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In order to address optimization problems, artificial 

intelligence (AI) is employed in the construction industry, 

which aids in the growth and popularization of AI. This 

study utilizes a Hybrid algorithm called Adaptive Selection 

Slime Mold Algorithm (ASSMA), which combines the 

Tournament Selection (TS) and Slime Mould Algorithm 

(SMA) to address the four-factor optimization problem in 

projects. This combination will improve the original 

algorithm's performance, speed up result finding and achieve 

good convergence via Pareto Front. Hence, efficient resource 

management must be comprehended in order to optimize the 

time, cost, quality and environmental impact trade-off 

(TCQE). Case studies are used to illustrate the capabilities of 

the new model, and ASSMA results are compared to those of 

the data envelopment analysis (DEA) method used by the 

previous researcher. To improve the suggested model's 

superiority and effectiveness, it is compared to the multiple-

target swarm algorithm (MOPSO), multi-objective artificial 

bee colony (MOABC) and non-dominant sort genetic 

algorithm (NSGA-II). Based on the overall results, it is clear 

that the ASSMA model illustrates diversification and offers a 

robust and convincing optimal solution for readers to 

understand the potential of the proposed model. 

Keywords: 

Adaptive selection slime mold 

algorithm; 

Data envelopment analysis; 

Time-cost-quality-

environmental trade-off 

Problem; 

Tournament Selection. 

https://doi.org/10.22115/SCCE.2023.390042.1622
https://doi.org/10.22115/SCCE.2023.390042.1622
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
https://doi.org/10.22115/SCCE.2023.390042.1622
https://orcid.org/0000-0001-5419-0258


108 P.V.H. Son, L.N.Q. Khoi/ Journal of Soft Computing in Civil Engineering 8-1 (2024) 107-125 

1. Introduction 

The project's influencing factors present managers with ongoing difficulties. The three criteria of 

time, cost, and quality are consistently what decide whether a project will succeed (TCQ). Yet, a 

variety of other factors could also be relevant which is the environmental impact (EI) in 

construction projects. It is vital to optimize the TCQE impact since the bulk of competing 

components cannot be coordinated simultaneously to accomplish a project. 

The need to execute environmental protection both inside and beyond the project's boundaries is 

a requirement for the building sector. Projects that lessen pollution have recently attracted the 

interest of many project managers. Misuse of resources causes damage to the surrounding 

environment, the climate, and even the land on the construction site. Environmental pollution 

removal is examined by [1]. Wang et al. [2] also emphasized environmental preservation 

techniques due to the fact that this problem has been overlooked and quantified inaccurately. 

External factors are commonly ignored by project managers. In this article, the importance of 

environmental factors in construction projects is emphasized. 

Several unique or hybrid algorithms are used in the development of optimization between 

objectives, or stronger ones are developed. Initial foundation construction involved time and cost 

optimization [3]. Researchers have made substantial progress in employing these strategies to 

handle the three optimization challenges of TCQ [4], as well as time, cost, and safety (TCS) [5]. 

Using algorithmic models for concurrent three-factor optimization, numerous researchs have 

provided compelling data. Performance is increased to previously unheard-of levels with the use 

of time-cost-quality-safety (TCQS) optimization [6], yielding a wide range of standout effects. 

Pareto's ability to converge also has a wider range of possibilities. In a project involving 

infrastructure, this study uses TCQE's concurrent four-factor optimization (ASSMA). But when 

complexity grows and the objectives of the search space change, this problem has come up 

against several obstacles. 

Artificial intelligence (AI), sometimes referred to as augmented intelligence, appears to be a 

transformative technique that employs robots to complete jobs intelligently, successfully, and 

effectively. This is one of the techniques that combines human strengths in a way that, it seems, 

makes it possible to accomplish the project in a way that neither robots nor people acting alone 

can. By incorporating AI concepts, any knowledge might be standardized and made freely 

available to customers, empowering them to make the best choice possible while considering 

both the available facts and verified evidence. Since several generations ago, deep learning 

technology has been employed successfully in a variety of industries, including construction 

management. In truth, the emergence of complex systems like skyscrapers from the distant past 

has brought machine learning approaches to the forefront of the industry. You more than anyone 

else are experiencing the development and deployment of AI in the construction industry, 

including the use of sophisticated algorithms, big data, and deep learning machines that have 

revolutionized production efficiency. Support vector machines (SVM) were used in the study to 

forecast ground vibration during blasting activities at the Bakhtiari Dam in Iran [7]. By 

combining the Multivariate Adaptive Regression Splines (MARS) and Escaping Bird Search 

optimization technique (EBS), this study seeks to create a model for estimating the bearing 
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capacity of geogrid-reinforced stone columns [8]. The natural logarithm, secant hyperbolic, 

tangent hyperbolic, exponential, and sinusoidal inner functions were used to create five models 

for this investigation [9]. For calculating the compressive strength of hollow concrete block 

masonry prisms, artificial intelligence algorithms such as neural networks (ANN), combinatorial 

methods of group data handling (GMDH-Combi), and gene expression programming (GEP) are 

proposed in this study [10]. 

To enhance the algorithm's performance, [11] introduced SMA. The SMA's main purpose is best 

served during the exploration and exploitation phases in order to find the best potential solution. 

The fact that SMA is led by two randomly chosen search agents who decide a course to take 

before changing it later to seek the best results limits its ability to explore and exploit new areas. 

The feature of TS resides in the random selection to choose the best candidate, therefore it is 

particularly ideal for linking with SMA, according to a proposal made by [12] to improve the 

SMA algorithm. The original approach is enhanced by this combination, which also lowers 

algorithmic risks, speeds up the process of finding answers, and provides superior convergence 

via the Pareto front. 

The ASSMA approach is used to address systemic problems. While some problems cannot be 

addressed randomly, it is at least possible to offer solutions that are within the algorithm's 

allowable limits. Algorithms are developed to solve issues repeatedly rather than just once. 

ASSMA is very good at handling a variety of problems, such as: (1) Determining the "minimum 

distance" when there is no practical method to accomplish so; (2) Analyzing a large amount of 

data; (3) Utilizing the same steps per time; and (4) Computing several likely be considered. 

ASSMA's ability to explore and exploit is demonstrated quite successfully when compared to 

previous algorithms. Local optimization, which was employed to synchronously optimize the 

four objectives in this study, however, also effectively illustrated the shortcomings of ASSMA at 

the same time. In order to refine the model in a useful way and use it to address optimization 

difficulties affecting the construction sector as well as other socioeconomic domains, the authors 

advise integrating the SMA model with more widely used methodologies. The authors will keep 

researching and experimenting to broaden the model and incorporate new ideas so that the study 

article can be improved in the future because the research's main emphasis has both numerous 

advantages and disadvantages. 

The ability of ASSMA to derive the ideal circumstances for TCQE analysis from the 

aforementioned basis is discussed in this paper. The rest of this article is divided into the 

following sections. A literature review is presented in Section 2. SMA methodology is explained 

in Section 3. Case study and results are presented in Section 4. Research implications are 

presented in Section 5. Limitations and future research have been shown in Section 6 and 7. In 

Section 8, the authors finally wrap up their research. 

2. Literature review 

This section demonstrates how other people's literature reviews, particularly those for research in 

a similar topic, can be a very beneficial method to comprehend how it functions. 
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2.1. TCQE trade-off 

Tiwari and Johari [13], and Zahraie and Tavakolan [14] illustrated the vital of time - cost 

building projects. Khang and Myint [15] employed Babu's strategy to build a cement plant, and 

they attested to its effectiveness. The TC trade-off was expanded to include TCQ [16], TCS 

trade-off optimization models [17], and more. The GA model was utilized by [18] to address the 

issues of TCQ. The TCQ issue has also been effectively solved using further evolutionary 

hybridization techniques [19–21]. In order to show the four-objective optimization phase, [22] 

were used. In a project with limited resources [23], use the DEA method and TCQE. The multi-

opposition aim disparity development was used by [17] to improve the time-cost-quality 

tradeoffs of building projects. The need for optimization techniques is growing as a result of the 

aforementioned foundations, and successful project completion depends on making the most of 

the algorithm's capabilities. 

2.2. Hybrid slime mold algorithm 

In 2020, Li  et al. [11] released the SMA with many new and improved features. In order to 

address the issue of urban water demand. Zubaidi et al. [24] employed ANN along with SMA. 

By combining the SMA with Whale optimization, Abdel-Basset et al. [25] were able to solve the 

chest X-ray image segmentation problem. Liu et al.  [26] endorsed the SMA on quantum rotation 

gates. For the purpose of solving the complete optimization problem, Houssein et al. [27] 

presented a hybrid SMA approach with a differential evolution algorithm. Using a hybrid model 

that incorporates the slime mould algorithm (SMA) and opposition-based learning, research 

study's objective is to resolve a four-objective optimization problem in the construction sector 

[28]. The adaptive opposition slime mold method (AOSMA), which is proposed in this paper, is 

a hybrid model for TCQS trade-off optimization in construction building in India [29]. 

Optimizing time, cost, and quality trade-off problems (TCQT) using the slime mold algorithm 

model [30]. 

3. Methodology ASSMA for TCQE tradeoff 

In Figure 1, the ASSMA procedure for resolving TCQC issues is depicted. It includes a flowchart 

for the model's execution, a full explanation, and a step-by-step evolutionary process. 

3.1. Initialization 

The proposed model's input parameters are project-specific data, including linkages between 

particular activities, construction times, costs per activity, assessments of quality metrics, and 

environmental impact factors. Authors also establish the number of populations, the maximum 

number of iterations, the lowest and highest boundaries of variables, and so forth.  

3.2. Slime mold algorithm 

The position and fitness of N slime molds at this iteration are shown in the diagram below: 
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𝑓(𝑋) = [𝑓(𝑋1), 𝑓(𝑋2), . . . , 𝑓(𝑋𝑁)] (2) 

 
Fig. 1. Flowchart of ASSM. 

On the following iteration (t + 1), the SMA's location of the slime mold is updated: 

𝑋𝑖(𝑡 + 1) = {

𝑋𝐿𝐵(𝑡) + 𝑉𝑏(𝑊. 𝑋𝐴(𝑡) − 𝑋𝐵(𝑡))𝑟1 ≥ 𝛿𝑎𝑛𝑑𝑟2 < 𝑝𝑖
𝑉𝑐. 𝑋𝑖(𝑡)𝑟1 ≥ 𝛿𝑎𝑛𝑑𝑟2 ≥ 𝑝
𝑟𝑎𝑛𝑑(𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵𝑟1 < 𝛿

, ∀𝑖 ∈ [1, 𝑁] (3) 

where: 

 XLB: local slime for the at iteration 

 XA and XB: random slime mold from populations  

 W: the weight component 

 Vb ; Vc: the random of V  

 r1 ;r2: random between 0 and 1. 

  : at a random search position (=0.03) 

The algorithm's upper bound is represented by the Pi coefficient: 

𝑝𝑖 = 𝑡𝑎𝑛 ℎ|𝑓(𝑋𝑖) − 𝑓𝐺𝐵| , ∀𝑖 ∈ [1, 𝑁] (4) 

where: 

 f(Xi): the value of fitness ith slime mold Xi, 

 fGB: the global best position's Eq. (5) global best fitness value XGB 

𝑓𝐺𝐵 = 𝑓(𝑋𝐺𝐵) (5) 
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The following definition describes the weight for N slime molds in iteration: 

𝑊(𝑆or𝑡𝐼𝑛𝑑𝑓(𝑖)) = {
1 + 𝑟𝑎𝑛𝑑 𝑙𝑜𝑔(

𝑓𝐿𝐵−𝑓(𝑋𝑖)

𝑓𝐿𝐵−𝑓𝐿𝑊
+ 1)1 ≤ 𝑖 ≤

𝑁

2

1 − 𝑟𝑎𝑛𝑑 𝑙𝑜𝑔(
𝑓𝐿𝐵−𝑓(𝑋𝑖)

𝑓𝐿𝐵−𝑓𝐿𝑊
+ 1)

𝑁

2
< 𝑖 ≤ 𝑁

 (6) 

Where: 

 Rand: random between 0 and 1 

 fLB: the local best fitness value 

 fLW: the local worst fitness value  

 fLB and fLW are identified from f given in Eq.(2). 

To lessen the problem, organize the fitness values in the following manner: 

[Sortf, SortIndf] = sort(f) (7) 

The Vb and Vc were distributed in the intervals [-b,b] and [-c,c]: 

𝑏 = arctan h(−(
𝑡

𝑇
) + 1) (8) 

𝑐 = 1 −
𝑡

𝑇
 (9) 

where: 

 T: maximum iteration 

3.3. TS 

TS chooses at random among the existing populations, then chooses the contending population 

with the highest fitness. The TS process is composed of the two steps of sampling and selection. 

As illustrated in Figure 2, N populations of tournaments are required to create all individuals in 

the following generation because 7, 4 and 3 are widely used tournament sizes. 

 
Fig. 2. Simulation of Tournament Selection. 

TS has outstanding features compared to other selection modes, specifically: (i) It is simple to 

alter the selection pressure, (ii) Straightforward to code, (iii) No prearrangement of populations 

is required and is particularly time-complicated. The selection criteria of TS, which combines 

sample and selection, necessitates a great deal of focus on various samples as well as various 

selections. 
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Under the implicit assumption that the population is entirely diversified: 

𝑁−𝑘((𝑁 − 𝑗 + 1)𝑘 − (𝑁 − 𝑗)𝑘) (10) 

In order to define the worst person to be placed first, they invented the cumulative fitness 

distribution. S(fj) stands for the number of people with fitness values fj or lower: 

(
𝑆(𝑓𝑗)

𝑁
)𝑘 − (

𝑆(𝑓𝑗−1)

𝑁
)𝑘 (11) 

The likelihood of one participant not being sampled in one tournament was computed as 1-N1 by 

[25]: 

𝑁(
𝑁

𝑁−1
)−𝑘𝑦 (12) 

where y is the sum of all competitions required to produce a new generation. 

1
1 (( ) )

y
k

N N
N

N


  (13) 

1

1 1( ) ( )

1 (1 )

j j

i ik ki i

y

j

S S

N N

S



 

 

 

 (14) 

where jS  is the number of programs of the same j
th

 rank. 

3.4. Stopping conditions 

Setting the maximum number of iterations allows us to establish the halting circumstances. The 

best solutions will produce results if the halting condition of the model is satisfied. As a result, 

project managers can start to select the finest values and solutions for construction projects. 

3.5. Adaptive selection slime mold algorithm 

The straightforward inspiration, limited number of regulating parameters, and adaptive 

exploratory behavior of this algorithm are mostly responsible for its success. Yet like other meta-

heuristics, it has some restrictions and is subject to inevitable flaws. The authors advise using the 

tournament selection (TS) method to circumvent the SMA's drawbacks. Our hybrid algorithm 

tries to address the SMA's weaknesses by enhancing convergence from random to best candidate 

selection. This combination improves the original strategy, while also reducing algorithmic risks, 

accelerating the search for solutions, and delivering superior convergence via the Pareto front. 

The step by step and the flowchart for solving optimization problems of the proposed ASSMA 

algorithm is as follows in Figure 3: 



114 P.V.H. Son, L.N.Q. Khoi/ Journal of Soft Computing in Civil Engineering 8-1 (2024) 107-125 

 
Fig. 3. Step by step of ASSMA. 

4. Case study and results 

Case studies related to the rural water pipeline project (Project 1) and “future house USA” in 

China (Project 2) demonstrates the superiority of the ASSMA compared to the author’s results. 

In project management, there are two categories of DEA. Using a particular set of inputs and 

outcomes, the first kind evaluates the efficacy of various projects. The second category consists 

of initiatives that choose project portfolios and rank several initiatives before making an 

investment. The study concentrated on the Project 1, which has eight activities and eight distinct 

construction scenarios, as illustrated in Table 1 includes a list of the project's particular activities 

resources. The project 1 is expected to have 823544 outcomes in total, which will cause 

differences in TCQE. Also, Project 2 illustrates 11 activities with many cases in each activity 

which have shown in Table 2 which provide 9216 options to deliver the project. 

The project's contractor and the employer's representative have provided estimates of the 

resources needed for each activity and the time needed to complete each activity for each 

execution method. Based on the price of input resources and the time required to complete an 

activity, the cost of each execution method was also determined. Since changes in the quantity of 

consumable resources and the duration of an activity have an impact on the activity's quality 

level, other execution modes' quality fluctuates with changes in their duration and resource 

usage. The environmental impact of the project operations has been assessed taking into account 

seven different factors. These factors include contaminating the soil, causing erosion and 

sedimentation, contaminating the surface and groundwater, contaminating the air and dust, 

destroying plant species and habitats, and making noise. 
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Table 1 

Project 1’s data. 

Activity Number Predecessors Case Time Cost Quality Environmental Impact 

1 - 1 19 788 0.8 0.3 

2 1 

1 11 701 0.78 0.36 

2 20 1384 0.8 0.44 

3 20 1195 0.83 0.64 

4 11 777 0.82 0.44 

5 18 1025 0.84 0.52 

6 20 666 0.87 0.64 

7 11 591 0.88 0.48 

3 2 

1 5 652 0.74 0.2 

2 9 1082 0.8 0.3 

3 14 1017 0.83 0.4 

4 5 1205 0.9 0.5 

5 5 791 0.82 0.4 

6 20 802 0.85 0.5 

7 11 1233 0.92 0.5 

4 1,2 

1 14 969 0.77 0.27 

2 12 1128 0.8 0.4 

3 19 613 0.83 0.47 

4 8 668 0.86 0.53 

5 18 578 0.85 0.4 

6 16 678 0.88 0.53 

7 13 718 0.9 0.53 

5 3 

1 13 1389 0.76 0.45 

2 19 1021 0.8 0.6 

3 6 1150 0.75 0.45 

4 19 666 0.85 0.6 

5 11 572 0.86 0.6 

6 10 1062 0.82 0.45 

7 14 1121 0.92 0.6 

6 4,5 

1 10 1330 0.78 0.3 

2 12 1129 0.8 0.4 

3 15 975 0.81 0.5 

4 5 932 0.82 0.6 

5 5 1123 0.82 0.4 

6 13 1200 0.83 0.6 

7 12 1185 0.84 0.6 

7 6 

1 7 842 0.82 0.4 

2 5 626 0.8 0.5 

3 13 1302 0.81 0.5 

4 12 1089 0.84 0.6 

5 8 1334 0.83 0.5 

6 10 752 0.83 0.6 

7 10 955 0.87 0.6 

8 7 

1 8 804 0.82 0.3 

2 16 904 0.8 0.35 

3 6 1280 0.74 0.35 

4 8 655 0.76 0.5 

5 10 972 0.81 0.3 

6 16 863 0.75 0.44 

7 14 596 0.77 0.44 
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Table 2 

Project 2’s data. 

Activity Number Successors Case Time Cost Quality Environmental Impact 

 
1 2 

1 28 1865 0.920 1728.86 
 

2 28 1810 0.78 2938.36 
 

2 3 
1 13 790 0.86 317.66 

 
2 15 741 0.77 399.34 

 

3 4 
1 28 1590 0.63 9541.15 

 
2 22 1436 0.61 9715.51 

 

4 5 
1 9 1371 0.74 9647.65 

 
2 12 723 0.76 9822.01 

 

5 6 
1 17 731 0.89 15790.3 

 
2 25 846 0.87 15964.7 

 

6 7 

1 17 1086 0.79 9152.52 
 

2 28 1427 0.82 35518.3 
 

3 9 1291 0.8 35518.3 
 

7 11 

1 17 1061 0.69 4152.23 
 

2 27 1054 0.72 4164.16 
 

3 28 862 0.7 15056.4 
 

4 30 1882 0.73 15062.4 
 

8 End 

1 4 1983 0.85 118.59 
 

2 17 975 0.88 544.3 
 

3 4 1963 0.84 3030.66 
 

9 End 
1 18 1870 0.9 4219.17 

 
2 10 1042 0.91 61163.9 

 

10 End 
1 4 1046 0.58 256.03 

 
2 9 1166 0.6 256.03 

 

11 8, 9, 10 
1 23 1939 0.61 12871.7 

 
2 4 1213 0.63 6747.33 

 
 

4.1. Optimization results obtained using the ASSMA 

Using the same input parameters as Table 3’s population size (N), maximum generation (T), 

number of decision variables (D), parameter, lower bound (LB), and upper bound (UB), authors 

applied ASSMA to the two projects. To prevent issues with duplication and randomization during 

optimization, authors repeated the experiment 20 times. 

Table 3 

ASSMA parameters. 

Input Notation 
Value 

(Project 1/Project 2) 

Number of populations N 100/100 

Maximum iteration T 200/200 

Number of decision variables D 25/25 

  parameter   0.03/0.03 

Lower boundary LB -100/-100 

Upper boundary UB 100/100 
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Table 4 

Result Pareto optimal solutions. 

No 

Number 

of 

Project 

Pareto-optimal of projects Time Cost Quality 
Environmental  

Impact 
Gant 

Iteration 

(1/200) 

BEST TIME 

1 
1 

1  7  4  2  3  4  2  3 57 7700 0.81 0.45 1  2  3  5  6  7  8 50 

2 1  1  4  1  3  5  2  1 59 7366 0.81 0.39 1  2  3  5  6  7  8 42 

1 
2 

1  1  2  1  1  3  1  1  2  2  2 129 13949 0.77 145156.33 1   2   3   4   5   6   7   9  11 34 

2 2  1  2  1  1  3  1  3  2  1  2 129 13754 0.76 149227.9 1   2   3   4   5   6   7   9  11 5 

BEST COST 

1 
1 

1  1  1  6  5  4  2  7 70 5545 0.81 0.44 1  2  3  5  6  7  8 45 

2 1  6  5  3  5  3  2  7 89 5627 0.82 0.48 1  2  3  5  6  7  8 10 

1 
2 

2  2  2  2  1  1  3  2  2  1  2 160 11665 0.75 131585.94 1   2   3   4   5   6   7   8  11 14 

2 2  2  2  2  2  1  3  2  2  1  2 168 11780 0.75 131760.3 1   2   3   4   5   6   7   8  11 31 

BEST QUALITY 

1 
1 

1  6  4  7  7  4  4  1 83 7323 0.86 0.51 1  2  3  5  6  7  8 19 

2 1  7  4  6  7  6  7  5 82 7510 0.86 0.49 1  2  3  5  6  7  8 37 

1 
2 

1  1  1  2  1  2  2  2  2  2  2 174 12576 0.78 145593.97 1   2   3   4   5   6   7   8  11 24 

2 1  1  1  2  1  2  4  2  2  2  2 177 13404 0.78 156492.18 1   2   3   4   5   6   7   8  11 43 

BEST ENVIRONMENTAL IMPACT 

1 
1 

1  1  1  5  6  1  1  1 70 6757 0.80 0.34 1  2  3  5  6  7  8 16 

2 1  1  1  1  6  1  1  2 78 7248 0.79 0.33 1  2  3  5  6  7  8 7 

1 
2 

1  1  1  1  1  1  1  1  1  1  2 151 14606 0.77 61671.48 1   2   3   4   5   6   7   9  11 18 

2 1  1  1  1  1  1  2  1  1  1  2 161 14599 0.77 61683.41 1   2   3   4   5   6   7   9  11 14 

 

Table 4 displays the convergence findings from the ASSMA of time, cost, quality, and 

environmental effect, which produced the best optimal solutions. To manage a project 

successfully, it is of utmost importance that a project manager must know the best-case scenario 

to avoid adverse effects on their project by calculating the trade-off between objectives. 

Futhermore, for Project 1, Figures 4, 5, 6, 7 have been shown the best three-dimension TCQE 

trade-off and Figure 8, 9, 10, 11 for in Project 2. The solutions found utilizing the ASSMA were 

more uniformly and broadly distributed in terms of project optimization performance. The 

AOSMA also effectively demonstrated how time, money, quality, and environmental impact 

relate to one another. The ASSMA has better optimization performance in every situation where 

convergent solutions existed. The convergence results from the ASSMA for time, cost, quality, 

and environment in building projects are displayed for readers, along with the optimum 

combination of 04 factors to take into account simultaneously for the best outcomes. A good 

project manager must identify the ideal scenarios, such as the points of equilibrium between 

various factors, in order to ensure the project's successful completion. 
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Fig. 4. Best TCQ trade-off (Project 1). 

 
Fig. 5. Best CQEI trade-off (Project 1). 

 
Fig. 6. Best QTEI trade-off (Project 1). 

 
Fig. 7. Best EICT trade-off (Project 1). 

 
Fig. 8. Best TCQ trade-off (Project 2). 

 
Fig. 9. Best CQEI trade-off (Project 2). 
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Fig. 10. Best QTEI trade-off (Project 2). 

 
Fig. 11. Best EICT trade-off (Project 2). 

Figures 12 and 13 for Project 1 and Project 2 respectively display the value path graph for the 

best-optimized TCQE solutions produced from Pareto. On the horizontal axis are displayed all 

four objectives. The normalized objective function values are indicated on the vertical axis of 

each objective. The obtained Pareto-optimal solutions are represented by 20 lines combining the 

values of various objective functions. Given that the Pareto optimal solutions are dispersed 

across the entire vertical axis, the proposed model can be regarded as effective in identifying a 

variety of solutions. Most lines exhibit a significant variation in slope between two successive 

axes of an objective function; it follows that the proposed model is also effective at identifying 

good tradeoff nondominated solutions. 

 
Fig. 12. Value path for best time (Project 1). 

 
Fig. 13. Value path for best time (Project 2). 

4.2. Contrasting the optimization outcomes produced by DEA and ASSMA 

The tradeoffs between the DEA and the suggested model are compared in Table 5. The TS 

approach is paired with the SMA to help it expand exploration in a new search region and choose 

the best optima to deliver the best goals within the model's capabilities. The SMA has a 

characteristic that is widely and evenly distributed in a search space. This combination leads to 

exploitation by selecting search agents, then randomizing good value candidates, and finally 
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using TS to identify the best candidate to update the new position of slime mold at time. The 

DEA mathematical model makes it possible to measure the effectiveness of an activity in relation 

to desired and undesirable effects by using various execution mechanisms. Due to a large number 

of output data, ASSMA has proven the convergence ability that the model brings. As a result, the 

searchability of the model has easily led to the desired results. To solve the aforementioned 

problem, ASSMA mostly employed Matlab R2019b. 

Table 5 

Comparison of the outcomes between DEA and ASSMA. 
Sayyid and Mohammad, 2020 Proposed model 

DEA ASSMA 

Case Time Cost Quality 
Environmental 

Impact 
Case Time Cost Quality 

Environmental 

Impact 

Project 1 

1  4  5  6  

3  5  2  1 
59 6737 0.81 0.42 

1  7  4  2  

3  4  2  3 
57 7700 0.81 0.45 

1  7  1  5  

5  4  1  7 
72 5551 0.81 0.43 

1  1  1  6  

5  4  2  7 
70 5545 0.81 0.44 

1  6  7  6  

7  4  7  1 
87 

7177 0.86 0.51 1  7  4  6  

7  6  7  5 82 7510 0.86 0.49 

1  4  1  1  

1  1  2  5 
73 7503 0.79 0.35 

1  1  1  5  

6  1  1  1 
70 6757 0.80 0.34 

Project 2 

2  1  2  1  

1  3  1  1  

2  2  2 

129 13894 0.76 146365.83 

2  1  2  1  

1  3  1  3  

2  1  2 

129 13754 0.76 149227.9 

2  1  2  2  

1  1  3  2  

2  1  2 

158 11714 0.76 131504.26 

2  2  2  2  

1  1  3  2  

2  1  2 160 11665 0.75 131585.94 

1  1  1  2  

1  2  4  2  

1  2  2 

178 14232 0.78 99547.5 

1  1  1  2  

1  2  2  2  

2  2  2 174 12576 0.78 145593.97 

1  1  1  1  

1  1  1  1  

1  2  2 

151 14726 0.77 61671.48 

1  1  1  1  

1  1  1  1  

1  1  2 

151 14606 0.77 61671.48 

 

4.3. Comparing the evaluation indicators of the ASSMA than DEA with IDMU and 

ADMU 

The inertia factor w is specified in the MOPSO model to be between 0.3 and 0.7, while the 

learning factors c1 and c2 are also set to 2. In NSGA-II, the probability for constant mutation and 

crossover are set to 0.5 and 0.9, respectively. MOABC has established the upper limit at 30. 

 Number of Solutions (NS): the solutions of pareto 

 Spacing: a measure of how Pareto front solutions differ in their separation 

 Mean Ideal Distances (MID): Convergence speed of the Pareto front solution 

 Spread of nondominant solution (SNS): the overall options of pareto 

 Quality Metric (QM): identified Pareto optimum solutions  

 Diversity: extending Pareto-optimal solutions 

 Hypervolume (HV): where solutions are located in the objective space. 

 Epsilon (E): a measure of a solution set's unsatisfactoriness in relation to the most well-known 

Pareto front. 

 Computional time (CT): how long it takes to build a Pareto-optimal front. 
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Table 6 

The criteria for the ASSMA's review. 
Algorithms NS Spacing MID SNS QM Diversity HypE E CT 

Project 1 

MOPSO 29 0.56 1.79 69726 0.76 0.72 0.69 1.45 181 

NSGA-II 30 0.49 1.84 71935 0.83 0.79 0.75 1.49 169 

MOABC 30 0.44 1.87 75369 0.91 0.81 0.83 1.36 172 

ASSMA 33 0.38 1.97 81366 0.95 0.85 0.90 1.25 145 

Project 2 

MOPSO 32 0.52 1.81 69898 085 0.69 0.67 1.42 169 

NSGA-II 33 0.48 1.86 74563 0.87 0.78 0.72 1.50 179 

MOABC 35 0.45 1.90 75553 0.90 0.82 0.81 1.39 167 

ASSMA 38 0.42 1.95 79214 0.93 0.84 0.88 1.29 152 

 

[23] claim that they employed DEA based on ideal decision-making units (IDMU) to gauge 

IDMU's best possible relative effectiveness and DEA based on anti-ideal decision-making units 

(ADMU) to gauge ADMU's worst possible relative outcome. These two distinct efficacy 

assessments may lead to different inferences. From this ranking, it is possible to determine which 

activities are most important for effective optimization of results, which is one of the methods 

that has potential for future growth. The ASSMA model selects search agents at random from the 

total population to choose the best search agents' next course of action, efficiently utilizing 

exploration and exploitation abilities to produce a perfect or nearly ideal result. Many studies 

conducted internationally reveal that the measures listed in Table 6 make up the bulk of 

performance evaluation indicators used to rate the model's quality. The ASSMA is suggested 

above the DEA when conducting an evaluation since it provides a wider variety of fresh ideas. 

Also, the two models exhibit the greatest capacity for adjusting to a changing environment. 

5. Research implications 

Project manager must be able to identify the risk factors that will affect the project's time, cost, 

quality, and environment. Finding ways to accomplish projects with the least amount of time, 

cost and environmental impact while attaining the highest degree of quality is one of the issues 

facing the construction industry as a whole. To build the greatest database possible and ensure 

future projects are successful, project managers must anticipate various scenarios for each 

individual building activity. 

Further analysis of the outcomes provided in Table 5 reveals that the suggested ASSMA model 

has greater evaluation of quality indicators, shorter data processing times, and superior 

convergence ability when compared to earlier algorithms. The author focuses on identifying the 

case among the cases that has the greatest outcomes across all criteria; in particular, the findings 

found utilizing the ASSMA model have better values. The author also uses quality assessment 

index approaches to compare the suggested model with the prior model in order to give a 

framework for examining and comparing the efficacy and performance of the model. Both 

projects in Table 6 are higher in any index when compared to MOPSO, MOABC, and NSGA-II. 

On the basis of this, it can be concluded that the ASSMA model is functional and that there is 
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enough time to pinpoint the ideal solutions in order to obtain a very high likelihood of project 

completion without delay while still achieving the best outcomes. 

The SMA had not yet been invented or used significantly in the building sector, only in the fields 

of biology and computer science. In this work, the author tackled the subject of applying this 

ASSMA to the construction sector in order to provide a novel research topic. The results show 

that the ASSMA model has great potential for development, but it also has several drawbacks. In 

order to mitigate the model's flaws, the author will keep advancing and improving it in upcoming 

investigations. Future implementations of the suggested model combined with these kinds of 

techniques will be possible from development bases like these by creating an application that 

runs on top of the current model that project managers or enterprises apply to the work being 

done. 

6. Limitations 

The authors will discuss several issues with this hybrid model as well as the numerous 

limitations of this study. (1) The Slime Mold Algorithm Model is mostly employed in the 

disciplines of biotechnology and information technology; it is not yet focused on the construction 

industry, specifically construction management. The authors introduce this cutting-edge hybrid 

model into the field in an effort to provide a brand-new area of study. (2) Due to its simplicity 

and sparse usage of parameters, the original Slime mold algorithm processes data faster than the 

comparison algorithms. The hybrid algorithm creates more code and is more complex because it 

incorporates multiple unique algorithms. (3) The authors will keep working to develop and refine 

the model in following studies in an effort to reduce its flaws. 

7. Directions for future research 

Further research can be applied for future implementation of the hybrid algorithm model for 

additional improvement. We extend the multi-objective optimization model to consider the 

crucial factors necessary to produce the best results for project managers. Multi-objective 

problems can be used in construction, logistics, and other industries to increase the model’s 

applicability to each new subject. 

8. Conclusions 

Promoting the business demands more attention due to the influencing factors that the 

construction industry must deal with, such as delays in development, excessive costs, poor 

quality, and the environment. As a result, the authors have proposed an approach that makes use 

of databases and artificial intelligence, or more specifically, expert knowledge software, to solve 

problems and reach smart judgments.  

The adaptive selection slime mold algorithm model is a systematic framework that this study 

offers in order to handle the issues of time, cost, quality, and EI as well as to promote efficiency, 

scalability, and application. The model is based on the behavioral characteristics of slime mold 

and connected with well-known techniques of TS in order to correct the limitations of the SMA 
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model and handle the activity-on-node network of the building. A metamodel of the ASSMA is 

used to meet the system's overall flexibility needs. Case studies of complex construction have 

been shown. 

The performance indicators show that the objective functions frequently receive bigger benefit 

values than necessary. Performance metrics related to optimization are less likely to suffer a 

negative effect. This further exemplifies how taking into account particular benefits and co-

benefits can drastically affect the range of alternatives. When assessing this association model, 

multi-objective optimization should be applied. 

Declaration of competing interest 

There’s no conflict of interests exist 

Acknowledgments 

We warmly acknowledge the time and resources offered by Ho Chi Minh City University of 

Technology (HCMUT), VNU-HCM for this effort. 

Funding 

This research received no external funding. 

Conflicts of interest 

The authors declare no conflict of interest. 

References 

[1] Fergusson H, Langford DA. Strategies for managing environmental issues in construction 

organizations. Eng Constr Archit Manag 2006. https://doi.org/10.1108/09699980610659625. 

[2] Wang T, Abdallah M, Clevenger C, Monghasemi S. Time–cost–quality trade-off analysis for 

planning construction projects. Eng Constr Archit Manag 2021;28:82–100. 

https://doi.org/10.1108/ECAM-12-2017-0271. 

[3] Mohammadi G. Using genetic algorithms to solve industrial time–cost trade-off problems. Ind J Sci 

Technol 2011;4:1273–8. 

[4] Abd El Razek RH, Diab AM, Hafez SM, Aziz RF. Time-cost-quality trade-off software by using 

simplified genetic algorithm for typical repetitive construction projects. Int J Civ Environ Eng 

2010;4:22–31. 

[5] Afshar A, Zolfaghar Dolabi HR. Multi-objective optimization of time-cost-safety using genetic 

algorithm. Iran Univ Sci Technol 2014;4:433–50. 

[6] Sharma K, Trivedi MK. Latin hypercube sampling-based NSGA-III optimization model for 

multimode resource constrained time–cost–quality–safety trade-off in construction projects. Int J 

Constr Manag 2022;22:3158–68. https://doi.org/10.1080/15623599.2020.1843769. 

[7] Hasanipanah M, Monjezi M, Shahnazar A, Armaghani DJ, Farazmand A. Feasibility of indirect 

determination of blast induced ground vibration based on support vector machine. Measurement 

2015;75:289–97. https://doi.org/10.1016/j.measurement.2015.07.019. 



124 P.V.H. Son, L.N.Q. Khoi/ Journal of Soft Computing in Civil Engineering 8-1 (2024) 107-125 

[8] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing 

capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS 

hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906. 

[9] Ghanizadeh AR, Delaram A, Fakharian P, Armaghani DJ. Developing Predictive Models of 

Collapse Settlement and Coefficient of Stress Release of Sandy-Gravel Soil via Evolutionary 

Polynomial Regression. Appl Sci 2022;12:9986. https://doi.org/10.3390/app12199986. 

[10] Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength 

prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 

2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007. 

[11] Li S, Chen H, Wang M, Heidari AA, Mirjalili S. Slime mould algorithm: A new method for 

stochastic optimization. Futur Gener Comput Syst 2020;111:300–23. 

https://doi.org/10.1016/j.future.2020.03.055. 

[12] Fang Y, Li J. A review of tournament selection in genetic programming. Adv. Comput. Intell. 5th 

Int. Symp. ISICA 2010, Wuhan, China, Oct. 22-24, 2010. Proc. 5, Springer; 2010, p. 181–92. 

[13] Tiwari S, Johari S. Project scheduling by integration of time cost trade-off and constrained resource 

scheduling. J Inst Eng Ser A 2015;96:37–46. https://doi.org/10.1007/s40030-014-0099-2. 

[14] Zahraie B, Tavakolan M. Stochastic time-cost-resource utilization optimization using 

nondominated sorting genetic algorithm and discrete fuzzy sets. J Constr Eng Manag 

2009;135:1162–71. 

[15] Khang DB, Myint YM. Time, cost and quality trade-off in project management: a case study. Int J 

Proj Manag 1999;17:249–56. https://doi.org/10.1016/S0263-7863(98)00043-X. 

[16] El-Rayes K, Kandil A. Time-cost-quality trade-off analysis for highway construction. J Constr Eng 

Manag 2005;131:477–86. 

[17] Luong D-L, Tran D-H, Nguyen PT. Optimizing multi-mode time-cost-quality trade-off of 

construction project using opposition multiple objective difference evolution. Int J Constr Manag 

2021;21:271–83. https://doi.org/10.1080/15623599.2018.1526630. 

[18] Liu GY, Lee EWM, Yuen RKK. Optimising the time-cost-quality (TCQ) trade-off in offshore wind 

farm project management with a genetic algorithm (GA). HKIE Trans 2020;27:1–12. 

[19] Mungle S, Benyoucef L, Son Y-J, Tiwari MK. A fuzzy clustering-based genetic algorithm 

approach for time–cost–quality trade-off problems: A case study of highway construction project. 

Eng Appl Artif Intell 2013;26:1953–66. https://doi.org/10.1016/j.engappai.2013.05.006. 

[20] Tran D-H, Cheng M-Y, Cao M-T. Hybrid multiple objective artificial bee colony with differential 

evolution for the time–cost–quality tradeoff problem. Knowledge-Based Syst 2015;74:176–86. 

https://doi.org/10.1016/j.knosys.2014.11.018. 

[21] Zhang L, Du J, Zhang S. Solution to the time-cost-quality trade-off problem in construction 

projects based on immune genetic particle swarm optimization. J Manag Eng 2014;30:163–72. 

[22] Panwar A, Jha KN. A many-objective optimization model for construction scheduling. Constr 

Manag Econ 2019;37:727–39. https://doi.org/10.1080/01446193.2019.1590615. 

[23] Banihashemi SA, Khalilzadeh M. Time-cost-quality-environmental impact trade-off resource-

constrained project scheduling problem with DEA approach. Eng Constr Archit Manag 

2021;28:1979–2004. https://doi.org/10.1108/ECAM-05-2020-0350. 

[24] Zubaidi SL, Abdulkareem IH, Hashim KS, Al-Bugharbee H, Ridha HM, Gharghan SK, et al. 

Hybridised artificial neural network model with slime mould algorithm: a novel methodology for 

prediction of urban stochastic water demand. Water 2020;12:2692. 

https://doi.org/10.3390/w12102692. 

[25] Abdel-Basset M, Chang V, Mohamed R. HSMA_WOA: A hybrid novel Slime mould algorithm 

with whale optimization algorithm for tackling the image segmentation problem of chest X-ray 

images. Appl Soft Comput 2020;95:106642. https://doi.org/10.1016/j.asoc.2020.106642. 



 P.V.H. Son, L.N.Q. Khoi/ Journal of Soft Computing in Civil Engineering 8-1 (2024) 107-125 125 

[26] Liu Y, Heidari AA, Ye X, Liang G, Chen H, He C. Boosting slime mould algorithm for parameter 

identification of photovoltaic models. Energy 2021;234:121164. 

https://doi.org/10.1016/j.energy.2021.121164. 

[27] Houssein EH, Mahdy MA, Blondin MJ, Shebl D, Mohamed WM. Hybrid slime mould algorithm 

with adaptive guided differential evolution algorithm for combinatorial and global optimization 

problems. Expert Syst Appl 2021;174:114689. https://doi.org/10.1016/j.eswa.2021.114689. 

[28] Son PVH, Khoi LNQ. Optimization in Construction Management Using Adaptive Opposition 

Slime Mould Algorithm. Adv Civ Eng 2023;2023. https://doi.org/10.1155/2023/7228896. 

[29] Son PVH, Khoi LNQ. Adaptive opposition slime mold algorithm for time–cost–quality–safety 

trade-off for construction projects. Asian J Civ Eng 2023:1–16. https://doi.org/10.1007/s42107-

023-00612-6. 

[30] Son PVH, Khoi LNQ. Application of slime mold algorithm to optimize time, cost and quality in 

construction projects. Int J Constr Manag 2023:1–12. 

https://doi.org/10.1080/15623599.2023.2174660. 

 


	Optimization of Construction Projects Time-Cost-Quality-Environment Trade-off Problem Using Adaptive Selection Slime Mold Algorithm
	1. Introduction
	2. Literature review
	2.1. TCQE trade-off
	2.2. Hybrid slime mold algorithm

	3. Methodology ASSMA for TCQE tradeoff
	3.1. Initialization
	3.2. Slime mold algorithm
	3.3. TS
	3.4. Stopping conditions
	3.5. Adaptive selection slime mold algorithm

	4. Case study and results
	4.1. Optimization results obtained using the ASSMA
	4.2. Contrasting the optimization outcomes produced by DEA and ASSMA
	4.3. Comparing the evaluation indicators of the ASSMA than DEA with IDMU and ADMU

	5. Research implications
	6. Limitations
	7. Directions for future research
	8. Conclusions
	Declaration of competing interest
	Acknowledgments
	Funding
	Conflicts of interest
	References

