[1] Meyerhof GG. Uplift resistance of inclined anchors and piles. Proc. 8th ICSMFE, vol. 2, 1973, p. 167–72.
[2] Armaghani DJ, Sohaei H, Namazi E, Marto A. Investigation of Uplift Capacity of Deep Foundation in Various Geometry Conditions. Open Constr Build Technol J 2020;13:344–52. https://doi.org/10.2174/1874836801913010344.
[3] Shahin MA. Intelligent computing for modeling axial capacity of pile foundations. Can Geotech J 2010;47:230–43.
[4] Nazir R, Momeni E, Marsono K, Maizir H. An Artificial Neural Network Approach for Prediction of Bearing Capacity of Spread Foundations in Sand. J Teknol 2015;72. https://doi.org/10.11113/jt.v72.4004.
[5] Momeni E, Dowlatshahi MB, Omidinasab F, Maizir H, Armaghani DJ. Gaussian Process Regression Technique to Estimate the Pile Bearing Capacity. Arab J Sci Eng 2020;45:8255–67. https://doi.org/10.1007/s13369-020-04683-4.
[6] Vakili A, Zomorodian SMA, Totonchi A. Laboratory and three-dimensional numerical modeling of laterally loaded pile groups in sandy soils. Iran J Sci Technol Trans Civ Eng 2020:https://doi.org/10.1007/s40996-020-00502-w.
[7] Harandizadeh H, Toufigh V. Application of Developed New Artificial Intelligence Approaches in Civil Engineering for Ultimate Pile Bearing Capacity Prediction in Soil Based on Experimental Datasets. Iran J Sci Technol Trans Civ Eng 2020;44:545–559.
[8] Harandizadeh H, Armaghani DJ, Khari M. A new development of ANFIS–GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Eng Comput 2021;37:685–700, https://doi.org/10.1007/s00366-019-00849-.
[9] Armaghani DJ, Harandizadeh H, Momeni E, Maizir H, Zhou J. An optimized system of GMDH-ANFIS predictive model by ICA for estimating pile bearing capacity. Artif Intell Rev 2021. https://doi.org/10.1007/s10462-021-10065-5.
[10] Masouleh SF, Fakharian K. Application of a continuum numerical model for pile driving analysis and comparison with a real case. Comput Geotech 2008;35:406–18.
[11] Momeni E, Jahed Armaghani D, Hajihassani M, Mohd Amin MF. Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks. Measurement 2015;60:50–63. https://doi.org/10.1016/j.measurement.2014.09.075.
[12] Momeni E, Nazir R, Armaghani DJ, Maizir H. Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci Res J 2015;19:85–93.
[13] Moayedi H, Armaghani DJ. Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng Comput 2018;34:347–56.
[14] Shahin MA. State-of-the-art review of some artificial intelligence applications in pile foundations. Geosci Front 2016;7:33–44. https://doi.org/10.1016/j.gsf.2014.10.002.
[15] Teh CI, Wong KS, Goh ATC, Jaritngam S. Prediction of pile capacity using neural networks. J Comput Civ Eng 1997;11:129–38.
[16] Terzaghi K. 1943, Theoretical Soil Mechanics, John Wiley & Sons, New York n.d.
[17] Vesic AS. Design of pile foundations. National cooperative highway research program synthesis of practice no. 42. Transp Res Board, Washington, DC 1977;3248.
[18] Pham TA, Ly H-B, Tran VQ, Giap L Van, Vu H-LT, Duong H-AT. Prediction of pile axial bearing capacity using artificial neural network and random forest. Appl Sci 2020;10:1871.
[19] Józefiak K, Zbiciak A, Maślakowski M, Piotrowski T. Numerical modelling and bearing capacity analysis of pile foundation. Procedia Eng 2015;111:356–63.
[20] Pal M, Deswal S. Modeling Pile Capacity Using Support Vector Machines and Generalized Regression Neural Network. J Geotech Geoenvironmental Eng 2008;134:1021–4. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(1021).
[21] Shahin MA, Jaksa MB, Maier HR. Artificial neural network applications in geotechnical engineering. Aust Geomech 2001;36:49–62.
[22] Momeni E, Yarivand A, Dowlatshahi MB, Armaghani DJ. An Efficient Optimal Neural Network Based on Gravitational Search Algorithm in Predicting the Deformation of Geogrid-Reinforced Soil Structures. Transp Geotech 2021;26:100446.
[23] Armaghani DJ, Harandizadeh H, Momeni E. Load carrying capacity assessment of thin-walled foundations: an ANFIS–PNN model optimized by genetic algorithm. Eng Comput 2021:https://doi.org/10.1007/s00366-021-01380-0.
[24] Parsajoo M, Armaghani DJ, Mohammed AS, Khari M, Jahandari S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transp Geotech 2021;31:100652. https://doi.org/10.1016/J.TRGEO.2021.100652.
[25] Momeni E, He B, Abdi Y, Jahed Armaghani D. Novel Hybrid XGBoost Model to Forecast Soil Shear Strength Based on Some Soil Index Tests. Comput Model Eng Sci 2023;136:2527–50. https://doi.org/10.32604/cmes.2023.026531.
[26] Shalchi Tousi M, Ghazavi M, Laali S. Optimizing Reinforced Concrete Cantilever Retaining Walls Using Gases Brownian Motion Algorithm (GBMOA). J Soft Comput Civ Eng 2021;5:1–18. https://doi.org/10.22115/scce.2021.248638.1256.
[27] Fakharian P, Rezazadeh Eidgahee D, Akbari M, Jahangir H, Ali Taeb A. Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms. Structures 2023;47:1790–802. https://doi.org/10.1016/j.istruc.2022.12.007.
[28] Ghanizadeh AR, Ghanizadeh A, Asteris PG, Fakharian P, Armaghani DJ. Developing bearing capacity model for geogrid-reinforced stone columns improved soft clay utilizing MARS-EBS hybrid method. Transp Geotech 2023;38:100906. https://doi.org/10.1016/j.trgeo.2022.100906.
[29] Armaghani DJ, Asteris PG, Fatemi SA, Hasanipanah M, Tarinejad R, Rashid ASA, et al. On the Use of Neuro-Swarm System to Forecast the Pile Settlement. Appl Sci 2020;10:1904.
[30] Pal M, Deswal S. Modelling pile capacity using Gaussian process regression. Comput Geotech 2010;37:942–7. https://doi.org/10.1016/j.compgeo.2010.07.012.
[31] Momeni E, Nazir R, Jahed Armaghani D, Maizir H. Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN. Measurement 2014;57:122–31. https://doi.org/10.1016/j.measurement.2014.08.007.
[32] Harandizadeh H, Toufigh MM, Toufigh V. Application of improved ANFIS approaches to estimate bearing capacity of piles. Soft Comput 2019;23:9537-9549 https://doi.org/10.1007/s00500-018-3517-.
[33] Chen W, Sarir P, Bui X-N, Nguyen H, Tahir MM, Armaghani DJ. Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Eng Comput 2020;36:1101–1115, https://doi.org/10.1007/s00366-019–0075.
[34] Kordjazi A, Nejad FP, Jaksa MB. Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. Comput Geotech 2014;55:91–102.
[35] Lee C-Y, Chern S-G. Application of a support vector machine for liquefaction assessment. J Mar Sci Technol 2013;21:318–24.
[36] Mahdevari S, Shahriar K, Yagiz S, Shirazi MA. A support vector regression model for predicting tunnel boring machine penetration rates. Int J Rock Mech Min Sci 2014;72:214–29.
[37] Fisher WD, Camp TK, Krzhizhanovskaya V V. Crack detection in earth dam and levee passive seismic data using support vector machines. Procedia Comput Sci 2016;80:577–86.
[38] Kim J-Y, Park U. A study on the selection model of retaining wall methods using support vector machines. Korean J Constr Eng Manag 2006;7:118–26.
[39] Besalatpour A, Hajabbasi MA, Ayoubi S, Gharipour A, Jazi AY. Prediction of soil physical properties by optimized support vector machines. Int Agrophysics 2012;26.
[40] Ly H-B, Pham BT. Prediction of shear strength of soil using direct shear test and support vector machine model. Open Constr Build Technol J 2020;14:268–77.
[41] Jahed Armaghani D, Asteris PG, Askarian B, Hasanipanah M, Tarinejad R, Huynh V Van. Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness. Sustainability 2020;12:2229.
[42] Khandelwal M, Kankar P. Prediction of blast-induced air overpressure using support vector machine. Arab J Geosci 2011;4:427–33. https://doi.org/10.1007/s12517-009-0092-7.
[43] Marjanović M, Kovačević M, Bajat B, Voženílek V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 2011;123:225–34.
[44] Tien Bui D, Pradhan B, Lofman O, Revhaug I. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Math Probl Eng 2012:Article ID 974638 https://doi.org/10.1155/2012/9.
[45] Lin Y-C, Tseng H-W, Fuh C-S. Pornography detection using support vector machine. 16th IPPR Conf. Comput. Vision, Graph. Image Process. (CVGIP 2003), vol. 19, 2003, p. 123–30.
[46] Hoaglin DC, Iglewicz B. Fine-tuning some resistant rules for outlier labeling. J Am Stat Assoc 1987;82:1147–9.
[47] Armaghani DJ, Mohamad ET, Momeni E, Narayanasamy MS. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: a study on Main Range granite. Bull Eng Geol Environ 2015;74:1301–19.
[48] Mohamad ET, Armaghani DJ, Momeni E, Yazdavar AH, Ebrahimi M. Rock strength estimation: a PSO-based BP approach. Neural Comput Appl 2016:1–12. https://doi.org/10.1007/s00521-016-2728-3.
[49] Rezaei H, Nazir R, Momeni E. Bearing capacity of thin-walled shallow foundations: an experimental and artificial intelligence-based study. J Zhejiang Univ A 2016;17:273–85. https://doi.org/10.1631/jzus.A1500033.
[50] Bunawan AR, Momeni E, Armaghani DJ, Rashid ASA. Experimental and intelligent techniques to estimate bearing capacity of cohesive soft soils reinforced with soil-cement columns. Measurement 2018;124:529–38.
[51] Zorlu K, Gokceoglu C, Ocakoglu F, Nefeslioglu HA, Acikalin S. Prediction of uniaxial compressive strength of sandstones using petrography-based models. Eng Geol 2008;96:141–58. https://doi.org/10.1016/j.enggeo.2007.10.009.
[52] Samui P, Kim D. Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput Appl 2013;23:1123–7.
[53] Kordjazi A, Pooya Nejad F, Jaksa MB. Prediction of load-carrying capacity of piles using a support vector machine and improved data collection. Proc. 12th Aust. New Zeal. Conf. Geomech. Chang. Face Earth - Geomech. Hum. Influ. 2015 / Ramsay, G. (ed./s), pp, The New Zealand Geotechnical Society and the Australian Geomechanics Society; 2015, p. 1–8.