[1] Shepherd R, Frost JD. Failures in civil engineering: structural, foundation and geoenvironmental case studies, ASCE; 1995.
[2] Melville BW. Local scour at bridge sites 1975.
[3] J. RA, Robert E. Clear‐Water Scour at Cylindrical Piers. J Hydraul Eng 1983;109:338–50. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338).
[4] Ansari SA, Kothyari UC, Ranga Raju KG. Influence of cohesion on scour around bridge piers. J Hydraul Res 2002;40:717–29. https://doi.org/10.1080/00221680209499918.
[5] Richardson E V, Davis SR. Evaluating scour at bridges, United States. Fed Highw Adm Off Bridg Technol 2001.
[6] C. KU, J. GRC, G. RRK. Temporal Variation of Scour Around Circular Bridge Piers. J Hydraul Eng 1992;118:1091–106. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:8(1091).
[7] Toth E, Brandimarte L. Prediction of local scour depth at bridge piers under clear-water and live-bed conditions: comparison of literature formulae and artificial neural networks. J Hydroinformatics 2011;13:812–24. https://doi.org/10.2166/hydro.2011.065.
[8] Laursen EM, Toch A. Scour around bridge piers and abutments (Vol. 4). Ames, IA Iowa Highw Res Board 1956.
[9] W. SH, R. SV, Susumu K. Local Scour Around Bridge Piers. J Hydraul Div 1969;95:1919–40. https://doi.org/10.1061/JYCEAJ.0002197.
[10] Breusers HNC, Nicollet G, Shen HW. Local Scour Around Cylindrical Piers. J Hydraul Res 1977;15:211–52. https://doi.org/10.1080/00221687709499645.
[11] W. MB, J. SA. Design Method for Local Scour at Bridge Piers. J Hydraul Eng 1988;114:1210–26. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:10(1210).
[12] Hoffmans G, Verheij HJ. Scour Manual 1997. Rotterdam/Brookf Balkema 1997.
[13] Melville BW, Coleman SE. Bridge scour. Water Resources Publication; 2000.
[14] A. JP. Comparison of Pier-Scour Equations Using Field Data. J Hydraul Eng 1995;121:626–9. https://doi.org/10.1061/(ASCE)0733-9429(1995)121:8(626).
[15] M. SD, B. M, H. D. Evaluation of Existing Equations for Local Scour at Bridge Piers. J Hydraul Eng 2014;140:14–23. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000800.
[16] Firat M, Gungor M. Generalized Regression Neural Networks and Feed Forward Neural Networks for prediction of scour depth around bridge piers. Adv Eng Softw 2009;40:731–7. https://doi.org/10.1016/j.advengsoft.2008.12.001.
[17] Lee TL, Jeng DS, Zhang GH, Hong JH. Neural Network Modeling for Estimation of Scour Depth Around Bridge Piers. J Hydrodyn 2007;19:378–86. https://doi.org/10.1016/S1001-6058(07)60073-0.
[18] Lu D, S. CC. Bridge Scour: Prediction, Modeling, Monitoring, and Countermeasures—Review. Pract Period Struct Des Constr 2010;15:125–34. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.
[19] Azamathulla HM, Ghani AA. Genetic Programming to Predict River Pipeline Scour. J Pipeline Syst Eng Pract 2010;1:127–32. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000060.
[20] Sudheer KP, Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrol Process 2004;18:833–44. https://doi.org/10.1002/hyp.5517.
[21] Azmathullah HM, Deo MC, Deolalikar PB. Neural Networks for Estimation of Scour Downstream of a Ski-Jump Bucket. J Hydraul Eng 2005;131:898–908. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:10(898).
[22] Rahbar A, Mirarabi A, Nakhaei M, Talkhabi M, Jamali M. A Comparative Analysis of Data-Driven Models (SVR, ANFIS, and ANNs) for Daily Karst Spring Discharge Prediction. Water Resour Manag 2022;36:589–609. https://doi.org/10.1007/s11269-021-03041-9.
[23] Azamathulla HM, Ghani AA, Zakaria NA, Guven A. Genetic Programming to Predict Bridge Pier Scour. J Hydraul Eng 2010;136:165–9. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000133.
[24] Pal M, Singh NK, Tiwari NK. M5 model tree for pier scour prediction using field dataset. KSCE J Civ Eng 2012;16:1079–84. https://doi.org/10.1007/s12205-012-1472-1.
[25] Akib S, Mohammadhassani M, Jahangirzadeh A. Application of ANFIS and LR in prediction of scour depth in bridges. Comput Fluids 2014;91:77–86. https://doi.org/10.1016/j.compfluid.2013.12.004.
[26] Sreedhara BM, Rao M, Mandal S. Application of an evolutionary technique (PSO–SVM) and ANFIS in clear-water scour depth prediction around bridge piers. Neural Comput Appl 2019;31:7335–49. https://doi.org/10.1007/s00521-018-3570-6.
[27] Majedi-Asl M, Daneshfaraz R, Fuladipanah M, Abraham J, Bagherzadeh M. Simulation of bridge pier scour depth base on geometric characteristics and field data using support vector machine algorithm. J Appl Res Water Wastewater 2020;7:137–43. https://doi.org/10.22126/arww.2021.5747.1189.
[28] Thendiyath R, Prakash V. Role of Regression Models in Bridge Pier Scour Prediction. Int J Appl Metaheuristic Comput 2020;11:156–70. https://doi.org/10.4018/IJAMC.2020040108.
[29] Hassan WH, Jalal HK. Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Appl Sci 2021;3:159. https://doi.org/10.1007/s42452-020-04124-9.
[30] Hassan WH, Hussein HH, Alshammari MH, Jalal HK, Rasheed SE. Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results Eng 2022;13:100353. https://doi.org/10.1016/j.rineng.2022.100353.
[31] Seifollahi M, Abbasi S, Abraham J, Norouzi R, Daneshfaraz R, Lotfollahi-Yaghin MA, et al. Optimization of Gravity Concrete Dams Using the Grasshopper Algorithm (Case Study: Koyna Dam). Geotech Geol Eng 2022:1–16. https://doi.org/10.1007/s10706-022-02227-1.
[32] Khalid M, Muzzammil M, Alam J. A reliability-based assessment of live bed scour at bridge piers. ISH J Hydraul Eng 2021;27:105–12. https://doi.org/10.1080/09715010.2019.1584543.
[33] Ghorbani MA, Zadeh HA, Isazadeh M, Terzi O. A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ Earth Sci 2016;75:476. https://doi.org/10.1007/s12665-015-5096-x.
[34] Agalbjorn S, Koncar N, Jones AJ. A note on the gamma test. Neural Comput Appl 1997;5.3:131–3.
[35] Durrant PJ. “winGamma: A non-linear data analysis and modelling tool with applications to flood prediction.” UK: Department of Computer Science, Cardiff University, Wales, UK; 2001.
[36] Koza JR. Genetic programming II: automatic discovery of reusable programs. MIT press; 1994.
[37] Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. ArXiv Prepr Cs/0102027 2001.
[38] Teodorescu L, Sherwood D. High Energy Physics event selection with Gene Expression Programming. Comput Phys Commun 2008;178:409–19. https://doi.org/10.1016/j.cpc.2007.10.003.
[39] Aytac G, Ali A. New Approach for Stage–Discharge Relationship: Gene-Expression Programming. J Hydrol Eng 2009;14:812–20. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000044.
[40] Adams A, Sterling L. AI ’92. AI ’92, WORLD SCIENTIFIC; 1992, p. 1–410. https://doi.org/doi:10.1142/9789814536271.
[41] Witten, Ian H. and EF. Data mining: practical machine learning tools and techniques with Java implementations. Acm Sigmod Rec 311 2002:76–7.
[42] Ahmadianfar I, Jamei M, Karbasi M, Sharafati A, Gharabaghi B. A novel boosting ensemble committee-based model for local scour depth around non-uniformly spaced pile groups. Eng Comput 2022;38:3439–61. https://doi.org/10.1007/s00366-021-01370-2.
[43] Friedman JH. Multivariate Adaptive Regression Splines. Ann Stat 1991;19:1–67. https://doi.org/10.1214/aos/1176347963.
[44] Deo RC, Kisi O, Singh VP. Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model. Atmos Res 2017;184:149–75. https://doi.org/10.1016/j.atmosres.2016.10.004.
[45] Zhang W, Wu C, Li Y, Wang L, Samui P. Assessment of pile drivability using random forest regression and multivariate adaptive regression splines. Georisk Assess Manag Risk Eng Syst Geohazards 2021;15:27–40. https://doi.org/10.1080/17499518.2019.1674340.
[46] Jang J-SR. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993;23:665–85. https://doi.org/10.1109/21.256541.
[47] Tien Bui D, Pradhan B, Lofman O, Revhaug I, Dick OB. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput Geosci 2012;45:199–211. https://doi.org/10.1016/j.cageo.2011.10.031.
[48] Firat M. Scour depth prediction at bridge piers by Anfis approach. Proc Inst Civ Eng - Water Manag 2009;162:279–88. https://doi.org/10.1680/wama.2009.00061.
[49] Larras J. Profondeurs Maximales d’Erosion des Fonds Mobiles Autour des Piles en Rivere. Ann Ponts Chaussees 1963;133:411–24.
[50] Breusers HNC. Scouring around drilling platforms. J Hydraul Res IAHR, Bull 1965;19:276.
[51] Hancu S. Sur le calcul des affouillements locaux dams la zone des piles des ponts. Proc. 14th IAHR Congr. Paris, Fr., vol. 3, 1971, p. 299–313.
[52] Melville BW. Pier and Abutment Scour: Integrated Approach. J Hydraul Eng 1997;123:125–36. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(125).
[53] Chabert J. Etude des affouillements autour des piles de ponts. Rep Natl Hydraul Lab, Chatou 1956.
[54] Norman VW. Scour at selected bridge sites in Alaska. vol. 32. US Geological Survey, Water Resources Division; 1975.
[55] Jain SC, Fischer EE. Scour around bridge piers at high Froude numbers,‖ Federal Highway Administration. US Dep Transp Washington, DC 1979.
[56] Chee RKW. Live-bed scour at bridge piers. Publ Auckl Univ New Zeal 1982.
[57] Chiew YM. Local scour at bridge piers 1984.
[58] Butch GK. Measurement of bridge scour at selected sites in New York, excluding Long Island. vol. 91. Department of the Interior, US Geological Survey; 1991.
[59] Wilson Jr K V. Scour at selected bridge sites in Mississippi. No. 94-4241. US Geological Survey; Earth Science Information Center, Open-File Reports; 1995.
[60] US Geological Survey. National bridge scour database, accessed April 15, 2014 2001. https://water.usgs.gov/osw/techniques/bs/BSDMS/index.htm.
[61] Sheppard DM, Miller W. Live-Bed Local Pier Scour Experiments. J Hydraul Eng 2006;132:635–42. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:7(635).
[62] Holnbeck SR. Investigation of Pier Scour in Coarse-Bed Streams in Montana, 2001 through 2007 2011.
[63] Kothyari UC. Scour around bridge piers. University of Roorkee; 1989.
[64] Daneshfaraz R, Bagherzadeh M, Esmaeeli R, Norouzi R, Abraham J. Study of the performance of support vector machine for predicting vertical drop hydraulic parameters in the presence of dual horizontal screens. Water Supply 2020;21:217–31. https://doi.org/10.2166/ws.2020.279.
[65] Dasineh M, Ghaderi A, Bagherzadeh M, Ahmadi M, Kuriqi A. Prediction of Hydraulic Jumps on a Triangular Bed Roughness Using Numerical Modeling and Soft Computing Methods. Mathematics 2021;9. https://doi.org/10.3390/math9233135.
[66] Willmott CJ. Some Comments on the Evaluation of Model Performance. Bull Am Meteorol Soc 1982;63:1309–13. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.
[67] Nash JE. River flow forecasting through conceptual models, I: A discussion of principles. J Hydrol 1970;10:398–409.
[68] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA data mining software. ACM SIGKDD Explor Newsl 2009;11:10–8. https://doi.org/10.1145/1656274.1656278.
[69] Butte NF, Wong WW, Adolph AL, Puyau MR, Vohra FA, Zakeri IF. Validation of Cross-Sectional Time Series and Multivariate Adaptive Regression Splines Models for the Prediction of Energy Expenditure in Children and Adolescents Using Doubly Labeled Water. J Nutr 2010;140:1516–23. https://doi.org/10.3945/jn.109.120162.
[70] Friedman JH, Roosen CB. An introduction to multivariate adaptive regression splines. Stat Methods Med Res 1995;4:197–217. https://doi.org/10.1177/096228029500400303.