[1] Zare Abyaneh H. Evaluation of multivariate linear regression and artificial neural networks in prediction of water quality parameters. J Environ Heal Sci Eng 2014;12:40. https://doi.org/10.1186/2052-336X-12-40.
[2] Verma AK, Singh TN. Prediction of water quality from simple field parameters. Environ Earth Sci 2013;69:821–9. https://doi.org/10.1007/s12665-012-1967-6.
[3] Jingsheng C, Tao Y, Ongley E. Influence of High Levels of Total Suspended Solids on Measurement of Cod and Bod in the Yellow River, China. Environ Monit Assess 2006;116:321–34. https://doi.org/10.1007/s10661-006-7374-2.
[4] Rice EW, Bridgewater L, Association APH. Standard methods for the examination of water and wastewater. vol. 10. American public health association Washington, DC; 2012.
[5] Londhe SN, Panchang V. Correlation of wave data from buoy networks. Estuar Coast Shelf Sci 2007;74:481–92. https://doi.org/10.1016/j.ecss.2007.05.003.
[6] Palani S, Liong S-Y, Tkalich P. An ANN application for water quality forecasting. Mar Pollut Bull 2008;56:1586–97. https://doi.org/10.1016/j.marpolbul.2008.05.021.
[7] Singh KP, Basant A, Malik A, Jain G. Artificial neural network modeling of the river water quality—A case study. Ecol Modell 2009;220:888–95. https://doi.org/10.1016/j.ecolmodel.2009.01.004.
[8] Akilandeswari S, Kavitha B. Comparison of ANFIS and statistical modeling for estimation of chemical oxygen demand parameter in textile effluent. Der Chem Sin 2013;4:96–9.
[9] Heddam S, Kisi O. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J Hydrol 2018;559:499–509. https://doi.org/10.1016/j.jhydrol.2018.02.061.
[10] Maier HR, Dandy GC. Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ Model Softw 2000;15:101–24. https://doi.org/10.1016/S1364-8152(99)00007-9.
[11] Danandeh Mehr A, Ghadimi S, Marttila H, Torabi Haghighi A. A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Theor Appl Climatol 2022;148:255–68. https://doi.org/10.1007/s00704-022-03939-3.
[12] Karami H, Ghazvinian H, Dehghanipour M, Ferdosian M. Investigating the Performance of Neural Network Based Group Method of Data Handling to Pan’s Daily Evaporation Estimation (Case Study: Garmsar City). J Soft Comput Civ Eng 2021;5:1–18. https://doi.org/10.22115/scce.2021.274484.1282.
[13] Najah A, El-Shafie A, Karim OA, El-Shafie AH. Application of artificial neural networks for water quality prediction. Neural Comput Appl 2013;22:187–201. https://doi.org/10.1007/s00521-012-0940-3.
[14] Basant N, Gupta S, Malik A, Singh KP. Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water — A case study. Chemom Intell Lab Syst 2010;104:172–80. https://doi.org/10.1016/j.chemolab.2010.08.005.
[15] Elmolla ES, Chaudhuri M, Eltoukhy MM. The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. J Hazard Mater 2010;179:127–34. https://doi.org/10.1016/j.jhazmat.2010.02.068.
[16] Emamgholizadeh S, Kashi H, Marofpoor I, Zalaghi E. Prediction of water quality parameters of Karoon River (Iran) by artificial intelligence-based models. Int J Environ Sci Technol 2014;11:645–56. https://doi.org/10.1007/s13762-013-0378-x.
[17] Wu X, Zhang Q, Wen F, Qi Y. A Water Quality Prediction Model Based on Multi-Task Deep Learning: A Case Study of the Yellow River, China. Water 2022;14:3408. https://doi.org/10.3390/w14213408.
[18] Ozkan O, Ozdemır O, Azgın ST. Prediction of biochemical oxygen demand in a wastewater treatment plant by artificial neural networks. Asian J Chem 2009;21:4821–30.
[19] Dogan E, Sengorur B, Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage 2009;90:1229–35. https://doi.org/10.1016/j.jenvman.2008.06.004.
[20] Danandeh Mehr A, Safari MJS. Multiple genetic programming: a new approach to improve genetic-based month ahead rainfall forecasts. Environ Monit Assess 2019;192:25. https://doi.org/10.1007/s10661-019-7991-1.
[21] Ay M, Kisi O. Modeling of Dissolved Oxygen Concentration Using Different Neural Network Techniques in Foundation Creek, El Paso County, Colorado. J Environ Eng 2012;138:654–62. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000511.
[22] ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial Neural Networks in Hydrology. I: Preliminary Concepts. J Hydrol Eng 2000;5:115–23. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:2(115).
[23] Dawson CW, Wilby RL. Hydrological modelling using artificial neural networks. Prog Phys Geogr Earth Environ 2001;25:80–108. https://doi.org/10.1177/030913330102500104.
[24] Jain P, Deo MC. Neural networks in ocean engineering. Ships Offshore Struct 2006;1:25–35. https://doi.org/10.1533/saos.2004.0005.
[25] Shahin MA. State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci Front 2016;7:33–44. https://doi.org/10.1016/j.gsf.2014.10.002.
[26] Quinlan JR. Learning with continuous classes. 5th Aust. Jt. Conf. Artif. Intell., vol. 92, World Scientific; 1992, p. 343–8.
[27] Kulkarni P, Londhe SN, Dixit PR. A comparative study of concrete strength prediction using artificial neural network, multigene programming and model tree. Chall J Struct Mech 2019;5:42. https://doi.org/10.20528/cjsmec.2019.02.002.
[28] Hashmi S, Halawani SM, Barukab OM, Ahmad A. Model trees and sequential minimal optimization based support vector machine models for estimating minimum surface roughness value. Appl Math Model 2015;39:1119–36. https://doi.org/10.1016/j.apm.2014.07.026.
[29] Abolfathi S, Yeganeh-Bakhtiary A, Hamze-Ziabari SM, Borzooei S. Wave runup prediction using M5′ model tree algorithm. Ocean Eng 2016;112:76–81. https://doi.org/10.1016/j.oceaneng.2015.12.016.
[30] Solomatine DP, Xue Y. M5 Model Trees and Neural Networks: Application to Flood Forecasting in the Upper Reach of the Huai River in China. J Hydrol Eng 2004;9:491–501. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491).
[31] Solomatine DP, Dulal KN. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrol Sci J 2003;48:399–411. https://doi.org/10.1623/hysj.48.3.399.45291.
[32] Searson DP, Leahy DE, Willis MJ. GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Proc. Int. multiconference Eng. Comput. Sci., vol. 1, Citeseer; 2010, p. 77–80.
[33] N. S, R. P. Genetic Programming: A Novel Computing Approach in Modeling Water Flows. Genet. Program. - New Approaches Success. Appl., IntechOpen Publishing London, UK; 2012. https://doi.org/10.5772/48179.
[34] Gandomi AH, Alavi AH. A new multi-gene genetic programming approach to nonlinear system modeling. Part I: materials and structural engineering problems. Neural Comput Appl 2012;21:171–87. https://doi.org/10.1007/s00521-011-0734-z.
[35] Pune Municipal Corporation. JICA Project | Pune Municipal Corporation 2023. https://www.pmc.gov.in/en/jica-project.
[36] Report On Environmental Status of Pune Region. Kalpataru Point, Sion Circle, Sion (East) Mumbai. n.d.
[37] Sahu P, Karad S, Chavan S, Khandelwal S. Physicochemical Analysis Of Mula Mutha River Pune. Civ Eng Urban Plan An Int J 2015;2.
[38] Central Pollution Control Board (CPCB) | The Official Website of Ministry of Environment, Forest and Climate Change, Government of India n.d.
[39] Fletcher D, Goss E. Forecasting with neural networks. Inf Manag 1993;24:159–67. https://doi.org/10.1016/0378-7206(93)90064-Z.
[40] Olyaie E, Zare Abyaneh H, Danandeh Mehr A. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci Front 2017;8:517–27. https://doi.org/10.1016/j.gsf.2016.04.007.
[41] Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L. Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol Modell 2010;221:1239–44. https://doi.org/10.1016/j.ecolmodel.2009.12.023.
[42] Chowdhury MZI, Turin TC. Variable selection strategies and its importance in clinical prediction modelling. Fam Med Community Heal 2020;8. https://doi.org/10.1136/fmch-2019-000262.
[43] Adeniran KA, Adelodun B, Ogunshina M. Artificial Neural Network Modelling of Biochemical Oxygen Demand and Dissolved Oxygen of Rivers: Case Study of Asa River. Environ Res Eng Manag 2017;72:59–74. https://doi.org/10.5755/j01.erem.72.3.14120.
[44] G. E. McCuen. Protecting water quality 1986:180.
[45] Hem JD. Study and interpretation of the chemical characteristics of natural water. US Geological Survey; 1959. https://doi.org/10.3133/wsp1473_ed1.
[46] MathWorks Announces Release 2016b of the MATLAB and Simulink Product Families - MATLAB & Simulink. MathWorks 2016.
[47] Singh HK. Prediction of shear strength of deep beam using Genetic Programming 2014.
[48] Melesse AM, Khosravi K, Tiefenbacher JP, Heddam S, Kim S, Mosavi A, et al. River water salinity prediction using hybrid machine learning models. Water 2020;12:2951.
[49] Garg SK. Water Supply Engineering. Khanna Publishers; 2010.
[50] Metcalf E. Wastewater Engineering Treatment and Reuse (4th edition) (2004) | Akhid Maulana - Academia.edu. 4th editio. 2004.
[51] Rahimikhoob A, Behbahani SMR, Banihabib ME. Comparative study of statistical and artificial neural network’s methodologies for deriving global solar radiation from NOAA satellite images. Int J Climatol 2013;33:480–6. https://doi.org/10.1002/joc.3441.
[52] Danandeh Mehr A, Jabarnejad M, Nourani V. Pareto-optimal MPSA-MGGP: A new gene-annealing model for monthly rainfall forecasting. J Hydrol 2019;571:406–15. https://doi.org/10.1016/j.jhydrol.2019.02.003.
[53] Ay M, Kisi O. Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. J Hydrol 2014;511:279–89. https://doi.org/10.1016/j.jhydrol.2014.01.054.