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The gabion weirs serve the same functions that their 

counterpart impervious weirs do. However, they have the 

advantage of being eco-friendly, more stable, and 

economical in low to medium-head cases. Dissolved oxygen 

is one of the major determinants for the assessment of the 

purity of water. The purpose of the present work is to 

illustrate the comparison of multiple linear regression 

(MLR), neural network (NN), neuro-fuzzy system (NFS), 

deep neural network (DNN), and reported empirical models 

for the prediction of gabion weir aeration performance 

efficiency (APE20) with experimental results which are 

collected from the laboratory test. The NFS with four shaped 

membership functions, NN, DNN, MLR, and existing 

empirical models, are generated with the same input 

parameters, and their potentials are assessed to statistical 

appraisal indices. The results show that the DNN with the 

highest value of R
2
 (0.935) and NSE (0.934) and having the 

least errors in validating phase is the outperforming proposed 

model in the prediction of the APE20, which the NN model 

follows with R
2
 (0.917) and NSE (0.917). However, except 

trapezoidal shaped NFS model with R
2
 (0.873) and NSE 

(0.852) and MLR with R
2
 (0.905) and NSE (0.897), the 

remaining models of NFS-based and empirical relations 

could not perform better in validating phase. The sensitivity 

performance test is too conducted to find the relative 

relevance of the input parameter on the results of the APE20, 

where discharge per unit width (q) is found to be the most 

significant parameter, followed by the drop height (H0). 
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1. Introduction 

Gabion weirs are the fluidic devices used in retaining and diverting water and for discharge 

measurement by maintaining the hygienic environment and ecological balance in the river 

system because silts and organic materials can go downstream through their pervious body, help 

in the minimization of siltation in the upstream. Besides, bacteria living between the gabion 

particles also help decompose organic materials. 

The dissolved oxygen (D.O.) level in water for a river life system has been a significant 

parameter for assessing water quality. The D.O. level in water is often higher in rural streams 

because these streams get fewer impurities compared to urban streams. In case the D.O. level in 

urban rivers, ponds, lagoons, etc., rises, aerobic activities are encouraged, improving the 

condition of local aquatic lives. Therefore, rejuvenating the river ecosystems is significant work 

[1]. Oxygen solubility in water depends on impurity, temperature, and pressure, as impure water 

has lesser oxygen than healthy water. Oxygen from the atmosphere dissolves in the water bodies. 

Water takes oxygen when streams and rivers pass through rocks. Activities like aeration, 

photosynthesis and many more constantly change the D.O. levels. 

The quality of surface water should include recent technical results about contamination and its 

consequence on individual conditions and water life. Surface waters are utilized for multi-

purposes, including water supplies, navigation, power generation, fishing cultures, and many 

more. In case of a fall of D.O. level in the water, even below the normal level of 4 ppm, the 

maintenance can be made out with fluidic devices like Parshall flumes, spillways, and weirs. 

Ecological standard properties for water surfaces differ depending upon their uses and from 

country to country. Therefore, the D.O. level is an essential determinant for the general quality 

measurement of river/canal water. Gabion weirs, spillways, and other hydraulic structures can 

enhance the D.O. level by creating vortexes, jumps, and trapping air from the atmosphere into 

the water. Aeration is usually utilized to enhance the D.O. level in water bodies [2]. In energy 

dissipation under sluice gate and other fluidic devices, the air is too trapped in the water flow. 

Therefore, natural aeration occurs, and the D.O. level in water is subsequently enhanced. Since 

water passes over hydraulic structures, water sucks oxygen from the air. This development has 

ecological effects on waterways and hydraulic devices, for instance, the water life may come 

under strain when the D.O. level is dipped below a certain level, and water may have an 

offensive smell. Numerous analyses have studied the standard concentration for water quality 

concerning D.O. levels. A broad variation of D.O. levels decides normal concentrations for water 

quality. Current findings [3–7] suggest the concentration of oxygen transfer efficiency of fluidic 

devices required to keep up and increase water quality. Chu et al. [1] detailed that oxygen 

transfer through fluidic devices is an environmental-friendly, optimal technique for correcting 

D.O. concentration in contaminated water bodies. 

Fluidic devices significantly impact dissolved oxygen concentration levels in water bodies, even 

when the water just touches the fluidic device for a short period. The oxygen aeration efficacy of 
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fluidic devices has been examined by various investigators [1,8–13], and many investigators 

[8,9] have specified that hydraulic structures cannot only be utilized as energy dissipators but 

also be used efficiently for the natural aeration of the river system. Many works have been 

carried out on effectively utilizing fluidic devices in oxygen aeration transfer [8–15]. A cascade 

is effective in surface water aeration in events of enough drop height. Various weirs can be 

utilized for aeration purposes, and in these circumstances, the aeration process has been effective 

and economical as it does not require any energy. Several pressure arrangements like venturi and 

conduit devices are used for surface water oxygenation, but in these cases, oxygenation would 

incur money due to the energy needed for their operations. 

Nowadays, soft computing techniques have wide applications in the discipline and domain of 

engineering. Tiwari and Sihag [12] studied the potential performance of ANN, FL, and ANFIS in 

predicting the aeration of the Parshall flume. Kumar et al. [16] investigated the effect of jet 

parameters in the aeration of water in the tank and the oxygen transfer coefficient (Kla). An 

empirical relation has been derived. Besides ANN, GRNN, MARS, and ANFIS are utilized to 

estimate the oxygen transfer coefficient. Kumar et al. [17] utilized kernel functions to predict the 

Kla for a hollow jet. Modeling tools ANN and empirical equations are used by Kumar et al. [17] 

in estimating the Kla of pressure water jets. Aeration study and modeling methods are used to 

predict oxygen transfer of hollow jet aerators by Kumar et al. [18]. Bandana et al. [19] 

investigated soft computing tools in predicting penetration depth for hollow jets. Sattar et al. [20] 

studied the stepped weir and estimated its aeration efficiency with A.I. models. Gerger et al. [2] 

applied machine learning models to assess water's oxygenation at chutes. Sharafati et al. [21] 

evaluated the performance of sediment ejectors with integrated ANFIS models. Gameson [22], 

Markovsky and Kobus [23], and Nakasone [24] added more in the field of oxygen transfer at 

hydraulic devices. Some more significant parameters, like penetration depth by bubbles, 

residence time, drop height, fall velocity, etc., also affect the aeration process [25,26]. Preul and 

Holler [27] studied oxygen transfer at the low dam, while Markofsky and Kobus [23] discussed 

the re-oxygenation aspect at the weir. However, Nakasone [24] worked on oxygen transfer at 

both fluidic devices of cascade and weir, but Watson et al. [28] made a study for aeration 

assessment of the low drop weir. Luxmi et al. [29], using test data sets for the assessment 

indicators of RMSE and CC, compare the accuracy of the neuro-fuzzy, neural network, and 

Gaussian process regression models in estimating the gabion weir oxygen aeration efficiency. A 

developed model has been used to study the aeration performance of the Montana Flume [30] 

and the prediction of Adaptive Neuro-Fuzzy Inference System (ANFIS), Multilinear Regression 

(MLR), and Multi Non-linear Regression (MNLR). Tiwari et al. [31] applied multi-non-linear 

regression (MNLR), adaptive neuro-fuzzy inference system (ANFIS), and artificial neural 

network (ANN) models in the estimation of Montana flume aeration. The aeration efficiency of 

stepped gabion weirs is computed using Random Forest (RF) and Artificial Neural Network 

(ANN). By conducting experiments in a laboratory flume and input parameters such as mean 

size, porosity, discharge, and drop height, the actual aeration efficiency is determined [32]. The 

current paper [33] examines the performance of the application of three soft computing 
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techniques, including the deep neural network (DNN), backpropagation neural network (BPNN), 

and adaptive neuro-fuzzy inference system (ANFIS), to forecast the gabion spillways' oxygen 

aeration efficiency (OAE20). In addition, past studies and conventional equations were used to 

predict OAE20 of the gabion spillways, including multivariate linear and nonlinear regressions 

(MVLR and MVNLR). 

In order to frame the correlations for predicting the values of volumetric oxygen transfer 

coefficient (KLa) experimental test data from a variety of configurations of plunging hollow jet 

aerators are investigated, with the jet variables (discharge, jet thickness, jet velocity, jet length, 

depth of water pool, pipe outlet diameter, number of jets). The neuro-fuzzy (ANFIS), support 

vector regression (SVM), artificial neural network (ANN), M5 tree (M5), and random forests 

(RF) approaches are compared with the nonlinear regression modeling equations obtained from 

dimensional and nondimensional data sets [34]. The machine learning techniques [35] were used 

to estimate the oxygen aeration performance efficiency (OAPE20) of the gabion spillway by 

using the gradient boosting machine (GBM), neural network (NN), and deep neural network 

(DNN). Along with the previous models, conventional equations developed by multivariable 

linear regression (MLR) and multivariable nonlinear regression (MNLR) are also used to 

estimate the OAPE20 of the gabion spillways. 

The data mining algorithms [36], backpropagation neural network (BPNN), adaptive neuro-fuzzy 

inference system (ANFIS), and multi-variant linear and nonlinear regression (MVLR and 

MVNLR) are developed with experimental data to estimate the gabion oxygen transfer efficiency 

and their results are compared. The potential for estimating aeration efficiency (E20) at labyrinth 

weirs using the M5P model tree (M5P), support vector regression machine (SVM), and random 

forest (RF) methods [37]. Evolutionary polynomial regression models [38] developed with an 

exponential function were selected as the optimal models. According to the R
2
 coefficient, the 

levels of precision of the model in predicting collapse settlement using training, testing, and all 

data were 0.9759, 0.9759, and 0.9759, respectively, and the precision levels in predicting the 

coefficient of stress release are 0.9833, 0.9820, and 0.9833, respectively. The purpose of the 

study [39] is to develop and assess machine learning-based prediction models for estimating the 

dynamic modulus of hot mix asphalt using ANNs, GP, and the Combinatorial Group Method of 

Data Handling (GMDH-Combi). 

1.1 Aeration at fluidic structures 

Fluidic structures can generate cross-flow, resulting in tiny bubbles that are moved up to the 

whole flow and, consequently, a surge in D.O. concentration. In a solitary fluidic device, 

oxygenation equivalent to the volume that would take place over many miles in the water bodies 

could be noticed because such a device is highly cross-current, producing an enhanced interfacial 

rejuvenation. 
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Weir is constructed to operate the water supply, discharge measurement, or divert the water. 

Water plunging over and through the weir pulls and sucks air as it drops into the water pool. 

Exceptional contributions to the aeration efficiency of hydraulic devices are made by Gameson 

[22], Markovsky and Kobus [23], and Nakasone [24]. Trilateral weirs perform better than 

rectangular weirs, but among the trilateral weirs, multiple triangular weirs give better results than 

single weirs. Drop height, roughness, and fall velocity are important parameters that affect the 

aeration besides residence time, and air bubbles' penetration depth also controls the aeration 

process [25,26]. 

1.2. Significance, objective, and novelty 

Gabion weir provides an alternate design that can be utilized for river training, flash flood 

control, and rapid dissipation of energy. It is also used to slow down the runoff velocity and 

stabilize slopes. 

There are many aspects to the novelty and objective of the current study.; the literature review 

indicates a recognition that no prior work has been identified with the machine learning (ML) 

methods to predict gabion weir aeration performance efficiency (APE20) that too by applying 

neural network (NN), neuro-fuzzy system (NFS), deep neural network (DNN) and multiple 

linear regression (MLR) to identify and fill the gap-grey area by generating and verifying 

algorithms for the APE20 of the gabion weir. Initially, the estimation of the APE20 of the gabion 

weir is outlined in the present study by performing the laboratory test by varying gabion weir 

height, gabion material mean particle size, gabion weir length, plunging drop height, and 

discharge per unit width of the gabion weir. Secondly, the APE20 of the gabion weir is developed, 

computed, and compared with proposed soft computing algorithms employing experimental data. 

The prediction ability of the models is evaluated in respect of performance metrics. Additionally, 

the predicted results of the APE20 of the gabion weir through NFS, NN, DNN, MLR, and existing 

proposed mathematical models are compared amongst themselves to have the best-performing 

model. Finally, sensitivity investigation was used to determine the comparative relevance of 

input variables on the APE20 results of the gabion weir. 

1.3. The basic definition of aeration efficiency 

The aeration performance efficiency (APE) is described below: 

APE= 1 −
1

DR
=

Idstream− Iustream

ISaturated  − Idstream
 

Where, DR= Deficit Ratio = 
ISaturated− Iustream

ISaturated  − Idstream
 

Idstream and Iustream stand for downstream and upstream intensity of the D.O., respectively, and 

aeration performance efficiency, APE, for any water temperature. Usually, the temperature 

correction factor is calculated by the equation given below 
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1 − APE20 = 1 − APE1 (1.0+0.02103(Temprature−20)+8.261x10−5(Temperature−20)2)⁄  

In which, APE20 is the aeration performance efficiency at 20°C. 

1.4. Proposed mathematical and empirical models 

The aeration performance efficiency of the gabion weir depends on numerous vital 

characteristics that trigger the aeration process. The aeration performance efficiency (APE20) 

equations of the traditional weir are accessible in the text, and the comparison can be made with 

the current analysis, and causes may be attributed that primarily both act on the concept of 

turbulent productions, which brings about water to suck atmospheric air. Therefore, traditional 

mathematical equations are evaluated in the present study, and a comparison is made with the 

dataset. The estimation potential of these available mathematical equations in the literature is 

further compared with NN, NFS, DNN, and MLR models. For the mathematical equations 

available in the literature, the current work can be utilized to evaluate the ability of these 

equations and which are enlisted in Table 1. 

Table 1 

Brief details of the proposed mathematical relations. 

No. Researcher Empirical mathematical relations Observations 

1 Preul and Holler [29] APE20=1 −
1

1+666Fr
−3.33 

Oxygenation at 

the low dam 

2 Markofsky and Kobus [30] APE20 = 1 − [
1

1 + 0.1Fr
1.2

]
1.115

 
Re-oxygenation 

study at the weir 

3 Nakasone [31] APE20=1-e(−0.0785H0
1.31q0.428hw

0.310) 
Aeration at weirs 

and cascades 

4 Watson et al. [32] APE20 = 1 − [
1

1 + 0.001 Fr
2Re

0.32 (
hw

H0
)

0.7] 

Aeration 

assessment of the 

low drop weir 

5 MLR 

𝐴𝑃𝐸20 = 0.022𝑞 + 0.003𝑃 + 0.0043 𝑑50

− 0.0012𝑛 + 0.0018𝐻𝑜

− 0.116 

Present study 

 

Where, 𝐻𝑜=Drop height, ℎ𝑤 is upstream head over the crest, q is discharge per unit width, 𝐹𝑟 is 

Froude number, 𝑑50 is the mean size of gabion particles, n is the porosity, P is the height of the 

gabion weir, and 𝑅𝑒 is Reynolds number. 

2. Materials and methods 

2.1. Experimentation and methodology 

A tilting flume experimental setup was located in the water resources laboratory of the National 

Institute of Technology, Kurukshetra (Haryana), India. The tilting channel measured 4.0 m, 0.25 
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m, and 0.3 m in length, breadth, and depth, respectively. As seen in Figure 1, the flume's 

sidewalls were made of transparent, ten-millimeter-thick acrylic plexiglass, and the bottom side 

was made of ten-millimeter-thick steel iron that was supported by a jack. The highest capacity 

centrifugal pump used to transfer water from the aeration tank/receiving tank to the flume has a 

capacity of 6 l/s. The closed re-circulating system was used to ensure that aeration of the water 

occurred only during the drop. The test gabion weir, which was installed at the end of the 

channel, water flow passed through or over the test gabion weir. The flow depth and flow volume 

rate of water in the flume were measured using an electromagnetic digital pointer gauge and a 

digital flow metre. For each reading, the receiving pool's water depth is maintained at a level that 

is greater than or no less than 80% of the drop height [25]. The D.O. was measured using the 

azide modification method. 

For evaluating the quantity of aeration performance efficiency (APE20) of water in the aeration 

tank for a particular gabion weir, the tank was filled with a fixed amount of supply water. The 

D.O. potential of the water in the tank was reduced to approximately 1.5 mg/l [10,11] by mixing 

a measured amount of Na2SO3 with CoCl2, and some water was taken from various levels of the 

water tank to calculate the initial D.O. intensity (Iupst). Subsequently, the experimental test was 

commenced for a recognized period. The test device was run for a specific period of time so that 

the aeration tank water D.O. level should be below the maximum saturation intensity (Isaturated) 

at the experiment temperature, ToC. The final dissolved oxygen intensity (Idownst) was then 

calculated using the azide modification technique. Using a thermometer, the water temperature in 

the aeration tank was recorded during the test. The method was repeated for numerous runs for 

tests by using three traditional weirs and twelve gabion weirs. The value of APE20 was then 

estimated. The test gabion weir was characterized by 15 exchangeable weirs (shown in Table 2) 

with varying flow rates, sizes of gabion particles, porosity, the height of weirs as well as drop 

height, and 195 data patterns of gabion weir oxygen performance efficiency were taken, and 

some of the readings were to cross-check the credentials of the patterns, some observations have 

also been made more than once. 

 
Fig. 1. Schematized view of the test setup. 
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Table 2 

Model configuration. 

 

2.2 Framework of proposed soft computing techniques 

This section presents descriptions of the conventional neuro-fuzzy system (NFS) technique. Next 

is the neural network (NN) technique, followed by a deep neural network (DNN). 

2.2.1. Neuro-Fuzzy System (NFS) 

The NFS is a soft and intelligent algorithm that utilizes and integrates an artificial neural network 

(ANN) learning ability with a fuzzy interference system (FIS) reasoning capability. So the power 

to unite the linguistic potential of the FIS with the numerical ability of an ANN, the NFS, has 

been proven to be a potent tool in estimating many advanced engineering processes. It was first 

coined by Jang [40]. The NFS has fast learning capacity and is frequently applied in 

classification and regression problems. It has the benefit of permitting the fuzzy rules extraction 

from the numeric dataset and flexibly creates a rules base. Besides, it can modify the complex 

adaptation of human intellect to fuzzy rules. Sugeno-type FIS, which is more prevalent, is 

utilized in the study. Here, modeling of training data is used by combining gradient search with 

least square methods. The rules are obtained by subtractive clustering of data. The input 

parameter is related to the output by a membership function. Practically, numerous membership 

functions (M.F.s) are utilized together with trapezoidal-shaped, triangular-shaped, Gaussian-

shaped, etc. 

Let the fuzzy inference system has two inputs, ‘s’ and ‘t,' and one output, 'fn
’ 
a first-order Sugeno 

type fuzzy has the following rules: 

Procedure I: if μ(s) is A1 and μ(t) is B1 

then fni= pi s+ qi t+ ri (1) 

Procedure II: if μ(s) is A2 and μ(t) is B2 

then fnii= pii s+ qii t+ rii (2) 

A1, B1, A2, and B2 are M.F.s for s and t inputs. 

The general view of 5-layered ANFIS with two input variables is presented in Figure.3(a). 

Parameter Symbol Value 
Range 

Units 
From To 

Weir height P 10,15,20 10 20 cm 

Weir length L 60 60 60 cm 

Weir width B 25 25 25 cm 

Gabion particle mean size d50 00, 10, 22.4, 31.5, 53 00 53 mm 

Porosity n 

00, 35.63, 37.31, 38.43, 38.52 

00, 41.99, 44.5, 46.21, 44.92 

00, 43.28, 44.82, 43.73, 45.9 

00 45.90 % 
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2.2.2. Neural Network (NN) 

The NN consists of artificial neurons which are hypothetically inspired by biological nervous 

systems. A neural network is a regression and classification model with neurons in each layer 

similar to be arranged neurons in the brain, and it can learn from data patterns. It is a famous soft 

computing technique widely applied to water resources problems. The neurons are assigned 

weight and bias, which get adjusted during training. These weights and biases represent the 

strength of neurons. The network consists of input having nodes equal to the number of input 

variables, one or more hidden layers where processing takes place, and an output layer. The input 

is multiplied by a weight (w), and all the weighted inputs are added together with a bias (b). The 

sum is pushed through an activation function, and output is obtained. Many activation functions 

are available, like log-sigmoid, tan-sigmoid, linear, et cetera. The network trains the data fed as 

input using training functions like Levenberg-Marquardt (trainlm), Bayesian regularization, 

BFGS Quasi-newton (trainbfg), et cetera. The gradient descent algorithm is also used there to 

optimize the input parameter. It performs computation backward (backpropagation) and updates 

weight and biases where the performance function changes rapidly to achieve the target value. 

The transfer functions used in the present study are the log-sigmoid transfer function (logsig) 

activation function: Output is calculated for a given input to that layer, and generated output lies 

between 0 and 1. This function is mainly used in multilayer networks. 

In contrast, the hyperbolic tangent sigmoid transfer function (tansig) is a good choice where the 

shape of the function is not essential and only speed matters and is applied for pattern 

recognition problems. It is a neural transfer function and is used to calculate the output of a layer 

from net input to that layer, and output is generated between -1 and 1. The linear transfer 

function (purelin) is a neural transfer function that converts net input to the output for a layer. 

This function is mostly used in fitting problems having output between -1 and 1. Figure 2(b) 

shows a general view of the three-layered neural network architecture. 

2.2.3. Deep neural network (DNN) 

A deep neural network (DNN) is an advanced artificial network that has transformed industrial 

scenarios, day-to-day lives, and several engineering disciplines in the past few years. However, 

its implementation in civil engineering is gradual. A DNN is a typical neural network (NN) plus 

depth. The depth of an NN is either measured by the presence of a massive number of nodes in 

the hidden layer (H.L.), decided by the number of H.L.s, or marked by hidden layers with a large 

number of nodes. But no threshold and single yardstick can say when NN can be recognized as 

deep. Conventional NN has two popular recognized nonlinear activation functions; sigmoid and 

hyperbolic tangent. These activation functions enable NN to learn the complexity present in the 

dataset. But two limitations of saturation and sensitivity [41,42] lie with sigmoid and hyperbolic 

tangent activation functions. 
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a. NFS structure 

 
b. NN structure 

 
c. DNN structure 

Fig. 2. Generalized structural views of (a) NFS and (b) NN (c) DNN. 

The RELU (rectified linear activation) function is the piecewise collinear function and has 

brought a substantial algorithmic variation over the last ten years in the device of the DNN [43]. 

The RELU function is the most accepted function utilized in the DL, which itself outputs the 
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input value when it is found to be positive; otherwise, the output could be zero by default. Very 

easy to train and gives improved performing potential compared to alternate activation functions 

when applied with the DNN. The RELU function is described by F(Nk) = Max(0, N𝐾). With a 

limited training dataset, the DNN may result in overfitting, consequently generating low 

performance in testing. To control the overfitting problem, various regularization techniques are 

utilized to increase the DNN model operation [41]. Regularization methods make minor changes 

in the learning steps to aid the model in generalization. To overcome the overfitting problem, a 

dropout layer introduction concept for the design of DNN was proposed by [42] to improve their 

generalization potential. A regularization technique, dropout, is also utilized for improving the 

DNN model working by pulling out a node arbitrarily, either from a hidden or visible layer, along 

with incoming /outgoing networks. This is attained by arbitrarily putting the neurons' weights to 

nil [43]. Figure 2(c) shows a general view of two hidden layered deep neural network 

architectures. The flow chart of predictive modeling is shown in Figure 3. 

 
Fig. 3. Flow chart of predictive modeling. 



54 N. K. Tiwari et al./ Journal of Soft Computing in Civil Engineering 7-2 (2023) 43-73  

 

3. Results and discussion 

3.1. Model Evaluator metrics 

The coefficient of determination (R2), Nash-Sutcliffe model efficiency coefficient (NSE), mean 

absolute error (MAE), and root mean square error (RMSE) values are computed using calibration 

and validation datasets to test the potential of various applied modeling skills in predicting the 

gabion weir aeration performance efficiency. 

CC =  
n ∑ APE20actAPE20prd– (∑ AE20act)(∑ APE20prd)n

i=1
n
i=1

n
i=1

√n(∑ APE20act
2) − (∑ APE20prd)n

i=1
2n

i=1 √n(∑ APE20prd
2) − (∑ APE20prd)n

i=1
2n

i=1

 

NSE= 1 −
∑ (𝐴𝑃𝐸20𝑎𝑐𝑡 −𝐴𝑃𝐸20𝑝𝑟𝑑)2𝑛

𝑖=1

∑ 𝐴𝑃𝐸20𝑎𝑐𝑡−𝐴𝑃𝐸20̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑎𝑐𝑡)𝑛
𝑖=1 (

2, R
2 

is the coefficient of determination which is the square of 

a correlation coefficient, CC. The root mean square error (RMSE) and mean absolute error is 

defined below. 

RMSE = √
1

n
∑ (APE20act − APE20prd)2n

i=1    and   MAE=
1

𝑛
∑ |𝐴𝑃𝐸20𝑝𝑟𝑑 − 𝐴𝑃𝐸20𝑎𝑐𝑡|𝑛

𝑖=1  

In which APE20act = Actual  APE20 values, APE20prd = Predictated  APE20 values, 

𝐴𝑃𝐸 20𝑎𝑐𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = Average of actual values, and n = number of experimental patterns. 

3.2. Description of aeration database 

In the present study, datasets are collected from conducting laboratory tests. To generate the 

models, a total of 195 laboratory patterns are bifurcated randomly into two groups; 72 % of 

patterns (141-pattern) are selected as calibration patterns for the training of proposed models, 

while the remainder patterns, 28 % (54-pattern) are kept invisible to the machine learning 

/empirical models during models’ generation process for a validation purpose (testing). The 

collected patterns include discharge per unit width (q), the height of the weir (P), mean gabion 

particle size (d50), porosity (n), and drop height (Ho) as input. At the same time, aeration 

performance efficiency (APE20) is taken as output. The summary statistical details of the pattern 

are enlisted in Table 3. 

Table 3 

Summary statistical details of calibration and validation patterns . 

Variable Units 
Training Testing 

Range Mean STDV Range Mean STDV 

APE20 - 0.013-0.611 0.321 0.1498 0.039-0.593 0.326 0.137 

q l/s/m 3.20-20.40 14.3 5.9099 3.2-20.4 14.53 0.844 

P cm 10.0-20.0 14.96 4.1049 10-20 15.08 4.099 

d50 mm 0-5.3 2.34 1.8288 0-5.3 2.33 1.856 

n % 0-46.21 33.76 17.1526 0-46.21 33.17 17.373 

Ho cm 46.25-76.08 33.76 7.4751 44.71-75.08 64.74 5.964 
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3.3. Specifications of NFS, NN, and DNN 

Effective application of NFS, NN, and DNN needs optimal tuning parameters, performed by 

numerous trial and error steps on the calibrated and corresponding validated datasets to achieve 

desired outputs. The accuracy of each trial cycle is assessed in terms of four statistical 

performance indices, R
2
, NSE, MAE

, 
and RMSE. A smaller value of RMSE and MAE reflects a 

better estimation of results by the proposed models. In contrast, a more significant value of R
2 

and NSE implies a stronger relationship with an experimental dataset for the proposed model 

predictions. The optimized values of user-defined tuning parameters are shown in Table 4. 

Table 4 

Optimal specifications of (a) NFS, (b) NN, and (c) DNN. 

(a) NFS input 

mf number 
Input M.F. shape F.S. Optimization Output mf type Epochs 

3-3-3-6-2 Tri, Trap, Gbell, Gauss Sugeno hybrid Linear/constant 3 

      

(b) NN -

topology 

Training algorithm 

 

The hidden 

layer transfer 

function 

Output activation 

function 
 Epochs 

5- 8 -1 trainlm logsig
 

tansig  2000 

      

(c) DNN- 

topology 
Dropout ratio epsilon 

Output activation 

function 
rho 

Epochs 

 

5- 2X20-1 Input =0.05; hidden=0.2 1e
-9

 ReLU 0.95 8241 

 

3.4. Results of NFS 

The current work employs a neuro-fuzzy system (NFS) to model relations amongst inputs and 

output datasets. A Sugeno method is adopted for preparing the model. No, fixed rules exist for 

creating NFS models [44]. Four shaped membership functions (M.F.s), i.e., the function of 

triangular membership (TRIAN), the function of trapezoidal membership (TRAPZ), a 

combination of two gaussian membership functions (GAUS2MF), and Gaussian bell 

membership function (GAUS BELL) are utilized for input in NFS model. A hybrid learning 

process is used to train the NFS model, and each epoch combines a forward and a backward pass 

in the NFS training system. In the forward pass, a calibrating group of input data points is given 

to the NFS, node output is planned on a layer-by-layer basis, and rule resulting parameters are 

understood. An original network output vector x1 is accepted when the resultant parameters are 

obtained. The error vector (Y) is computed as (Y=x1−x2) as x2 is the observed output, and the 

procedure concludes at the required epochs. Designed optimal user specifications of NFS models 

are shown in Table 4 (a). In the study, the number of M.F.s is endorsed one after the other to 

every input and output variable, and then the NFS model is organized and verified. Outcomes of 

the NFS model to predict the APE20 over gabion weir are shown in Fig. 4. and Table 5. 
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(a) 

 
(b) 

Fig. 4. (a) Performance of NFS for data pattern validation and calibration (b) Actual and predicted APE20 

with ANFIS for calibrating and validating period. 
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From carefully examining Figure 4 (a), it is evident that all values predicted by proposed NFS 

models by and large lie near to absolute line in the case of calibration, but in the case of 

validation, predicted values by GAUS BELL_ NFS model are a relatively little bit away from the 

absolute line in comparison of other proposed NFS based models. However, the predicted values 

by TRAPZ _NFS model are near the absolute line. The predicted values peruse a similar case in 

Fig. 4 (b) by the TRAPZ _NFS model are very near to the actual values of APE20 both in 

calibrating and validating period compared to other proposed NFS-based models. This 

contention is further buttressed by going through Table 5. The best result is estimated by TRAPZ 

_NFS model as the values of R
2
 =0.873 and NSE=0.852 are the highest while the error values as 

RMSE=0.055 and MAE=0.039 are the lowest and worse performing model GAUS BELL_NFS 

has been identified with the lowest value of R
2
 =0. 619 and NSE=-0.034 and the highest values 

of RMSE=0.164 and MAE=0. 081. So, TRAPZ_NFS is performing well, but the remaining 

proposed NFS-based models are not performing well. 

Table 5 

Values of statistical performance metrics of A.I. models. 

Models 
Calibrating Validating 

R
2 

NSE RMSE MAE R
2
 NSE RMSE MAE 

TRIAN _NFS 0.975 0.976 0.023 0.013 0.625 0.294 0.119 0.068 

TRAPZ_NFS 0.943 0.967 0.035 0.024 0.873 0.852 0.055 0.039 

GAUS BELL_NFS 0.976 0.975 0.022 0.013 0. 619 -0.034 0.164 0.081 

GAUS 2MF_NFS 0.966 0.943 0.027 0.017 0.626 0.084 0.136 0.069 

NN 0.927 0.924 0.040 0.029 0.917 0.917 0.041 0.031 

DNN 0.945 0.945 0.342 0.025 0.935 0.934 0.036 0.025 
 

3.5. Results of NN 

The NN model has been developed by using the feed-forward neural network. The feed-forward 

neural network has a connection between input and other layers. Since it consists of three layers 

of input, hidden, and output layers, it is called a multilayer perceptron. Here, the NN model is 

generated in three steps: data preparation for calibrating, the second requires several variations 

and combinations for optimum network topology, and the last is undoubtedly validating. The 

neurons in the hidden layers are chosen by the hit and trial process, and the best structure is one 

that offers values which is very close to the required targets, i.e., after estimating the error, the 

error is fed back to the input layer, and the process is repeated till errors become minimum. The 

optimum established network has five nodes in the input layer, a hidden layer with eight nodes, 

and an output layer having one node. Two functions in the training algorithm determine the wave 

signals that are processed by neurons. The training algorithm for the data set used is Polak-

Ribiere conjugate gradient (trainlm) as the training function. In contrast, logsig, a transfer 

function, is used for the hidden layer, and tansig, the transfer function for the output layer, 

because this combination gives better and optimum results than other transfer functions. The NN 

optimal specification is enlisted in Table 4 (b). Further, the performance of the NN model has 

been depicted in Fig. 5(a) for calibrating and validating data points, and perusal of this figure 

suggests that all predicted results lie near to absolute line in both calibrating and validating. 

Besides this contention is further substantiated by carefully examining Fig. 5 (b). Additionally, 

Table 5 also suggests that the NN is performing well. 
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(a) 

 
(b) 

Fig. 5. (a) Performance of NN for data pattern validation and calibration, (b) APE20 measured actual and 

predicted using ANFIS during calibration and validation. 
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3.6. Results of DNN 

The model is developed with different primary parameters using DNN. Among them, the 

optimum number of epochs have been identified for estimating the values of APE20 of the gabion 

weir with minimum error and computation cost. The optimal values of other primary parameters 

are found to be as values of N folds 5, fold assignment is taken as Modulo, the encoding scheme 

is chosen as One Hotinternal, and distribution has been found as Gaussian. While remaining 

optimized parameters are shown in Table 4 (c). The result variations for calibrating (training) and 

validating in respect of iterations (epochs) are shown in Fig. 6 (a). It is noticed that when the 

epochs touch 7200, the deviance acquires asymptotic to the x-axis. Hence, the values of epochs 

are chosen as 8241. Figs. 6 (b & c) show the scatter plot between predicted and actual APE20. It 

could be observed that barring some predicted points either in calibrating or validating stages. 

All predicted points, by and large, lie near the absolute line. Besides, this aspect is further 

strengthened by Table 5, where statistical values of R
2
 and RMSE are found to be highest and 

lowest, respectively, for the DNN model, demonstrating that the DNN is the best model. 
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(b) 

 

(c) 

Fig. 6. (a) The deviance for calibrating and validating to epochs (b) Performance of DNN for calibrating 

and validating for data patterns (c) Actual and predicted APE20 with DNN for calibrating and validating 

period. 

3.7. Results of MLR and mathematical models 

Fig. 7 (a) for dataset ranges reported in Table 3 depicts scatter diagram comparisons of the 

existing mathematical relations and MLR model, which are revealed in Table 1. These plots 

underline the excessive scattering of the datasets along the absolute line except MLR, asserting 

the poor compatibility between actual values and the mathematical models' predictions. It is 

observed that values of calibrating and validating outcomes are lying away from the absolute line 

except for the MLR and, to some extent, of the Preul and Holler [27] model. Further, this 

contention is also strengthened by observing Table 6, where the accuracy for MLR is high, 

followed by Preul and Holler [27]. Other proposed mathematical models viz. Markofsky and 

Kobus [23], Nakasone [24], and Watson et al. [28] possess very high errors. Moreover, from the 

perusal of Fig. 7 (b), it is again clear that predicted values by the MLR model lie near the actual 

values of the APE20. 
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(a) 

 
(b) 

Fig. 7. (a) Performance of MLR and empirical relations for calibrating and validating for data patterns, 

(b) Actual and predicted APE20 with MLR and empirical relations for calibrating and validating period. 
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Table 6 

Values of statistical performance metrics of conventional models. 

Models 

Calibrating Validating 

R
2 

NSE RMSE MAE R
2
 NSE RMSE MAE 

Naksone [1987] 0.871 -4.76 0.351 0.320 0.879 -4.51 0.334 0.303 

Watson et al., [1998] 0.775 -11.63 0.519 0.486 0.762 -13.22 0.537 0.505 

Markofsky and Kobus [1978] 0.740 -5.31 0.367 0.308 0.729 -6.17 0.381 0.327 

Preul and Haller [1969] 0.741 0.691 0.081 0.589 0.727 0.712 0.076 0.052 

MLR (present study) 0.893 0.893 0.047 0.037 0.905 0.897 0.045 0.033 

 

3.8. Comparisons of results 

The predictions of NFS, NN, DNN, and empirical models have been assessed graphically. 

Subsequently, statistical interpretations of its models' accuracy are examined. Fig. 8 depicts 

scatter plots, Taylor diagrams, etc., for comparisons of soft computing models, while Fig. 9 is 

that of empirical relations. Primarily, these graphs, particularly of proposed soft computing 

models of DNN, NN, TRAPZ_NFS, and MLR, highlight the excellent alignment of the predicted 

values along the absolute line of the graph (Fig. 8 a), supporting the acceptable agreement 

between the models' predictions and the actual values in both calibrations as well as validation 

stages. These arguments are further strengthened by the perusal of Tables 5 and 6, which sum up 

the statistical measures for the considered models where the performance of these models’ 

estimation is assessed utilizing the statistical indices of R
2
,
 
NSE, and RMSE, MAE. It can be 

observed that the best-performing model DNN in validation provides high values of R
2 

=0.935, 

NSE=0.934 and the least value of RMSE=0.036, MAE=0.025 which the NN follows with R
2 

=0.917, NSE=0.917 and the value of RMSE=0.041, MAE=0.031 however, the TRAPZ _NFS 

with R
2 

=0.873, NSE=0.852 and the value of RMSE=0.055, MAE=0.039 is third performing 

NFS model in soft computing model categories in in the validating stage. Besides, from the 

perusal of the Taylor diagram of validating (Fig. 8 b), the DNN model lies nearest to the actual 

value, and it is followed by the NN model. This aspect is further reinforced by observing Fig 8 c, 

where the DNN value is very near to the actual value, which is again followed by the NN model. 

Similarly, by visualizing the violin plot (Fig. 8 d), it is again clear that the size of the relative 

error is minimum in the case of the DNN model, and again it is followed by the NN model and 

other models. 
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Moreover, the MLR model with R
2 

=0.905, NSE=0.897 and, RMSE=0.045, MAE=0.033 

performs the best among classical empirical equations and even better than the NFS model 

(Tables 5 & 6). Furthermore, the values predicted by Markofsky and Kobus [23], Nakasone [24], 

and Watson et al. [28] lie beyond the ± 25 % error line (Fig. 9 a) in both calibrating and 

validating stages where Watson et al. [28], as well as Markofsky and Kobus [23], overestimate 

the APE20 as their predicted data points lie above the bisector line. 
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(d) 

Fig. 8. (a) Performance of proposed AI models for calibrating and validating for data patterns, (b) 

Normalized Taylor diagram displaying the performances of evaluated proposed AI models, (c) Actual and 

predicted APE20 with AI-models for calibrating and validating period (d) Violin error plots for all models. 
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(b) 

Fig. 9. (a) Performance of MLR and empirical relations for calibrating and validating for data patterns (b) 

Taylor diagram showing the performances of evaluated MLR and empirical relations. 

 

However, Nakasone [24] appears to be underestimating the APE20 of the gabion weir as its 

predicted data points lie below the bisector line, but Preul and Holler [27] performance, as well 

as its predicted values, lie within ± 25 % error line in both stages of calibrating and validating. 

Fig. 9 b also suggests the same results as MLR is very near to the actual value, followed by Preul 

and Holler [27]. Similarly, by visualizing the Violin error plots of Fig 8 d, the size of relative 

error for MLR is the least, followed by Preul and Holler [27], which suggests that the MLR 

model is the best among the empirical relations. 

Comparatively poor performance of empirical models compared to the proposed soft computing-

based models is attributed because these models do not have enough potential to tackle all 

dimensions, which are responsible for a nonlinear and complex phenomenon that occurs during 

the aeration process at broad crested gabion weir, in contrast, the soft computing models use 

machine learning algorithms that do not require any limiting assumptions on the form of the 

model further the fact is that they can generalize, track and detect complex nonlinear 

relationships between independent and dependent parameters. 

3.9. Importance of input variables and sensitive study 

The selection of the independent influencing parameters is paramount for the generation of 

illustrative models as the predictive potential of the generated models mainly depends on the 

choice of input parameters George, [44]. The determination of input variables arises when 
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investigators pursue a predictive method that validates satisfaction or redundancy among the 

input parameters, which leads to multiple recti-linearity [45]. However, recti-linearity occurs 

when a single predictor parameter can be estimated with considerable accuracy in numerous 

regression equations. If there are more than two predictor parameters, then there would be an 

appreciable loss in statistical importance of the model, which is called multiple recti-linearity. 

Different from recti-linearity, multiple recti-linearity might not be feasible to forecast before 

perceiving its impact on the model as part of the predictor parameters might have a low 

association level. A multiple recti-linearity does not lessen the predictive potential or consistency 

of the model in totality, at minimum, in the datasets; it merely surges the intricacy of the model 

and influences computations about distinctive predictors. Thus, an easy model equation 

nevertheless comprises valuable material that is constantly desirable. Having selected the critical 

variables, a sensitive study determines the relative significance of the input variable on the 

APE20. The analysis is performed by removing one input parameter and appraising the impact of 

that very parameter on the prediction of the APE20. The sensitivity study of the input is presented 

in Fig.10 using the best-performing DNN model. The most influencing input variable has been 

found as discharge per unit width (q), which has the most significant impact on the APE20 of the 

gabion weir, which is followed by drop height (Ho); however, porosity(n) and height of weir (P) 

both are equally third important variables. The least important variable is the mean size (d50) of 

gabion particles which has the most negligible impact on the APE20 

 
Fig. 10. Sensitivity study for the relative importance of input parameters. 
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4. Conclusions and suggestions 

Gabion weir is an alternative economical and effective hydraulic device for conventional weir, 

mainly when the head of water is low to moderate. The dissolved oxygen intensity is one of the 

crucial determinants in evaluating hydrosphere health. This work is one of the efficient studies 

utilizing NN, NFS, DNN, and MLR to generate models for predicting gabion weir aeration 

performance efficiency. Laboratory tests are carried out for datasets to calibrate and validate the 

proposed models. The DNN with the highest values of R
2
 =0. 935, NSE=0.934, and the lowest 

values of RMSE =0.036, MAE=0.025 outperforms all the proposed models besides, predicted 

values by this model lie very near along the agreement diagram further, the model also lies very 

near to the actual value in the Taylor diagram along with relative error size in violin plot is 

minimum which is followed by the NN model having R
2
 =0.917, NSE=0.917 and RMSE =0.041, 

MAE=0.031 which is giving comparable results in validating stage. The third best-performing 

model amongst proposed AI models is TRAPZ _NFS with R
2 

=0.873, NSE=0.852, and the value 

of RMSE=0.055, MAE=0.039. But other remaining proposed NFS-based models could not 

perform better with the low value of correlations and high values of errors for an unknown 

validating dataset. Further, it has also been found that the mathematical model generated by 

MLR is performing better than the other proposed mathematical models for this dataset range. 

Additionally, the sensitivity study suggests that discharge per unit width (q) has the highest 

significant impact on the output results of the APE20 for the gabion weir, followed by drop height 

(Ho). Nevertheless, it has been recognized that the dataset is comparatively smaller in size and 

extent. So, future works should incorporate a bigger volume and broader range of datasets to 

allow the models to be more versatile and generalize on the gabion weir aeration performance 

efficiency. 
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