[1] Sadeghpour F, Andayesh M. The constructs of site layout modeling: An overview. Can J Civ Eng 2015;42:199–212. https://doi.org/10.1139/cjce-2014-0303.
[2] Mawdesley MJ, Al-jibouri SH, Yang H. Genetic Algorithms for Construction Site Layout in Project Planning. J Constr Eng Manag 2002;128:418–26. https://doi.org/10.1061/(asce)0733-9364(2002)128:5(418).
[3] Kim M, Ryu H-G, Kim TW. A Typology Model of Temporary Facility Constraints for Automated Construction Site Layout Planning. Appl Sci 2021;11. https://doi.org/10.3390/app11031027.
[4] Pérez-Gosende P, Mula J, Díaz-Madroñero M. Facility layout planning. An extended literature review. Int J Prod Res 2021;59:3777–816. https://doi.org/10.1080/00207543.2021.1897176.
[5] Samaneh Z, Javier I. Current Trends in Construction Site Layout Planning. Constr Res Congr 2014 2023:1723–32. https://doi.org/doi:10.1061/9780784413517.176.
[6] Cheng M-Y, Lien L-C. A hybrid AI-based particle bee algorithm for facility layout optimization. Eng Comput 2012;28:57–69. https://doi.org/10.1007/s00366-011-0216-z.
[7] Sanad HM, Ammar MA, Ibrahim ME. Optimal Construction Site Layout Considering Safety and Environmental Aspects. J Constr Eng Manag 2008;134:536–44. https://doi.org/10.1061/(asce)0733-9364(2008)134:7(536).
[8] Kumar SS, Cheng JCP. A BIM-based automated site layout planning framework for congested construction sites. Autom Constr 2015;59:24–37. https://doi.org/10.1016/j.autcon.2015.07.008.
[9] Besbes M, Zolghadri M, Costa Affonso R, Masmoudi F, Haddar M. 3D facility layout problem. J Intell Manuf 2021;32:1065–90. https://doi.org/10.1007/s10845-020-01603-z.
[10] Kaveh A, Moghaddam MR. A hybrid WOA-CBO Algorithm for construction site layout planning problem. Sci Iran 2018;25:1094–104. https://doi.org/10.24200/sci.2017.4212.
[11] Dubey HM, Pandit M, Panigrahi BK. Ant lion optimization for short-term wind integrated hydrothermal power generation scheduling. Int J Electr Power Energy Syst 2016;83:158–74. https://doi.org/10.1016/j.ijepes.2016.03.057.
[12] Mirjalili S. The Ant Lion Optimizer. Adv Eng Softw 2015;83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010.
[13] Prayogo D, Sutanto JC, Suryo HE, Eric S. A Comparative Study on Bio-Inspired Algorithms in Layout Optimization of Construction Site Facilities. Civ Eng Dimens 2018;20:102–10. https://doi.org/10.9744/ced.20.2.102-110.
[14] Liu B, Yang B, Xiao J, Zhu D, Zhang B, Wang Z, et al. Review of optimization dynamically applied in the construction and the application potential of ICT. Sustain 2021;13. https://doi.org/10.3390/su13105478.
[15] Petroutsatou K, Apostolidis N, Zarkada A, Ntokou A. Dynamic planning of construction site for linear projects. Infrastructures 2021;6:1–22. https://doi.org/10.3390/infrastructures6020021.
[16] Javad M, Amiri T, Hematian M, Haghighi F, Barforooshi MJ. Site Layout Optimization and its Impact on the Cost of Construction Projects. Amirkabir J Civ Eng 2021;53:121–2.
[17] Atmaca M, Akcay C. Construction site layout planning using GIS overlay analysis—A case study. Arab J Geosci 2021;14:1–14. https://doi.org/10.1007/s12517-021-06793-1.
[18] Yang Y. Genetic Algorithm Based optimization of Construction Site Layout of Prefabricated Buildings. 2021 IEEE Asia-Pacific Conf. Image Process. Electron. Comput., 2021, p. 1254–7. https://doi.org/10.1109/IPEC51340.2021.9421175.
[19] Adrian AM, Utamima A, Wang K-J. A comparative study of GA, PSO and ACO for solving construction site layout optimization. KSCE J Civ Eng 2015;19:520–7. https://doi.org/10.1007/s12205-013-1467-6.
[20] Prayogo D. Using Biological Knowledge for Layout Optimization of Construction Site Temporary Facilities : A Case Study 2019;2001:0–4.
[21] Papadaki IN, Chassiakos AP. Multi-objective Construction Site Layout Planning Using Genetic Algorithms. Procedia Eng 2016;164:20–7. https://doi.org/10.1016/j.proeng.2016.11.587.
[22] Prayogo D, Cheng MY, Wu YW, Redi AANP, Yu VF, Persada SF, et al. A novel hybrid metaheuristic algorithm for optimization of construction management site layout planning. Algorithms 2020;13. https://doi.org/10.3390/A13050117.
[23] Kilic H, Yuzgec U, Karakuzu C. Improved antlion optimizer algorithm and its performance on neuro fuzzy inference system. Neural Netw World 2019;29:235–54. https://doi.org/10.14311/NNW.2019.29.016.
[24] Dong H, Xu Y, Li X, Yang Z, Zou C. An improved antlion optimizer with dynamic random walk and dynamic opposite learning. Knowledge-Based Syst 2021;216:106752. https://doi.org/10.1016/j.knosys.2021.106752.
[25] Dinkar SK, Deep K. Opposition based Laplacian Ant Lion Optimizer. J Comput Sci 2017;23:71–90. https://doi.org/10.1016/j.jocs.2017.10.007.
[26] Kılıç H, Yüzgeç U. Improved antlion optimization algorithm via tournament selection and its application to parallel machine scheduling. Comput Ind Eng 2019;132:166–86. https://doi.org/10.1016/j.cie.2019.04.029.
[27] Kılıç H, Yüzgeç U. Tournament selection based antlion optimization algorithm for solving quadratic assignment problem. Eng Sci Technol an Int J 2019;22:673–91. https://doi.org/10.1016/j.jestch.2018.11.013.
[28] Son PVH, Khoi LNQ. Adaptive opposition slime mold algorithm for time–cost–quality–safety trade-off for construction projects. Asian J Civ Eng 2023. https://doi.org/10.1007/s42107-023-00612-6.
[29] Pham VHS, Nguyen VN. Cement Transport Vehicle Routing with a Hybrid Sine Cosine Optimization Algorithm. Adv Civ Eng 2023;2023:2728039. https://doi.org/10.1155/2023/2728039.
[30] Son PVH, Nguyen Dang NT. Solving large-scale discrete time–cost trade-off problem using hybrid multi-verse optimizer model. Sci Rep 2023;13:1987. https://doi.org/10.1038/s41598-023-29050-9.
[31] Ngo N-T, Truong TTH, Truong N-S, Pham A-D, Huynh N-T, Pham TM, et al. Proposing a hybrid metaheuristic optimization algorithm and machine learning model for energy use forecast in non-residential buildings. Sci Rep 2022;12:1065. https://doi.org/10.1038/s41598-022-04923-7.
[32] Son PVH, Khoi LNQ. Application of slime mold algorithm to optimize time, cost and quality in construction projects. Int J Constr Manag 2023:1–12. https://doi.org/10.1080/15623599.2023.2174660.
[33] Pham Vu Hong S, Nguyen Thanh V. Application of artificial intelligence algorithm to optimize the design of water distribution system. Int J Constr Manag 2022:1–11. https://doi.org/10.1080/15623599.2022.2101593.
[34] Son PVH, Duy NHC, Dat PT. Optimization of Construction Material Cost through Logistics Planning Model of Dragonfly Algorithm — Particle Swarm Optimization. KSCE J Civ Eng 2021;25:2350–9. https://doi.org/10.1007/s12205-021-1427-5.
[35] Son PVH, Khoi LNQ. Utilizing artificial intelligence to solving time – cost – quality trade-off problem. Sci Rep 2022;12:20112. https://doi.org/10.1038/s41598-022-24668-7.
[36] Mani M, Bozorg-Haddad O, Chu X. Ant Lion Optimizer (ALO) Algorithm BT - Advanced Optimization by Nature-Inspired Algorithms. In: Bozorg-Haddad O, editor., Singapore: Springer Singapore; 2018, p. 105–16. https://doi.org/10.1007/978-981-10-5221-7_11.
[37] Fang Y, Li J. A review of tournament selection in genetic programming. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2010;6382 LNCS:181–92. https://doi.org/10.1007/978-3-642-16493-4_19.
[38] Mahdavi S, Rahnamayan S, Deb K. Opposition based learning: A literature review. Swarm Evol Comput 2018;39:1–23. https://doi.org/10.1016/j.swevo.2017.09.010.