]    Murat Günaydın H, Zeynep Doğan S. A neural network approach for early cost estimation of structural systems of buildings. Int J Proj Manag 2004;22:595–602. doi:10.1016/j.ijproman.2004.04.002.
[12]    Arafa M, Alqedra M. Early stage cost estimation of buildings construction projects using artificial neural networks. J Artif Intell 2011;4:63–75.
[13]    Roxas CLC, Ongpeng JMC. An Artificial Neural Network Approach to Structural Cost Estimation of Building Projects in the Philippines. Proc. DLSU Res. Congr., 2014.
[14]    Kim GH, Seo DS, Kang KI. Hybrid Models of Neural Networks and Genetic Algorithms for Predicting Preliminary Cost Estimates. J Comput Civ Eng 2005;19:208–11. doi:10.1061/(ASCE)0887-3801(2005)19:2(208).
[16]    Sodikov J. Cost estimation of highway projects in developing countries: artificial neural network approach. J East Asia Soc Transp Stud 2005;6:1036–47.
[17]    Xin-Zheng W, Xiao-chen D, Jing-yan L. Application of neural network in the cost estimation of highway engineering. J Comput 2010;5:1763.
[18]    Petroutsatou K, Georgopoulos E, Lambropoulos S, Pantouvakis JP. Early Cost Estimating of Road Tunnel Construction Using Neural Networks. J Constr Eng Manag 2012;138:679–87. doi:10.1061/(ASCE)CO.1943-7862.0000479.
[19]    ElSawy I, Hosny H, Razek MA. A neural network model for construction projects site overhead cost estimating in Egypt. Int J Comput Sci 2011;8:273–83.
[20]    Attalla M, Hegazy T. Predicting Cost Deviation in Reconstruction Projects: Artificial Neural Networks versus Regression. J Constr Eng Manag 2003;129:405–11. doi:10.1061/(ASCE)0733-9364(2003)129:4(405).
[21]    Sonmez R. Conceptual cost estimation of building projects with regression analysis and neural networks. Can J Civ Eng 2004;31:677–83. doi:10.1139/l04-029.
[22]    Naik GM, Kumar M. Project Cost and duration optimization Using Soft Computing Techniques. J Adv Manag Sci 2013;1:299–303.
[23]    Minli Z, Shanshan Q. Research on the Application of Artificial Neural Networks in Tender Offer for Construction Projects. Phys Procedia 2012;24:1781–8. doi:10.1016/j.phpro.2012.02.262.
[24]    Lhee SC, Flood I, Issa RRA. Development of a two-step neural network-based model to predict construction cost contingency. J Inf Technol Constr 2014;19:399–411.
[25]    Apanavičienė R, Juodis A. CONSTRUCTION PROJECTS MANAGEMENT EFFECTIVENESS MODELLING WITH NEURAL NETWORKS. J Civ Eng Manag 2003;9:59–67. doi:10.1080/13923730.2003.10531302.
[26]    Yip H, Fan H, Chiang Y. Predicting the maintenance cost of construction equipment: Comparison between general regression neural network and Box–Jenkins time series models. Autom Constr 2014;38:30–8. doi:10.1016/j.autcon.2013.10.024.
[27]    Williams TP. Predicting completed project cost using bidding data. Constr Manag Econ 2002;20:225–35. doi:10.1080/01446190110112838.
[28]    Shrestha KK, Shrestha PP. A Contingency Cost Estimation System for Road Maintenance Contracts. Procedia Eng 2016;145:128–35. doi:10.1016/j.proeng.2016.04.030.
[29]    Wang Y-R, Yu C-Y, Chan H-H. Predicting construction cost and schedule success using artificial neural networks ensemble and support vector machines classification models. Int J Proj Manag 2012;30:470–8. doi:10.1016/j.ijproman.2011.09.002.
[30]    Tatari O, Kucukvar M. Cost premium prediction of certified green buildings: A neural network approach. Build Environ 2011;46:1081–6. doi:10.1016/j.buildenv.2010.11.009.
[31]    El-Sawalhi NI, Shehatto O. A Neural Network Model for Building Construction Projects Cost Estimating. J Constr Eng Proj Manag 2014;4:9–16. doi:10.6106/JCEPM.2014.4.4.009.
[32]    Ok SC, Sinha SK. Construction equipment productivity estimation using artificial neural network model. Constr Manag Econ 2006;24:1029–44. doi:10.1080/01446190600851033.
[33]    Ezeldin AS, Sharara LM. Neural Networks for Estimating the Productivity of Concreting Activities. J Constr Eng Manag 2006;132:650–6. doi:10.1061/(ASCE)0733-9364(2006)132:6(650).
[34]    Muqeem S, Idrus A, Khamidi MF, Ahmad J Bin, Zakaria S Bin. Construction labor production rates modeling using Artificial Neural Network. J Inf Technol Constr 2012;16:713–26.
[35]    Tofan AS, Mohammed SR. Neural Networks For Estimating The Ceramic Productivity Of Walls. J Eng 2011;17:200–17.
[36]    Al-Zwainy FMS, Rasheed HA, Ibraheem HF. Development of the construction productivity Estimation model using artificial neural network For finishing works for floors with marble. ARPN J Eng Appl Sci 2012;7:714–22.
[37]    Mady M. Prediction model of construction labor production rates in Gaza strip using Artificial Neural Network. M.Sc Thesis. The Islamic university of Gaza, 2013.
[38]    Heravi G, Eslamdoost E. Applying Artificial Neural Networks for Measuring and Predicting Construction-Labor Productivity. J Constr Eng Manag 2015;141:04015032. doi:10.1061/(ASCE)CO.1943-7862.0001006.
[39]    Aswed GK. Productivity estimation model for bricklayer in construction projects using Neural Network. Al-Qadisiyah J Eng Sci 2016;9:183–99.
[40]    Lu M, AbouRizk SM, Hermann UH. Estimating Labor Productivity Using Probability Inference Neural Network. J Comput Civ Eng 2000;14:241–8. doi:10.1061/(ASCE)0887-3801(2000)14:4(241).
[41]    AbouRizk S, Knowles P, Hermann UR. Estimating Labor Production Rates for Industrial Construction Activities. J Constr Eng Manag 2001;127:502–11. doi:10.1061/(ASCE)0733-9364(2001)127:6(502).
[42]    Maghrebi M, Sammut C, Waller TS. Predicting the Duration of Concrete Operations Via Artificial Neural Network and by Focusing on Supply Chain Parameters. Build Res J 2014;61:1–14. doi:10.2478/brj-2014-0001.
[43]    Oral EL, Oral M. Predicting construction crew productivity by using Self Organizing Maps. Autom Constr 2010;19:791–7. doi:10.1016/j.autcon.2010.05.001.
[44]    Al‐Sobiei OS, Arditi D, Polat G. Predicting the risk of contractor default in Saudi Arabia utilizing artificial neural network (ANN) and genetic algorithm (GA) techniques. Constr Manag Econ 2005;23:423–30. doi:10.1080/01446190500041578.
[45]    Chenyun, Zichun Y. The BP Artificial Neural Network Model on Expressway Construction Phase Risk. Syst Eng Procedia 2012;4:409–15. doi:10.1016/j.sepro.2012.01.004.
[46]    Odeyinka H, Lowe J, Kaka A. A construction cost flow risk assessment model. 18th Annu. ARCOM Conf. Northumbria Univ. Newcastle, UK, 2002, p. 3–12.
[47]    Mehidi S, Chakrabarty N, Mohiuddin HM. An Application of Artificial Neural Network (ANN) Process to Assess Risk in Cement Industries in Bangladesh. Ind Eng Manag 2014;3:1–6.
[48]    Elhag TMS, Wang Y-M. Risk Assessment for Bridge Maintenance Projects: Neural Networks versus Regression Techniques. J Comput Civ Eng 2007;21:402–9. doi:10.1061/(ASCE)0887-3801(2007)21:6(402).
[49]    Liu J, Guo F. Construction quality risk management of projects on the basis of rough set and neural network. Comput Model New Technol 2014;18:791–4.
[50]    Al-Tabtabai H, Alex AP. Modeling the cost of political risk in international construction projects. Proj Manag J 2000;31:4–13.
[51]    Patel DA, Jha KN. Prediction of Safety Climate through a Neural Network. Constr. Res. Congr. 2014, Reston, VA: American Society of Civil Engineers; 2014, p. 1861–70. doi:10.1061/9780784413517.190.
[52]    Patel DA, Jha KN. Evaluation of construction projects based on the safe work behavior of co-employees through a neural network model. Saf Sci 2016;89:240–8. doi:10.1016/j.ssci.2016.06.020.
[53]    Yi W, Chan APC. An artificial neural network model for predicting fatigue of construction workers in humid environments 2015. doi:10.14455/ISEC.res.2015.189.
[54]    Moayed FA, Shell RL. Application of Artificial Neural Network Models in Occupational Safety and Health Utilizing Ordinal Variables. Ann Occup Hyg 2010;55:132–42. doi:10.1093/annhyg/meq079.
[55]    Chen F, Liu Y. Innovation Performance Study on the Construction Safety of Urban Subway Engineering Based on Bayesian Network: A Case Study of BIM Innovation Project. J Appl Sci Eng 2015;18:233–44.
[56]    Mohammadfam I, Soltanzadeh A, Moghimbeigi A, Savareh BA. Use of artificial neural networks (ANNs) for the analysis and modeling of factors that affect occupational injuries in large construction industries. Electron Physician 2015;7:1515–1522.
[57]    Goh YM, Chua D. Neural network analysis of construction safety management systems: a case study in Singapore. Constr Manag Econ 2013;31:460–70. doi:10.1080/01446193.2013.797095.
[58]    Leung AW., Tam C., Liu D. Comparative study of artificial neural networks and multiple regression analysis for predicting hoisting times of tower cranes. Build Environ 2001;36:457–67. doi:10.1016/S0360-1323(00)00029-9.
[59]    Cheng M-Y, Ko C-H. Object-Oriented Evolutionary Fuzzy Neural Inference System for Construction Management. J Constr Eng Manag 2003;129:461–9. doi:10.1061/(ASCE)0733-9364(2003)129:4(461).
[60]    El-Sawalhi N, Hajar YA. Development of Awarding System for Construction Contractors in Gaza Strip Using Artificial Neural Network (ANN). J Constr Eng Proj Manag 2016;6:1–7. doi:10.6106/JCEPM.2016.6.3.001.
[61]    Naik GM, Radhika VSB. Time and Cost Analysis for Highway Road Construction Project Using Artificial Neural Networks. KICEM J Constr Eng Proj Manag 2015;4:26–31.
[62]    Cheung SO, Tam CM, Harris FC. Project Dispute Resolution Satisfaction Classification through Neural Network. J Manag Eng 2000;16:70–9. doi:10.1061/(ASCE)0742-597X(2000)16:1(70).
[63]    Chau KW. Application of a PSO-based neural network in analysis of outcomes of construction claims. Autom Constr 2007;16:642–6. doi:10.1016/j.autcon.2006.11.008.
[64]    Fatima A, Sekhar S., Hussain SMA. Analysis of Construction Dispute Resolution Process Using Artificial Neural Networks. Int J Innov Res Dev 2014:81–6.
[65]    Yahia H, Hosny H, Razik MEA. Time Contingency Assessment in Construction Projects. Int J Comput Sci 2011;8:523–31.
[66]    Mwiya B, Muya M, Kaliba C, Mukalula P. Construction Unit Rate Factor Modelling Using Neural Networks. Int J Civil, Environ Struct Constr Archit Eng 2015;9:29–34.
[67]    Mensah I, Nani G, Adjei-Kumi T. Development of a Model for Estimating the Duration of Bridge Construction Projects in Ghana. Int J Constr Eng Manag 2016;5:55–64.
[68]    Mirahadi F, Zayed T. Simulation-based construction productivity forecast using Neural-Network-Driven Fuzzy Reasoning. Autom Constr 2016;65:102–15. doi:10.1016/j.autcon.2015.12.021.
[69]    Cheng M-Y, Tsai H-C, Sudjono E. Conceptual cost estimates using evolutionary fuzzy hybrid neural network for projects in construction industry. Expert Syst Appl 2010;37:4224–31. doi:10.1016/j.eswa.2009.11.080.
[70]    Vahdani B, Mousavi SM, Mousakhani M, Hashemi H. Time prediction using a Neuro-Fuzzy model for projects in the construction industry. J Optim Ind Eng 2016;9:97–103.
[71]    Zahran M, Hosny H, Sand A. Parametric Cost Estimating of Sterile Building Using Artificial Neural Network & Genetic Algorithm Model. Int J Eng Tech Res 2014;2:129–36.
[72]    Glinskiy V, Serga L, Khvan M, Zaykov K. Fuzzy Neural Networks in the Assessment of Environmental Safety. Procedia CIRP 2016;40:614–8. doi:10.1016/j.procir.2016.01.143.
[73]    Yu W, Skibniewski MJ. Integrating Neurofuzzy System with Conceptual Cost Estimation to Discover Cost-Related Knowledge from Residential Construction Projects. J Comput Civ Eng 2010;24:35–44. doi:10.1061/(ASCE)0887-3801(2010)24:1(35).
[74]    Cheng M-Y, Tsai H-C, Hsieh W-S. Web-based conceptual cost estimates for construction projects using Evolutionary Fuzzy Neural Inference Model. Autom Constr 2009;18:164–72. doi:10.1016/j.autcon.2008.07.001.
[75]    Goa H. Safety Evaluation on Building Construction Based on Hopfield Neural Network. 5th Int. Conf. Civil, Archit. Hydraul. Eng., 2016, p. 9–15.
[76]    Deshpande N, Londhe S, Kulkarni S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int J Sustain Built Environ 2014;3:187–98. doi:10.1016/j.ijsbe.2014.12.002.
[77]    Elfaki AO, Alatawi S, Abushandi E. Using Intelligent Techniques in Construction Project Cost Estimation: 10-Year Survey. Adv Civ Eng 2014;2014:1–11. doi:10.1155/2014/107926.
[78]    Jayalakshmi T, Santhakumaran A. Statistical normalization and back propagationfor classification. Int J Comput Theory Eng 2011;3:1793–8201.
[79]    Ji Z, Li Y. The Application of RBF Neural Network on Construction Cost Forecasting. 2009 Second Int. Work. Knowl. Discov. Data Min., IEEE; 2009, p. 32–5. doi:10.1109/WKDD.2009.53.