[1] Frahm H. Device for damping vibrations of bodies. 989,958, 1911.
[2] Ormondroyd J. Theory of the dynamic vibration absorber. Trans ASME 1928;50:9–22.
[3] Hartog DJP. Mechanical vibrations. McGraw-Hill Book Company; 1956.
[4] Warburton GB, Ayorinde EO. Optimum absorber parameters for simple systems. Earthq Eng Struct Dyn 1980;8:197–217.
[5] Warburton GB. Optimum absorber parameters for various combinations of response and excitation parameters. Earthq Eng Struct Dyn 1982;10:381–401.
[6] Villaverde R, Koyama LA. Damped resonant appendages to increase inherent damping in buildings. Earthq Eng Struct Dyn 1993;22:491–507.
[7] Mashayekhi M, Harati M, Estekanchi HE. Development of an alternative PSO-based algorithm for simulation of endurance time excitation functions. Eng Reports 2019:1–15. https://doi.org/10.1002/eng2.12048.
[8] Ghasemof A, Mirtaheri M, Mohammadi RK, Mashayekhi MR. Multi-objective optimal design of steel MRF buildings based on life-cycle cost using a swift algorithm. Structures, vol. 34, Elsevier; 2021, p. 4041–59.
[9] Mashayekhi M, Estekanchi HE, Vafai H. Optimal objective function for simulating endurance time excitations. Sci Iran 2020;27:1728–39. https://doi.org/10.24200/sci.2018.5388.1244.
[10] Holland J. Adaptation in natural and artificial systems 1975.
[11] Golberg DE. Genetic algorithms in search, optimization, and machine learning. Addion Wesley 1989;1989:36.
[12] Kennedy J, Eberhart R. Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. IV, 1942–1948., vol. 4, IEEE; 1995, p. 1942–8. https://doi.org/10.1109/ICNN.1995.488968.
[13] Zong Woo Geem, Joong Hoon Kim, Loganathan GV. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001;76:60–8. https://doi.org/10.1177/003754970107600201.
[14] Kaveh A, Talatahari S. A novel heuristic optimization method: charged system search. Acta Mech 2010;213:267–89.
[15] Babaei M, Taghaddosi N, Seraji N. Optimal Design of MR Dampers Using NSGA-II Algorithm. J Soft Comput Civ Eng 2023;7:72–92.
[16] Ghiasi V, Alborzi Moghadam M, Koushki M. Optimization of Invasive Weed for Optimal Dimensions of Concrete Gravity Dams. J Soft Comput Civ Eng 2022;6:95–111. https://doi.org/10.22115/scce.2022.340697.1432.
[17] Hadi MNS, Arfiadi Y. Optimum design of absorber for MDOF structures. J Struct Eng 1998;124:1272–80.
[18] Lee C-L, Chen Y-T, Chung L-L, Wang Y-P. Optimal design theories and applications of tuned mass dampers. Eng Struct 2006;28:43–53.
[19] Bekdaş G, Nigdeli SM. Estimating optimum parameters of tuned mass dampers using harmony search. Eng Struct 2011;33:2716–23.
[20] Araz O, Elias S, Kablan F. Seismic-induced vibration control of a multi-story building with double tuned mass dampers considering soil-structure interaction. Soil Dyn Earthq Eng 2023;166:107765.
[21] Chowdhury S, Banerjee A, Adhikari S. The optimal design of dynamic systems with negative stiffness inertial amplifier tuned mass dampers. Appl Math Model 2023;114:694–721.
[22] Khatibinia M, Akbari S, Yazdani H, Gharehbaghi S. Damage-based optimal control of steel moment-resisting frames equipped with tuned mass dampers. J Vib Control 2023:10775463221149462.
[23] Domizio M, Garrido H, Ambrosini D. Single and multiple TMD optimization to control seismic response of nonlinear structures. Eng Struct 2022;252:113667.
[24] Chopra AK. Dynamics of structures: Theory and applications to earthquake engineering. 4 edition. Pearson; 1995.
[25] Mirjalili S, Lewis A. The Whale Optimization Algorithm. Adv Eng Softw 2016;95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008.
[26] Kaveh A, Mohammadi S, Hosseini OK, Keyhani A, Kalatjari VR. Optimum parameters of tuned mass dampers for seismic applications using charged system search. Iran J Sci Technol Trans Civ Eng 2015;39:21.
[27] FEMA P 695. Quantification of building seismic performance factors 2009.
[28] Sadek F, Mohraz B, Taylor AW, Chung RM. A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq Eng Struct Dyn 1997;26:617–35.