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The performance and serviceability of asphalt pavements 

have a direct influence on people's daily lives. Timely 

detection of pavement cracks is crucial in the task of periodic 

pavement survey. This paper proposes and verifies a novel 

computer vision-based method for recognizing pavement 

crack patterns. Image processing techniques, including 

Gaussian steerable filters, projection integrals, and image 

texture analyses, are employed to characterize the surface 

condition of asphalt pavement roads. Light Gradient 

Boosting Machine, Deep Neural Network, and Convolutional 

Neural Network are employed to recognize various patterns 

including longitudinal, transverse, diagonal, minor fatigue, 

and severe fatigue cracks. A dataset, including 12,000 

samples, has been collected to construct and verify the 

computer vision-based approaches. Based on experiments, it 

can be found that all three machine learning models are 

capable of delivering good categorization results with an 

accuracy rate > 0.93 and Cohen's Kappa coefficient > 0.76. 

Notably, the Light Gradient Boosting Machine has achieved 

the most desired performance with an accuracy rate > 0.96 

and Cohen's Kappa coefficient > 0.88. 
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1. Introduction 

Asphalt pavement roads are one of the most crucial components of the transportation 

infrastructure. Their performance and serviceability have a direct impact on people's daily lives 

[1,2]. Due to inclement weather conditions and increasing traffic loads, asphalt pavements 

quickly deteriorate over time. Among various forms of pavement distress, cracks are apparently 

the most widespread. Fig. 1 provides illustrations of various forms of pavement cracks. 

Accordingly, appropriate crack repair is crucial for ensuring the serviceability of pavements and 

preventing the occurrence of other more severe defects such as raveling or potholes [3]. 

     
Longitudinal 

Crack 
Transverse Crack Diagonal Crack Minor Fatigue Severe Fatigue 

Fig. 1. Crack patterns in pavement surfaces. 

Information on surface condition of asphalt pavements is particularly valuable to determine an 

optimal maintenance plan. In particular, information regarding the appearance of cracks as well 

as the type of cracks is useful for scheduling and prioritizing maintenance tasks. In order to 

obtain such information, periodic monitoring of pavement conditions must be performed timely 

and effectively. In the past decade, with the fast advancement of computer vision and machine 

learning techniques, various computer-based approaches for detecting and categorizing pavement 

distress have been proposed [4–7]. These approaches have harnessed cutting-edge machine 

learning and computer vision-based feature extraction approaches to obtain useful information 

from images of asphalt pavements. As stated by Dong and Catbas [8], the modern approaches to 

pavement survey provide many leverages over the conventional method, such as high 

productivity, safe inspection, fast data processing, and minimal interference in traffic operations. 

Accordingly, previous works have been dedicated to the construction and verification of 

advanced models used for automatic detection and categorization of pavement cracks. Mokhtari 

et al. [9] carries out a comparative work that employs machine learning algorithms of decision 

trees (DT), k-nearest neighbors, artificial neural network (ANN), and adaptive neuro fuzzy 

inference system (ANFIS) for crack detection. This study shows the high performance and 

potential of the machine learning models that can achieve detection accuracy rates > 0.88. 

However, this study only focused on crack detection and crack pattern recognition was not 

considered. 

Cubero-Fernandez et al. [10] once again confirmed the capability of DT with an accuracy rate of 

88% in detecting cracks and an accuracy rate of 80% in detecting the type of cracks. Herein, the 
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authors utilize edge detection and projective integrals to characterize the pavement surface 

condition and extract the features for the DT-based data classification process. The model 

proposed in [10] is capable of recognizing transverse, longitudinal, and fatigue (or alligator) 

cracks. Diagonal cracks and the severity of fatigue cracks were not taken into account. 

A model based on Laplacian pyramid, projection integral, and least squares support vector 

machine has been proposed in [11] for recognizing longitudinal, transverse, diagonal, and fatigue 

cracks. Nevertheless, the model of interest is not capable of classifying the severity of fatigue 

cracks. Support vector machine coupled with steerable filters and projective integral were 

utilized in [12]; this method can help attain a classification accuracy rate of 87.50%. Inkoom et 

al. [13] put forward a model for pavement crack rating; the model employs boosted decision 

trees, and naïve Bayes, and k-nearest neighbors. This study observed promising performances of 

the employed machine learning algorithms in predicting the crack of pavement. 

Besides the models that integrate image processing and machine learning-based classifiers, the 

deep learning method of convolutional neural network (CNN) has also been increasingly applied 

[14,15]. A CNN-based approach for crack classification has been introduced in [16]; this deep 

learning model is capable of categorizing patches cropped from pavement images. The CNN has 

achieved a promising classification rate of 94%. Nevertheless, the recognition of diagonal crack 

has not been included in this study. Hoang et al. [17] compared the capability of the CNN to that 

of the conventional edge detection approaches; this study found that the DL method significantly 

excel the image processing-based algorithms. Zhang et al. [18] recently established a pavement 

distress detection model based on the CNN; this deep learning method was used to detect cracks 

from images of the pavement surface. The method is able to recognize longitudinal, network, and 

fatigue cracks. Liu et al. [19] recently demonstrates the capability of the CNN in detecting crack 

objects from infrared images; this study emphasizes the utilization of the temperature difference 

between cracks and the pavement surface to construct a robust distress detection method. 

Based on recent review works of Cano-Ortiz et al. [20] and Kheradmandi and Mehranfar [4], the 

utilization of machine intelligence in pavement performance monitoring, including crack 

detection, is a burgeoning trend. Therefore, there is a practical need to investigate the capability 

of other state-of-the-art machine learning approaches for solving the problem at hand. 

Furthermore, it is observable from the literature that most of the current works focus on the task 

of crack segmentation and crack type classification [4,21,22]. Machine-based fatigue severity 

recognition has rarely been investigated. 

In the machine learning field, Light Gradient Boosting Machine (LightGBM), proposed in [23], 

is a novel gradient boosting framework based on decision trees that can be potentially used for 

categorizing patterns of pavement cracks. Notably, the LightGBM relies on two novel techniques 

of gradient-based one-side sampling and exclusive feature bundling to enhance the classification 

performance. These two novel techniques provide the LightGBM a significant advantage over 

other data classification models. In the field of pavement performance monitoring, the 

LightGBM has been used in [24] to estimate the pavement condition index of pavements. This 
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study finds that the LightGBM outperforms nonlinear regression, artificial neural networks, and 

random forest models. The capability of the LightGBM is also demonstrated in [25] in which 

cracks are automatically detected from concrete surface imagery. Nevertheless, to the best of our 

knowledge, none of the previous works has investigated the performance of this novel and 

capable machine learning method in crack pattern recognition. 

In this regard, this study aims to fill the gap in the current literature by proposing an integration 

of the LightGBM and image processing methods to establish robust computer vision-based crack 

pattern recognition approach. The image processing methods, including steerable filters, 

projection integrals, and image texture descriptors, are used to characterize the pavement surface 

condition. The LightGBM is employed as a supervised learning method to categorize the image 

samples into six labels: non-crack, longitudinal crack, transverse crack, diagonal crack, minor 

fatigue crack, and severe fatigue crack. Since each type of crack indicates different damage 

severity and receives a different level of priority, the proposed computer vision model can be 

helpful for the task of pavement maintenance planning. 

Additionally, an integration of deep neural network (DNN) and image processing-based feature 

extraction is also investigated in this study. The DNN is widely recognized as a powerful tool for 

pattern recognition [26]. The basic difference between a DNN and an ANN is the number of 

hidden layers [27]. In a DNN model, a set of multiple hidden layers acts as a hierarchical feature 

engineering operation and the output of one hidden layer is the input for the succeeding layer. 

Accordingly, the DNN possesses a high potential for analyzing multivariate and nonlinear 

datasets [28]. 

Therefore, this study constructs the computer vision-based crack pattern classifiers based on 

LightGBM, DNN, and CNN. Herein, the LightGBM and DNN rely on a set of extracted features 

obtained from the used image analysis techniques. Steerable filters and projection integrals are 

used to highlight the shape- and edge-based features of crack objects [12]. Meanwhile, statistical 

measurements of color channels and gray level co-occurrence matrices are used to account for 

the texture-based characteristics of pavement surface [29]. On the other hand, the CNN is able to 

perform the feature engineering phase automatically. Using images of asphalt pavements, this 

deep learning method carries out the classification of crack patterns directly. The performance of 

the LightGBM, DNN, and CNN is also benchmarked against that of the support vector machine 

(SVM). It is because the SVM was employed successfully to tackle the problem of interest in 

previous works [12,30,31]. 

To train and verify the aforementioned computer vision-models, a database, consisting of 12,000 

samples and six class labels, has been acquired via surveys of road conditions in Da Nang, 

Vietnam. The rest of the paper is organized as follows: The second section reviews the research 

methodology, including the image processing techniques, LightGBM, DNN, and CNN. Results 

of pavement crack classifications and performance comparisons are provided in the next part of 

the article. The last part provides a summary of the main research findings. 
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2. Research method 

2.1. Steerable filter and projection integral 

Steerable filter (SF) coupled with projection integral (PI) is an effective tool for edge detection 

and shape characterization. Herein, SF [32,33] is an orientation-selective convolution kernel used 

to perform noise suppression and edge detection concurrently. Given a digital image within 

which (x, y) denotes a pixel’s coordinates, a 2-dimensional Gaussian with variance   of a pixel is 

described as follows [33]: 
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Fig. 2. Demonstrations of the SFs. 

Based on the two steerable filters with β = 0
o
 and β = 90

o
, a PI can be constructed to characterize 

the shape of an object within a scene [10,34]. Demonstrations of the SFs computed for the crack 

patterns are provided in Fig. 2. In addition, this study relies on the horizontal PI (HPI), vertical 

PI (VPI), and two diagonal PIs to describe the crack patterns. The HPI and VPI are useful for 

recognizing transverse and longitudinal cracks [10]. The HPI and VPI are calculated as the 

summation of pixels’ intensity along a thread xy or yx within an image patch as follows: 

( ) ( , )
yi x

HPI y I i y


  (4) 

( ) ( , )
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VPI x I x j
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Meanwhile, the two diagonal PIs corresponding to the two projection angles of +45
o
 and -45

o
 are 

used for detecting diagonal cracks. These two diagonal PIs also provide helpful information for 

the detection of other crack patterns [35]. The diagonal PIs can be obtained by performing image 
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rotations (+45
o
 and -45

o
) followed by a HPI calculation. Accordingly, the diagonal PIs 

corresponding to the two angles of rotation are denoted as diagonal PI 1 (DPI1) and diagonal PI 

2 (DPI2). 

2.2. Image texture descriptors 

It is noted that the pavement background often contains irregular objects such as stains, blurred 

traffic marks, potholes, patches, etc. Therefore, using the SF coupled with PI may not be 

sufficient for the task of recognizing crack patterns. Accordingly, this study relies on the 

statistical indices of image colors and the gray-level co-occurrence matrix (GLCM) to describe 

the texture of the pavement surface. The mean and standard deviation (std.) of each color channel 

(blue, green, and red) can be useful for describing the color-based textural information [36]. The 

equations for computing these two indices are given by [37]: 
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where IC denotes an image I with respect to a color channel C. P(I) represents the first-order 

histogram, which describes the distribution of pixel values within an image sample. 

The GLCM [38] is an effective tool for characterizing the distribution of co-occurring pixel 

values over a patch of pavement image. In order to gain the property of rotational invariance, the 

GLCM is usually constructed at different values of the rotational angle α. α usually varies 

between 0
o
 and 135

o
 with an interval of 45

o
. The statistical indices computed from the GLCMs 

can be averaged to derive a set of GLCM-based features. Herein, the contrast, correlation, 

energy, and homogeneity of the GLCM are used to characterize the distribution of co-occurring 

pixel values. These indices are computed as follows [38–41]: 
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where P denotes a GLCM. Ng = 256 is the number of gray level values. , ,X Y X   , and Y  

represent the means and standard deviations of the marginal distribution of a GLCM. 
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2.3. Light gradient boosting machine 

The Light Gradient Boosting Machine (LightGBM), proposed in [23], is a powerful gradient 

boosting framework based on classification trees. This machine learning approach combines a set 

of weak learners to construct a highly robust one (refer to Fig. 3). A LightGBM model is built 

sequentially by iteratively minimizing the classification error committed by previous one 

[42,43]. Herein, the classification error is measured by a loss function. The ensemble model f(x) 

is established by combining a set of M decision trees as follows: 





M

m

m xfxf
1

)()(  (12) 

where f1, f2,…,fM denote individual decision trees. 

Classification 
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Result M

Result 

Combination

Classification 

Result
 

Fig. 3. The LightGBM ensemble model. 

A leaf-wise algorithm is utilized by the LightGBM model to grow the trees vertically. A leaf that 

results in the most reduction in the loss function is chosen to split and grow the decision tree. 

Notably, the training performance of the LightGBM is enhanced by the Gradient-based One-Side 

Sampling (GOSS) to express the importance of data samples. The GOSS helps the model to 

focus on data samples having larger gradients and neglect ones having small gradients. It is 

because the samples associated with small gradients are fitted well and this results in lower 

classification errors. Accordingly, the LightGBM is able to steer the learning phase towards more 

informative data points. Moreover, the Exclusive Feature Bundling (EFB) technique is also 

employed to cope with sparse datasets. This technique aims to combine mutually exclusive 

features to concurrently achieve feature reduction and preserve the most informative predictor 

variables. 
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Fig. 4. The leaf-wise tree growth employed by the LightGBM. 

Continuous features Discretized features

Feature histograms

Decision tree-based data 

classification

Number of data samples Number of data samples

 
Fig. 5. The histogram-based algorithm. 

Notably, the LightGBM grows individual decision trees in a leaf-wise manner [25]. The leaf-

wise tree growing process is demonstrated in Fig. 4. A significant advantage of the leaf-wise tree 

growth is that it can effectively increase the complexity of a tree. Thus, the LightGBM is capable 

of modeling sophisticated mapping functions. In addition, a histogram-based algorithm (refer to 

Fig. 5) is employed to convert the original continuous features into a small number of bins (e.g. 

255 bins). These bins can be utilized to establish the histograms that represent the distribution of 

the input variables. Statistical indices (e.g. the number of data instances and the sum of 

gradients) can be computed for each bin. The optimal split points used for training the weak 

learners can be effectively determined via these statistical indices. 

Notably, the histogram-based algorithm is able to reduce the computational cost of the training 

phase because the scanning of the whole ranges of features for determining a split point is not 

required [23]. Additionally, this algorithm also enhances the generalization property of the 

constructed model because the learning phase of the LightGBM is less susceptible to noise [44]. 

2.4. Deep neural network 

The Deep Neural Network (DNN) is a popular machine learning method for pattern recognition 

[45,46]. The structure of a DNN model includes an input layer, a set of hidden layers, and an 

output layer (refer to Fig. 6). This machine learning method typically utilizes a set of hidden 

layers to process the numerical variables provided by the input layer [47]. The input nodes in the 

first layer transmit the input signals },...,,{ 21 Dfffx  is a D-dimensional vector with fj as the 

feature and },...,2,1{ Dj . These signals are the features computed by the aforementioned image 

processing techniques. 
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Fig. 6. The general structure of a deep learning model used for pavement fatigue classification. 

The stacked hidden layers act as a sophisticated feature engineering operator. This operator 

analyzes the input signal of the preceding layer, creates more informative features, and transmits 

them to the subsequent layer. Finally, the output layer uses a softmax function to calculate the 

probabilities of the class labels. Herein, the problem at hand includes six class labels as 

demonstrated in Fig. 6. Notably, to alleviate the problem of vanishing gradient, the Rectified 

Linear Unit (ReLU) activation function should be used in the hidden layer [27]. In addition, to 

adapt the DNN’s weights according to the collected dataset, this work resorts to the state-of-the 

art adaptive moment estimation (Adam) algorithm [48]. 

2.5. Convolutional neural network 

The Convolutional Neural Network (CNN) is a popular deep learning method used for 

classifying image datasets [49–52]. Different from the LightGBM and DNN, the CNN is able to 

perform the feature computation process autonomously without the need of image processing-

based feature extraction. Therefore, the input of a CNN model is a color image with the size r×c 

and a depth of three representing the color channels [53]. The advantage of the CNN is the 

ability to learn the data representations via a hierarchical organization of multiple convolutional 

layers. These layers have the role of extracting higher-level features directly from image 

samples. 

The structure of a CNN model used for crack pattern recognition is depicted in Fig. 7. The 

structure of a CNN model typically includes of a set of convolutional layers; each layer consists 

of kernels for computing the various features of the input images such as edges, shapes, and 

textures [54,55]. A pooling layer is often put after a convolutional layer to decrease the spatial 

size of the image. The output of the final pooling layer is transmitted to a fully-connected layer 

to compute the probability of each class label. In this study, the Adam [48] algorithm is also used 

to optimize the parameters of the CNN used for pavement crack detection and classification. 
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Fig. 7. The CNN model structure. 

3. Comparison and results 

This section of the study reports the performance of the newly developed computer vision 

approaches for classifying different patterns of the pavement cracks. It is noted that the data 

classification processes of the LightGBM and DNN rely on the image processing techniques of 

SF, PI, as well as the aforementioned texture descriptors. Meanwhile, the computation of the 

features that are relevant for the categorization task is performed automatically by the CNN. In 

this study, the LightGBM model is built with the help of the Python library provided in [56]. This 

study relies on the scikit-learn library [57] to construct the DNN model. In addition, the 

MATLAB deep learning toolbox [58] is employed to build the CNN model. 

The LightGBM, DNN, and CNN are used to categorize input image samples into six distinctive 

classes of non-crack (C0), longitudinal crack (C1), transverse crack (C2), diagonal crack (C3), 

minor fatigue crack (C4), and severe fatigue crack (C5). It is noted that different patterns of 

crack result from different forms of pavement failures [59]. In addition, each cracking patterns 

may require a different approach of rehabilitation [60]. For instance, longitudinal and transverse 

cracks can be easily repaired with sealant. Meanwhile, to recover an area suffered from fatigue 

cracks, a full depth patch-up is usually required. The flowchart of the proposed approach for the 

task of crack pattern classification is summarized in Fig. 8. To train and test the aforementioned 

computer vision-based approaches, field surveys in Da Nang city (Vietnam) have been carried 

out to collect an image dataset of pavement images.  

The image samples have been captured by the 16.2-megapixel resolution Nikon D5100 and the 

18-megapixel resolution Canon EOS M10 at a distance of about 1.2 m above the road surface. 

Each class of interest contains 2000 samples. Therefore, the total number of image samples is 

12000. In addition, to enhance the speed of the image texture computation and data 

classification, the image sample size is set to be 64x64 pixels. It is noted that the ground truth 

labels of image samples are determined by human inspectors. It is noted that the collected image 

dataset has been randomly divided into a training set (70%) and a testing set (30%). The former 

is utilized for training the machine learning models; the latter is reserved for assessing the 

generalization of the trained models. Illustrations of the collected image dataset are provided in 

Fig. 9. 



 N.D. Hoang, Q.L. Nguyen/ Journal of Soft Computing in Civil Engineering 7-3 (2023) 21-51 31 

The collected 

dataset

Non-crack
Minor fatigue 

crack

Severe fatigue 

crack

Training set 

(70%)

Testing set 

(30%)

Model 

construction

LightGBM

DNN

CNN

Model testing

Classification 

results

Model 

performance

Data sampling

Training and testing 

phases

Longitudinal 

crack

Transverse 

crack
Diagonal crack

 
Fig. 8. Flowchart of the model training and testing phases 
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Fig. 9. The collected image dataset. 
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Table 1 
Statistical descriptions of the variables in the dataset. 

Feature Description Min Mean Std Skewness Max 

X1 Minimum value of VPI 0.000 0.184 0.123 1.630 0.902 

X2 Mean of VPI 0.015 0.305 0.158 1.238 1.118 

X3 Std. of VPI 0.007 0.071 0.038 1.384 0.313 

X4 Skewness of VPI -2.315 0.374 0.627 0.281 3.981 

X5 Maximum value of VPI 0.050 0.465 0.211 0.998 1.598 

X6 Minimum value of HPI 0.000 0.134 0.084 1.424 0.673 

X7 Mean of HPI 0.015 0.252 0.123 1.169 0.958 

X8 Std. of HPI 0.006 0.072 0.041 1.706 0.435 

X9 Skewness of HPI -1.832 0.464 0.671 0.517 3.143 

X10 Maximum value of DPI1 0.041 0.420 0.190 0.988 1.364 

X11 Mean of DPI1 0.052 0.265 0.121 1.222 0.873 

X12 Std. of DPI1 0.029 0.174 0.107 1.840 0.867 

X13 Skewness of DPI1 -1.441 0.663 0.691 1.076 3.629 

X14 Maximum value of DPI1 0.116 0.734 0.450 1.971 3.847 

X15 Mean of DPI2 0.049 0.262 0.120 1.171 0.885 

X16 Std. of DPI2 0.020 0.172 0.109 1.778 0.963 

X17 Skewness of DPI2 -1.484 0.641 0.691 0.988 3.643 

X18 Maximum value of DPI2 0.093 0.726 0.457 1.933 3.984 

X19 Mean of  blue channel 65.008 141.082 27.603 0.138 237.421 

X20 Std. of blue channel 1.247 10.078 6.844 2.496 60.006 

X21 Mean of  green channel 53.071 141.210 28.005 0.075 240.535 

X22 Std. of green channel 1.273 10.518 7.574 2.471 61.579 

X23 Mean of  red channel 41.010 140.787 29.068 0.027 240.384 

X24 Std. of red channel 1.442 10.692 8.230 2.675 61.882 

X25 GLCM's contrast 0.811 27.907 25.528 2.711 274.452 

X26 GLCM's correlation 0.715 0.893 0.045 -0.261 0.997 

X27 GLCM's energy 0.023 0.072 0.028 1.388 0.251 

X28 GLCM's homogeneity 0.103 0.332 0.095 0.865 0.718 

 

As mentioned in the previous section, the GSF-based PIs, the statistical measurement of the color 

channels, and the properties of the GLCM are employed as feature extractors for the LightGBM 

and DNN models. The GSF-based PIs compute four PIs: VPI, HPI, DP1, and DP2. Each of the 

VPI and HPI yields five statistical indices of minimum, mean, standard deviation (std.), 

skewness, and maximum. In addition, since the minimum of the DPI1 and DPI2 is always zero, 

each of the diagonal projection integrals yields four statistical indices of mean, standard 
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deviation (std.), skewness, and maximum. In total, the PI-related feature extractor computes 18 

crack pattern’s influencing factors. These factors help delineate the crack patterns within an 

image patch. Furthermore, to take into account various colored objects such as traffic marks, oil 

stains, etc. existing on the road surface, the statistical measurements (mean and std.) of three 

color channels (blue, green, and red) are calculated. Hence, the color-related features include six 

crack pattern’s influencing factors. Finally, the properties of contrast, correlation, energy, and 

homogeneity are computed from the GLCM of each image sample. Accordingly, the total 

number of the extracted features is 28. The statistical descriptions of the extracted variables are 

summarized in Table 1. Table 2 provides an illustration of the computed dataset. The 

distributions of the extracted features with respect to different labels are depicted in Fig. 10. 

Table 2 
The collected dataset. 

Sample X1 X2 X3 X4 X5 
 

X24 X25 X26 X27 X28 Label 

1 0.128 0.191 0.049 0.018 0.268 … 8.524 1.333 0.992 0.123 0.662 0 

2 0.095 0.219 0.062 -0.005 0.338 … 9.722 11.773 0.929 0.062 0.339 0 

3 0.132 0.217 0.037 -0.015 0.287 … 12.245 10.588 0.944 0.055 0.334 0 

… … … … … … … 
     

… 

2001 0.071 0.163 0.044 0.163 0.263 … 4.336 7.522 0.881 0.087 0.397 1 

2002 0.118 0.242 0.088 0.604 0.435 … 9.676 19.138 0.919 0.072 0.307 1 

2003 0.062 0.210 0.157 1.012 0.552 … 8.494 18.745 0.910 0.106 0.411 1 

… … … … … … … 
     

… 

4001 0.263 0.361 0.047 -0.148 0.446 … 7.818 20.156 0.902 0.071 0.344 2 

4002 0.171 0.269 0.050 0.371 0.378 … 6.681 19.018 0.857 0.060 0.282 2 

4003 0.240 0.330 0.051 0.402 0.444 … 7.871 22.783 0.902 0.065 0.331 2 

… … … … … … … 
     

… 

6001 0.380 0.480 0.071 0.897 0.682 … 17.028 73.989 0.897 0.048 0.219 3 

6002 0.113 0.190 0.041 0.373 0.279 … 5.330 13.600 0.868 0.077 0.335 3 

6003 0.279 0.390 0.064 0.938 0.591 … 14.379 30.809 0.939 0.059 0.268 3 

… … … … … … … 
     

… 

8001 0.164 0.257 0.047 0.084 0.353 … 5.010 15.221 0.838 0.074 0.332 4 

8002 0.168 0.260 0.064 0.770 0.422 … 7.168 15.412 0.901 0.088 0.362 4 

8003 0.128 0.218 0.051 0.438 0.321 … 5.989 17.377 0.864 0.074 0.338 4 

… … … … … … … 
     

… 

11998 0.385 0.541 0.130 1.003 0.862 … 28.658 49.262 0.967 0.027 0.196 5 

11999 0.259 0.351 0.058 0.180 0.479 … 8.797 16.925 0.908 0.054 0.310 5 

12000 0.297 0.475 0.103 0.034 0.639 … 10.820 56.517 0.866 0.042 0.206 5 
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Fig. 10. Boxplots of the variables with respect to different class labels. 
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It is noted that the feature extractors related to the GSF-based PIs and the statistical measurement 

of three color channels are coded in Python. Meanwhile, the GLCM-based features are 

calculated with the assistance of the scikit-image library [61]. As can be observed from Fig. 10, 

the input variables have different ranges. Hence, to standardize the input ranges, this study has 

used the Z-score equation. The formula of this data standardization is given by: 

D X
Z

X

X M
X

STD


  (13) 

where XZ and XD are the normalized and the original variable, respectively. MX and STDX denote 

the mean and the std. of the original variable, respectively. 

 
Fig. 11. ReliefF based feature ranking. 

After the dataset has been computed, it is beneficial to inspect the relevancy of each input 

variable with respect to the class labels. Herein, the ReliefF algorithm [62,63] is employed to 

compute a feature weight of each variable. These feature weights indicate the relevancy of the 

crack pattern’s influencing factors. The higher the weight is, the more relevant the input variable 

is. The ReliefF is selected in this study because it is capable of modeling interactions among 

variables, dealing with noisy data, and handling multi-pattern recognition problems [64]. The 

feature weights of the extracted variables are presented in Fig. 11. Observably, X1, X2, X5, X6, X7, 

and X15 have the high importance weights. Meanwhile, the feature weights of X25, X26, X8, and X20 

are comparatively lower than those of other factors. However, because all of the feature weights 

are greater than zeros, all of the features should be used in the pattern classification phase. 

Moreover, to evaluate the performance of the computer vision-based approaches, this study relies 

on the indices of classification accuracy rate (CAR), precision, recall, F1 score, area under the 

receiver operating characteristic curve (AUC), and Cohen’s Kappa coefficient. For the 

construction of the receiver operating characteristic curve, readers are guided to the previous 

works of [65,66]. The equations used to calculate other indices are given by [67,68]: 
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CAR = 
 

100%C

A

N

N
 (14) 

Precision = 
 

TP

TP FP
 (15) 

Recall = 
 

TP

TP FN
 (16) 

F1 Score = 
2

2

TP

TP FP FN 
 (17) 

Kappa = 
2 ( )

( ) ( ) (TP FN) (FN TN)

TP TN FN FP

TP FP FP TN

   

      
 (18) 

where NC and NA are the numbers of correctly predicted samples and the total number of 

samples, respectively. FN, FP, TP, and TN are the false negative, false positive, true positive, 

and true negative samples, respectively. 

Table 3 

The CNN model configuration. 

CNN layers 
Convolutional layers Pooling layers 

Number of filters Filter size Filter size 

1 64 16 2 

2 128 8 2 

3 128 6 2 

4 256 4 2 

 

Based on the dataset consisting of 12000 instances, this study constructs the data classifiers that 

are based on the LightGBM, DNN, and CNN. It is noted that to specify the hyper-parameters of 

the LightGBM and DNN, five-fold cross validation processes are used. The suitable hyper-

parameters of the LightGBM, including the number of leaves, the number of estimators, and the 

maximum depth, are found to be 21, 100, and 6, respectively. 

The appropriate setting of the DNN is as follows: the number of hidden layers = 4 and the 

number of neurons in each hidden layer = 40. In addition, the appropriate setting of the CNN 

model is evaluated via recommendation of previous works [50,69,70] and trial runs with the 

collected image dataset. The employed hyper-parameters of the CNN including the number of 

layers, the number of filters in a layer, and the filter size are shown in Table 3. Herein, the CNN 

includes four convolutional layers. The maximum number of training epochs for the CNN is 

5000 and the batch size is selected to be 64. In addition, the results of the LightGBM, DNN, and 

CNN are also benchmarked to that of the Support Vector Machine (SVM). It is because the SVM 

has been successfully applied for crack detection and categorization in previous works. This 
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study also utilizes the scikit-learn library [57] to build the SVM model. It is noted that the hyper-

parameters of the SVM model, including the penalty coefficient and the radial basis kernel 

function’s coefficient, are determined via the five-fold cross validation process. 

As mentioned earlier, the collected dataset, consisting of 12000 samples and 28 features, is 

randomly separated into a training set (70%) and a testing set (30%). The former set is used for 

model training. The latter set is used to inspect the generalization capability of the model. In 

addition, to alleviate the effect of random data sampling, this study has repeated the model 

training and testing phases 20 times. In each time, 30% of the data samples are randomly drawn 

from the original dataset to form a testing set. The statistical indices including mean and standard 

deviation (Std.) of the employed measurement metrics (CAR, precision, recall, F1 score, AUC, 

and Kappa coefficient) are reported in Table 4. The result comparisons are graphically shown in 

Fig. 12. 

In Table 4, the model performance with respect to each class label is presented. As can be seen 

from the experimental results, the LightGBM has achieved the most desired outcomes for all 

class labels. Herein, the Cohen's Kappa coefficient is the focusing performance measurement 

index because this coefficient provides a robust measure that takes into account both true 

positives and true negatives [71]. The LightGBM has attained the Cohen's Kappa coefficients of 

0.8828, 0.9677, 0.9628, 0.9666, 0.9150, and 0.9046 for the six class labels of interest. For 

detecting non-crack, longitudinal crack, diagonal crack, minor fatigue crack, and severe fatigue 

crack, the DNN is the second best model, followed by the CNN model. In the task of detecting 

transverse cracks, the CNN (Kappa coefficient = 0.9430) outperforms the DNN (Kappa 

coefficient = 0.9326). In addition, the performance of the SVM is worse than that of the 

LightGBM, DNN, and CNN in terms of most performance measurement metrics. 

The Kappa coefficients of the LightGBM are higher than 0.9 in all classes except C0 (non-

crack). It is understandable because this category contains a large instances of diverse objects 

such as potholes, raveling, sealed crack, stains, etc. The complex texture of the pavement 

background in this class causes a higher miss-classification rate of the model. In other classes, 

the Kappa coefficients of the LightGBM are all higher than 0.9; this fact indices that the numbers 

of false positive and false negative cases predicted by the LightGBM are desirably low. With 

Kappa coefficients > 0.9, the DNN is also highly capable of detecting instances containing the 

longitudinal crack, transverse crack, and diagonal crack. The CNN also shows good 

performances in classifying data instances from the classes of longitudinal crack (Kappa 

coefficients = 0.9431) and transverse crack (Kappa coefficients = 0.9430). 

In addition, this study has employed the Wilcoxon signed-rank test [72] to reliably assess the 

models’ predicted outcomes. The Wilcoxon signed-rank test is a non-parameter test widely used 

for pairwise comparison of model performances [17]. Herein, the data obtained from 20 

independent runs of the employed models is subject to this hypothesis test. Moreover, the 

significant level (p-value) of the test is selected to be 0.05. The test is applied for pairwise 

comparison between the LightGBM and other benchmark approaches. With p-values = 0.0001, it 

is able to reject the null hypothesis of equal performance and confirm the superiority of the 

LightGBM. To better demonstrate the classification performance of the LightGBM, its average 

confusion matrix obtained from 20 independent runs is shown in Fig. 13. 
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Table 4 
Model performance comparison. 

Class Indices 
LightGBM DNN CNN SVM 

Mean Std Mean Std Mean Std Mean Std 

C0  

(Non-crack) 

CAR 0.9680 0.0030 0.9542 0.0050 0.9416 0.0132 0.9186 0.0038 

Precision 0.9204 0.0120 0.8718 0.0348 0.8280 0.0389 0.7475 0.0144 

Recall 0.8843 0.0134 0.8537 0.0251 0.8199 0.0468 0.7706 0.0188 

F1 Score 0.9019 0.0086 0.8617 0.0119 0.8237 0.0412 0.7587 0.0113 

AUC 0.9914 0.0016 0.9810 0.0027 0.9651 0.0120 0.9504 0.0046 

Kappa 0.8828 0.0103 0.8343 0.0148 0.7888 0.0491 0.7098 0.0131 

C1 (Longitudinal 

Crack) 

CAR 0.9910 0.0014 0.9868 0.0021 0.9842 0.0047 0.9717 0.0029 

Precision 0.9707 0.0067 0.9577 0.0141 0.9497 0.0141 0.9090 0.0137 

Recall 0.9756 0.0063 0.9653 0.0142 0.9555 0.0156 0.9219 0.0130 

F1 Score 0.9731 0.0041 0.9613 0.0055 0.9526 0.0140 0.9153 0.0087 

AUC 0.9986 0.0006 0.9975 0.0012 0.9950 0.0036 0.9934 0.0012 

Kappa 0.9677 0.0049 0.9534 0.0068 0.9431 0.0168 0.8983 0.0104 

C2  

(Transverse Crack) 

CAR 0.9898 0.0011 0.9813 0.0023 0.9840 0.0028 0.9504 0.0030 

Precision 0.9684 0.0087 0.9425 0.0130 0.9430 0.0109 0.8719 0.0164 

Recall 0.9695 0.0058 0.9456 0.0148 0.9624 0.0093 0.8294 0.0161 

F1 Score 0.9689 0.0033 0.9439 0.0070 0.9526 0.0081 0.8499 0.0101 

AUC 0.9977 0.0010 0.9948 0.0017 0.9947 0.0018 0.9799 0.0021 

Kappa 0.9628 0.0039 0.9326 0.0084 0.9430 0.0098 0.8203 0.0118 

C3  

(Diagonal Crack) 

CAR 0.9906 0.0015 0.9833 0.0033 0.9659 0.0115 0.9564 0.0035 

Precision 0.9719 0.0061 0.9505 0.0209 0.8948 0.0381 0.8952 0.0135 

Recall 0.9727 0.0060 0.9500 0.0139 0.9019 0.0328 0.8344 0.0181 

F1 Score 0.9723 0.0043 0.9500 0.0095 0.8982 0.0336 0.8636 0.0115 

AUC 0.9990 0.0003 0.9962 0.0012 0.9895 0.0066 0.9844 0.0021 

Kappa 0.9666 0.0052 0.9400 0.0114 0.8777 0.0405 0.8377 0.0135 

C4  

(Minor Fatigue Crack) 

CAR 0.9762 0.0030 0.9609 0.0046 0.9329 0.0100 0.9135 0.0052 

Precision 0.9180 0.0114 0.8704 0.0220 0.7986 0.0335 0.7311 0.0207 

Recall 0.9410 0.0110 0.8960 0.0289 0.8000 0.0310 0.7584 0.0171 

F1 Score 0.9293 0.0092 0.8824 0.0139 0.7991 0.0293 0.7443 0.0144 

AUC 0.9953 0.0010 0.9875 0.0027 0.9668 0.0085 0.9474 0.0051 

Kappa 0.9150 0.0109 0.8590 0.0164 0.7588 0.0353 0.6923 0.0174 

C5  

(Severe Fatigue Crack) 

CAR 0.9733 0.0031 0.9623 0.0036 0.9505 0.0057 0.9364 0.0041 

Precision 0.9177 0.0143 0.8966 0.0149 0.8619 0.0178 0.7990 0.0185 

Recall 0.9239 0.0125 0.8749 0.0231 0.8377 0.0249 0.8268 0.0172 

F1 Score 0.9207 0.0088 0.8853 0.0129 0.8494 0.0181 0.8125 0.0131 

AUC 0.9947 0.0008 0.9882 0.0024 0.9816 0.0036 0.9658 0.0038 

Kappa 0.9046 0.0107 0.8628 0.0148 0.8199 0.0214 0.7742 0.0153 
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Fig. 12. Boxplots of model performance. 

  

Class 

  

0 1 2 3 4 5 

Class 

0 529.20 7.05 7.80 6.55 14.30 33.55 

1 4.05 584.90 1.75 3.40 4.00 1.40 

2 5.80 2.20 572.85 2.55 2.60 4.95 

3 5.75 3.80 1.85 591.35 4.90 0.35 

4 14.80 3.40 3.15 4.05 563.85 9.95 

5 15.45 1.25 4.15 0.55 24.60 557.90 

Fig. 13. Average confusion matrix of the LightGBM obtained from 20 independent runs. 
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In addition, demonstrations of the LightGBM used for classifying data in the six classes of 

interest are shown in Fig. 14, Fig. 15, Fig. 16, Fig. 17, Fig. 18, and Fig. 19.As can be observed 

from these figures, the proposed LightGBM-based method is capable of correctly classifying 

image samples under various circumstances (low/excessive lighting conditions) and with the 

appearances of various irregular objects (e.g. traffic marks, potholes, stains, patches, raveling, 

shade, etc.). 

Image sample Actual Class Classes’ probability Note 

 

C0 

P(C0) = 0.9141 

P(C1) = 0.0047 

P(C2) = 0.0195 

P(C3) = 0.0025 

P(C4) = 0.0589 

P(C5) = 0.0004 
 

Regular cases 

 

C0 

P(C0) = 0.9952 

P(C1) = 0.0000 

P(C2) = 0.0022 

P(C3) = 0.0000 

P(C4) = 0.0006 

P(C5) = 0.0020 
 

Traffic mark 

 

C0 

P(C0) = 0.6649 

P(C1) = 0.0140 

P(C2) = 0.0110 

P(C3) = 0.2092 

P(C4) = 0.0879 

P(C5) = 0.0129 
 

Blurred traffic mark 

 

C0 

P(C0) = 0.5156 

P(C1) = 0.0045 

P(C2) = 0.0410 

P(C3) = 0.0398 

P(C4) = 0.0948 

P(C5) = 0.3042 
 

Coupled with stain 

 

C0 

P(C0) = 0.8466 

P(C1) = 0.0000 

P(C2) = 0.1266 

P(C3) = 0.0003 

P(C4) = 0.0024 

P(C5) = 0.0240 
 

Irregular lighting 

condition 

 

C0 

P(C0) = 0.7830 

P(C1) = 0.0011 

P(C2) = 0.0039 

P(C3) = 0.0018 

P(C4) = 0.0420 

P(C5) = 0.1682 
 

Patches 

Fig. 14. Demonstrations of the classification for the data samples in the C0 class. 
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Image sample Actual Class Classes’ probability Note 

 

C1 

P(C0) = 0.0222 

P(C1) = 0.9699 

P(C2) = 0.0009 

P(C3) = 0.0064 

P(C4) = 0.0005 

P(C5) = 0.0001 
 

Regular cases 

 

C1 

P(C0) = 0.0032 

P(C1) = 0.9841 

P(C2) = 0.0002 

P(C3) = 0.0043 

P(C4) = 0.0080 

P(C5) = 0.0001 
 

Parallel cracks 

 

C1 

P(C0) = 0.0343 

P(C1) = 0.7664 

P(C2) = 0.0713 

P(C3) = 0.0814 

P(C4) = 0.0462 

P(C5) = 0.0005 
 

Thin crack 

 

C1 

P(C0) = 0.0000 

P(C1) = 0.9996 

P(C2) = 0.0000 

P(C3) = 0.0002 

P(C4) = 0.0002 

P(C5) = 0.0000 
 

Excessive lighting 

condition 

 

C1 

P(C0) = 0.0001 

P(C1) = 0.9903 

P(C2) = 0.0000 

P(C3) = 0.0007 

P(C4) = 0.0088 

P(C5) = 0.0000 
 

Coupled with minor 

raveling 

 

C1 

P(C0) = 0.0019 

P(C1) = 0.9373 

P(C2) = 0.0017 

P(C3) = 0.0026 

P(C4) = 0.0492 

P(C5) = 0.0074 
 

Traffic mark 

Fig. 15. Demonstrations of the classification for the data samples in the C1 class. 
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Image sample Actual Class Classes’ probability Note 

 

C2 

P(C0) = 0.0352 

P(C1) = 0.0027 

P(C2) = 0.9252 

P(C3) = 0.0072 

P(C4) = 0.0294 

P(C5) = 0.0003 
 

Regular cases 

 

C2 

P(C0) = 0.0007 

P(C1) = 0.0001 

P(C2) = 0.9715 

P(C3) = 0.0003 

P(C4) = 0.0094 

P(C5) = 0.0180 
 

Coupled with minor 

raveling 

 

C2 

P(C0) = 0.0089 

P(C1) = 0.0005 

P(C2) = 0.9483 

P(C3) = 0.0011 

P(C4) = 0.0278 

P(C5) = 0.0135 
 

Thin crack 

 

C2 

P(C0) = 0.1368 

P(C1) = 0.0209 

P(C2) = 0.7656 

P(C3) = 0.0023 

P(C4) = 0.0511 

P(C5) = 0.0233 
 

Coupled with stain 

 

C2 

P(C0) = 0.1300 

P(C1) = 0.0276 

P(C2) = 0.6712 

P(C3) = 0.0905 

P(C4) = 0.0589 

P(C5) = 0.0217 
 

Parallel cracks 

 

C2 

P(C0) = 0.0261 

P(C1) = 0.0011 

P(C2) = 0.9570 

P(C3) = 0.0014 

P(C4) = 0.0116 

P(C5) = 0.0028 
 

Irregular lighting 

condition 

Fig. 16. Demonstrations of the classification for the data samples in the C2 class. 
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Image sample Actual Class Classes’ probability Note 

 

C3 

P(C0) = 0.0018 

P(C1) = 0.0002 

P(C2) = 0.0009 

P(C3) = 0.8944 

P(C4) = 0.0995 

P(C5) = 0.0032 
 

Regular cases 

 

C3 

P(C0) = 0.0000 

P(C1) = 0.0000 

P(C2) = 0.0000 

P(C3) = 0.9994 

P(C4) = 0.0005 

P(C5) = 0.0000 
 

Coupled with traffic 

mark 

 

C3 

P(C0) = 0.0037 

P(C1) = 0.0281 

P(C2) = 0.0059 

P(C3) = 0.8445 

P(C4) = 0.1061 

P(C5) = 0.0117 
 

Excessive lighting 

condition 

 

C3 

P(C0) = 0.0000 

P(C1) = 0.0001 

P(C2) = 0.0000 

P(C3) = 0.9986 

P(C4) = 0.0001 

P(C5) = 0.0012 
 

Thin crack with patch 

 

C3 

P(C0) = 0.0009 

P(C1) = 0.0436 

P(C2) = 0.0011 

P(C3) = 0.9417 

P(C4) = 0.0127 

P(C5) = 0.0000 
 

Disconnected segments 

 

C3 

P(C0) = 0.0004 

P(C1) = 0.0000 

P(C2) = 0.0016 

P(C3) = 0.9782 

P(C4) = 0.0192 

P(C5) = 0.0006 
 

Coupled with stain 

Fig. 17. Demonstrations of the classification for the data samples in the C3 class. 
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Image sample Actual Class Classes’ probability Note 

 

C4 

P(C0) = 0.0328 

P(C1) = 0.0009 

P(C2) = 0.0066 

P(C3) = 0.0016 

P(C4) = 0.9578 

P(C5) = 0.0002 
 

Regular cases 

 

C4 

P(C0) = 0.0049 

P(C1) = 0.0000 

P(C2) = 0.0415 

P(C3) = 0.0060 

P(C4) = 0.8895 

P(C5) = 0.0582 
 

Excessive lighting 

condition 

 

C4 

P(C0) = 0.0104 

P(C1) = 0.0002 

P(C2) = 0.0002 

P(C3) = 0.0131 

P(C4) = 0.9628 

P(C5) = 0.0133 
 

Irregular lighting 

condition 

 

C4 

P(C0) = 0.0270 

P(C1) = 0.0001 

P(C2) = 0.0043 

P(C3) = 0.0003 

P(C4) = 0.9675 

P(C5) = 0.0008 
 

Coupled with patch 

 

C4 

P(C0) = 0.0065 

P(C1) = 0.0006 

P(C2) = 0.0636 

P(C3) = 0.0343 

P(C4) = 0.8477 

P(C5) = 0.0473 
 

Coupled with stain 

 

C4 

P(C0) = 0.0384 

P(C1) = 0.0007 

P(C2) = 0.0012 

P(C3) = 0.0167 

P(C4) = 0.8751 

P(C5) = 0.0678 
 

Coupled with traffic 

mark 

Fig. 18. Demonstrations of the classification for the data samples in the C4 class. 
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Image sample Actual Class Classes’ probability Note 

 

C5 

P(C0) = 0.0529 

P(C1) = 0.0000 

P(C2) = 0.0206 

P(C3) = 0.0012 

P(C4) = 0.0359 

P(C5) = 0.8894 
 

Regular cases 

 

C5 

P(C0) = 0.0313 

P(C1) = 0.0001 

P(C2) = 0.0067 

P(C3) = 0.0002 

P(C4) = 0.0089 

P(C5) = 0.9529 
 

Coupled with pothole 

 

C5 

P(C0) = 0.0024 

P(C1) = 0.0020 

P(C2) = 0.0838 

P(C3) = 0.0014 

P(C4) = 0.0080 

P(C5) = 0.9024 
 

Coupled with dirt 

 

C5 

P(C0) = 0.1079 

P(C1) = 0.0004 

P(C2) = 0.0132 

P(C3) = 0.0136 

P(C4) = 0.3767 

P(C5) = 0.4883 
 

Coupled with minor 

raveling 

 

C5 

P(C0) = 0.0219 

P(C1) = 0.0001 

P(C2) = 0.1825 

P(C3) = 0.0001 

P(C4) = 0.0110 

P(C5) = 0.7843 
 

Coupled with pothole 

and stain 

 

C5 

P(C0) = 0.0233 

P(C1) = 0.0000 

P(C2) = 0.0002 

P(C3) = 0.0001 

P(C4) = 0.0011 

P(C5) = 0.9752 
 

Irregular lighting 

condition 

Fig. 19. Demonstrations of the classification for the data samples in the C5 class. 



46 N.D. Hoang, Q.L. Nguyen/ Journal of Soft Computing in Civil Engineering 7-3 (2023) 21-51 

4. Concluding remarks 

This paper has developed and verified the computer vision-based approaches for detecting and 

categorizing pavement crack patterns. The LightGBM, DNN, and CNN are employed to 

categorize samples of the pavement images into six categories: non-crack, longitudinal crack, 

transverse crack, diagonal crack, minor fatigue crack, and severe fatigue crack. In addition, 

image processing approaches, including SF, PI, and texture descriptors, are employed to compute 

the features of the pavement surface that are relevant to the categorization of the crack patterns. 

These features are employed by the LightGBM and the DNN to carry out the data classification 

phases. On the other hand, the CNN is able to perform the feature extraction and pattern 

recognition tasks automatically. 

A dataset, consisting of 12,000 image data points, has been acquired to construct and verify the 

aforementioned computer vision-based approaches. Based on this image data, a set of 28 features 

has been computed by the image processing techniques. Accordingly, a numerical dataset has 

been constructed to develop the LightGBM and DNN models. By experiments, it can be shown 

that the LightGBM, DNN, and CNN outperform the SVM method that is widely used for crack 

detection and crack pattern recognition. Moreover, the Wilcoxon signed-rank test also confirms 

the superiority of the LightGBM over the DNN, CNN, and SVM models. Thus, the newly 

developed computer vision based on the LightGBM integrated with the feature extraction 

approach can be a promising alternative to enhance the accuracy and productivity of the 

pavement surveying process. Future extensions of the current work may include the following 

directions: (i) the applications of other advanced texture descriptors for better representing the 

characteristics of the pavement surface; (ii) the utilization of other potential gradient boosting 

machines (e.g., XGBoost [73]) for enhancing the classification accuracy; (iii) the investigation of 

the capability of advanced deep transfer learning in automatic feature extraction; (iv) the 

employment of state-of-the-art metaheuristic methods for optimizing the performance of 

machine learning models; (v) the applications of sophisticated image processing techniques for 

crack segmentation and accurate measurements of crack objects. 

Supplementary material 

The dataset and Python codes used to support the findings of this study have been deposited in 

the repository of GitHub at https://github.com/NhatDucHoang/LightGBM_PaveCrackPatterns. 
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