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This study presents a new approach based on shearlet 

transform for the first time to detect damages, and compare it 

with the wavelet, Laplacian pyramid, curvelet, and contourlet 

transforms to specify different types of defects in plate 

structures. Wavelet and Laplacian pyramid transforms have 

inferior performance to detect flaws with different multi-

directions, such as curves, because of their basic element 

form, expressing the need for more efficient transforms. 

Therefore, some transforms, including curvelet and 

contourlet, have been evaluated so far for improving the 

performance of traditional transforms. Although these 

transforms have overcome the deficiencies of previous 

methods, they have a weakness in detecting several 

imperfections with various shapes in plate structures —one 

of the essential requirements that each transform should 

possess. In this study, we have used the shearlet transform 

that is used for the first time to detect identification and 

overcome all previous transform dysfunctionalities. In this 

regard, these transforms were applied to a four-fixed 

supported square plate with various defects. The obtained 

results revealed that the shearlet transform has the premier 

capability to demonstrate all kinds of damages compared to 

the other transforms, namely wavelet, Laplacian pyramid, 

curvelet, and contourlet. Also, the shearlet transform can be 

considered as an excellent and operational approach to 

demonstrate different forms of defects. Furthermore, the 

performance and correctness of the transforms have been 

verified via the experiment. 
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1. Introduction 

Non-destructive methods in civil engineering (e.g., wavelet transform) have received significant 

attention in recent decades [1]. In the past few years, the application of wavelet transforms for 

health monitoring of structures (SHM) and detecting damages have been investigated by many 

researchers. Ovanesova and Suarez [1] used wavelet transform to find defects in frame 

structures, showing that this method merely needs response data of the defective structure. Kim 

and Melhem [2] offered the wavelet analysis method for defect identification. They first 

presented the theory of wavelet transform and then used it in the detection of cracks in a beam 

and mechanical gear. Yun et al. [3] proposed a technique based on analyzing the wavelet signal 

of the smart wireless sensor for the identification of the decentralized defect. They verified this 

proposed method with experimental tests. Bagheri et al. [4] expressed the ability of a two-

dimensional discrete wavelet transform to identify damage of plates using modal data. Also, they 

used experimental data to validate the proposed technique. Cao et al. [5] suggested the utilization 

of the Teager energy operator along with wavelet transform for beam damage recognition in 

noisy conditions. They applied this method on several analytical cases to show the competence 

of their proposed technique. Yang and Nagarajaiah [6] suggested the blind damage detection by 

analyzing independent component via wavelet transform. Moreover, examples of the seismic-

excited structures are stated to indicate the ability of the developed method. Ulriksen et al. [7] 

developed a new technique based on wavelet transform and modal analysis to identify defects of 

wind turbine blades. Shahsavari et al. [8] presented the mode shape analysis with wavelet 

transform to detect defects of beams. Wang et al. [9] introduced a new form of wavelet transform 

based on residual force vector for fault recognition of underground tunnel structures. They 

introduced a novel damage index, which can be used as an efficient defect detection indicator. 

Zhu et al. [10] proposed an approach for crack recognition using continuous wavelet transform 

through introducing a new index for defect discernment. Jahangir et al. [11] presented an 

approach based on wavelet analysis to identify damage to RC beams. Fakharian and Naderpour 

[12] utilized two various methods including wavelet packet transform and peak picking to assess 

the quantification of defect severity. Naderpour et al. [13] presented shear strength prediction 

using three different approaches including ANN, GMDH-NN, and GEP. They showed all of the 

methods are capable of predicting properly. Ghanizadeh et al. [14] used evolutionary polynomial 

regression to develop a prediction model for collapse settlement and stress release coefficients. 

Naderpour et al. [15] utilized a new approach based on the data handling group method to the 

estimation of the moment capacity of ferrocement members. Bagheri and Kourehli [16] 

presented a wavelet analysis based-method to defect identification. Kourehli [17] used wavelet 

transform to structural health monitoring of steel frames. Ghannadi and Kourehli [18] used a 

slim mold algorithm to damage detection. Ghannadi and Kourehli [19] suggested a new method 

based on a moth-flame algorithm to defect identification. Also, there are some useful methods 

including wavelet transform and optimization that have been used recently for damage 

demonstration [20–23]. Another transform that has been evaluated in this investigation is the 

Laplacian pyramid transform. Burt and Adelson [24] suggested the new method based on the 
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Laplacian pyramid, well suited for image analysis and compression. Also, Do and Vetterli [25] 

used the Laplacian pyramid to create a new transform, named pyramid directional filter bank. 

They demonstrated that once the Laplacian pyramid is applied on a signal, two parts are 

produced, including approximation and detail. Although wavelets have been widely utilized in 

damage detection, they have offered a poor performance on representing objects with highly 

anisotropic elements. Accordingly, other transforms have been introduced to overcome the 

weakness of traditional approaches. In what follows, some of these transforms are expressed. 

Candes et al. [26] presented the fast discrete curvelet transform, i.e., the second generation of 

curvelet transform. Bagheri et al. [27] used the curvelet transform for recognition of vibration-

based defects of plate structures, demonstrating its excellent ability to show line features. 

Nicknam et al. [28] propounded curvelet transform via wrapping procedure for fault discernment 

in two-dimensional structures. They used both numerical and experimental data to display the 

superior performance of this technique. Another transform that has been developed to improve 

the traditional multiscale representation is the contourlet transform. Do and Vetterli [29] 

proposed a new two-dimensional image representation named the contourlet transform. Po and 

Do [30] exhibited that contourlets are composed of basics oriented at various directions, which 

enables this transform to show smooth contours of natural images effectively. Vafaie and 

Salajegheh [31] compared wavelet and contourlet transforms for the identification of vibration-

based damage of plate structures, showing the superiority of contourlets over wavelets in the 

detection of curved cracks in the plate structures. Jahangir et al. [32] proposed using contourlet 

transform to damage localization and assessment of severity. Although these transforms have 

been successful in overcoming the weakness of the previous techniques, they could not detect 

damages with various shapes excellently. Thus, the shearlet transform has been presented as an 

efficient technique in this study. Lim [33] suggested the discrete shearlet transform, utilized to 

provide efficient multiscale directional representation. Xu et al. [34] applied the shearlet 

transform for the surface defects classification of metals. They expressed that since various 

damages have information in several directions and on different scales, another transform 

superior to wavelet should be used, i.e., the shearlet transform. 

2. Research significance 

This investigation mainly aims to present the effectiveness of a shearlet transform-based 

approach which is used for the first time to defect detection, and compared to the wavelet, 

Laplacian pyramid, curvelet, and contourlet transforms, to detect imperfections with various 

shapes in plate structures. Thus, eight examples with multiple damages have been discussed to 

check the transform performance. The rest of this paper is organized as follows. In section 2, the 

overview of the algorithm of wavelet, Laplacian pyramid, curvelet, contourlet, and shearlet 

transforms is presented. Then, the process of defect identification with these five transforms is 

expressed, and a damage index is also introduced to show flaws. In section 3, eight numerical 

examples are addressed. Performance evaluation of the transforms through an experimental 

model is carried out in section 4. Finally, section 5 represents the concluding remarks. 
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3. Methods 

Defect detection with wavelet, Laplacian pyramid, curvelet, contourlet, and shearlet transforms 

includes the following steps: 

 Model a plate 

 Obtain the structural response of the plates 

 De-noise the structural response of the plates 

 Apply the transforms 

 Determine the damage index (DI) 

 Plot the damage index 

These steps are presented comprehensively as below: 

3.1. Model a plate 

 In this part, the plate with and without damage is simulated. A defect in the plate can be 

modeled as the reduction of cross-sectional area, material properties, stiffness, and so forth. In 

this research, the flaw is simulated as the reduction of Young’s modulus in the damaged plate. 

As can be seen in Eq. (1), Young’s modulus for damaged plate is denoted by 𝐸𝑑𝑎𝑚𝑎𝑔𝑒𝑑, where 𝑑 

stands for the intensity of defect, and 𝐸𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 is Young’s modulus of the undamaged plate. It 

is worth mentioning that d could be located between 0 and 1 (in our examples 0.05, 0.1, and 0.2 

was considered). In addition, d is equal to 0 and 1 meaning undamaged and fully damaged states, 

respectively. 

𝐸𝑑𝑎𝑚𝑎𝑔𝑒𝑑 = 𝐸𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑(1 − 𝑑) (1) 

3.2. Obtain the structural response of the plates 

 After modeling a plate, the structural response of the plate is required for fault identification. In 

this investigation, the plate mode shape was used to obtain the displacement of nodes in the 

fundamental mode shape of the plate as the structural response needed for the procedure of 

damage identification. It is worth noting that the finite element method (FEM) was implemented 

to specify the plate mode shape. The equation of free vibration is defined as: 

𝑀𝑢 ̈ (𝑡) + 𝐾𝑢(𝑡) = 𝑓(𝑡) (2) 

Where 𝑀,𝐾, and 𝑓 are the mass, stiffness matrices, and force vector, respectively. Also, �̈� and 𝑢 

are acceleration and displacement, respectively. According to the harmonic motion, the natural 

frequencies and the modes of vibration are gained as 

𝐾 − 𝜔𝑖
2𝑀)𝜑𝑖 = 0,      𝑖 = 1,2, … , 𝑛𝑚 (3) 

Where 𝜔𝑖 is the natural frequency, 𝜑𝑖 is the 𝑖th vibration mode shape vector, and 𝑛𝑚 is the 

structural modes number [35]. 
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3.3. De-noise the structural response of the plates 

Since measured data of the structures contain noise in a real experiment, de-noising plays an 

essential role in the process of defect recognition. However, the noise amount is ambiguous, and, 

in turn, it is likely to delete useful information containing noise in the process of de-noising the 

measured information with low noise. Therefore, de-noising is one of the significant sections in 

the defect detection process. In this study, de-noising was performed as follows: 

1. The transform was applied to the signal (the displacement in the plate fundamental mode 

shape) to obtain the transform coefficients. 

2. Set the coefficient threshold. 

3. De-noised coefficients were utilized to reconstruct the de-noised signal. 

It should be noted that the white Gaussian noise has been added to the signal randomly. 

𝑍𝑖~𝒩(0,𝑁) 

𝑌𝑖 = 𝑋𝑖 + 𝑍𝑖 
(4) 

Where 𝑍𝑖 is drawn from a normal distribution with a mean value of zero and the variance N, and 

it adds the noise randomly to our signal which is 𝑋𝑖. In addition, we have compared two various 

methods based on wavelet sym4 and db1 to denoise the noisy signal, and we have used sym4 

according to the superior performance of sym4 [36]. 

3.4. Apply the transforms 

In this section: 

a) An overview of the wavelet, Laplacian pyramid, curvelet, contourlet, and shearlet 

transform is given. 

b) Then, the structural response of the plates —considered as the displacement of the 

nodes in the first mode shape of the plates in this study— is utilized as a signal for 

these transforms to acquire the transform detail coefficients. 

c) Finally, these detail coefficients are used in the next stage in the damage index for 

defect detection. 

In all formulas, the following notations are used: 

 𝑗 = decomposition level of the transform 

 𝑙 =number of directions for displaying detail coefficients, 𝑙 = 0,1, … , 𝐿 

 low-pass of signal=approximation part; high-pass of signal= detail part 

3.4.1. Wavelet transform 

Two parts are produced by applying two-dimensional wavelet to a signal for 𝑗 = 𝐽; 

approximation (𝑐𝐴𝐽) and three detail coefficients 

(𝑐𝐷𝐽
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙,𝑙=1, 𝑐𝐷𝐽

𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙,𝑙=2, 𝑐𝐷𝐽
𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙,𝑙=3

, 𝑙 = 1,2,3 (𝐿 = 3)) (Fig. 1). 
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Fig. 1. The scheme of wavelet transform for damage detection with an example for j=1. 

Also, as choosing the proper wavelet is very important due to its significant impact on damage 

identification, in this study, three wavelets – Haar, Symlet, and Discrete Meyer – are used to 

compare their performance and choose the one having the superior efficiency in detecting a flaw. 

Haar wavelet: The Haar wavelet is a rescaled function sequence (square-shaped) that form a 

wavelet family. The Haar wavelet mother and its scaling function—𝜓(𝑥), 𝜙(𝑥)—are determined 

as follows [35]: 

      𝜓(𝑥) = {
1                   0 ≤ 𝑥 < 0.5
−1                    0.5 ≤ 𝑥 < 1
0                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

𝜙(𝑥) = {
1                0 ≤ 𝑥 ≤ 1
0               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

Symlet wavelet: The family of Symlet wavelets is a modified version of Daubechies wavelets 

with increased symmetry [37]. The mother wavelet and scaling function are represented in Fig. 

2. 

 
 

(a) Mother function (b) Scaling function 

Fig. 2. Symlet wavelet function [38]. 

Discrete Meyer wavelet: The Meyer wavelet is infinitely differentiable with infinite support; 

defined in the frequency domain in terms of function 𝜈 as [39]: 
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𝜓(ω) ≔

{
 

 
1

√2𝜋
sin (

𝜋

2
𝜈(
3|𝜔|

2𝜋
− 1)) 𝑒𝑗𝜔/2            𝑖𝑓

2𝜋

3
< |𝜔|  <

4𝜋

3

1

√2𝜋
cos (

𝜋

2
𝜈(
3|𝜔|

4𝜋
− 1)) 𝑒𝑗𝜔/2            𝑖𝑓

4𝜋

3
< |𝜔|  <

8𝜋

3

0                                                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (7) 

ν(x) ≔ {

0                 𝑖𝑓 𝑥 < 0
𝑥            𝑖𝑓 0 < 𝑥 < 1
1                𝑖𝑓𝑥 > 1

 (8) 

In this investigation, all three above wavelets are evaluated in the second numerical example. 

3.4.2. Laplacian pyramid and Contourlet transform 

Contourlet transform is a multiresolution transform with basic functions 𝜓𝑎,𝑗,𝑙
𝑛 . Thus, the 

contourlet transform of a signal is determined as: 

𝐶𝑐𝑜𝑛𝑡(𝑎, 𝑗, 𝑙, 𝑛) = 〈𝑠𝑖𝑔𝑛𝑎𝑙, 𝜓𝑎,𝑗,𝑙
𝑛  〉 (9) 

Where 𝐶𝑐𝑜𝑛𝑡(𝑎, 𝑗, 𝑙, 𝑛) is the inner product of signal with the basic functions (𝜓𝑎,𝑗,𝑙
𝑛 ); 𝑎, 𝑎 >

0 scale; 𝑛 = decomposition levels number of the directional filter bank. Also, 𝐶𝑐𝑜𝑛𝑡(𝑎, 𝑗, 𝑙, 𝑛) 
determines coefficients of the contourlet transform, which includes high and low-frequency 

parts, see [25] for more information. In this study, we considered an effective discrete contourlet 

transform scheme based on a Laplacian pyramid combined with proper directional filter banks, 

which was proposed in [29], (section a=Laplacian pyramid transform, section(a+b)= contourlet 

transform). 

Section a) First, Laplacian pyramid transform is applied to a signal. After the Laplacian 

pyramid stage, the output is 𝐽 high-pass signal 𝑐𝐷𝑗
𝑙=1, 𝑗 = 1,2, … , 𝐽;  𝐿 = 1) (in the fine 

to coarse order) and a low-pass signal 𝑐𝐴𝐽. 

Therefore, by applying Laplacian pyramid on a signal for 𝑗 = 𝐽, two parts are produced; 

approximation (𝑐𝐴𝐽) and detail coefficient (𝑐𝐷𝐽
𝑙=1, 𝐿 = 1). In this study, as indicated in Fig. 3, 

Laplacian pyramid transform is applied on the structural response of the intact and imperfect 

plate, which is the node displacement in the plate initial mode shape, to generate the detail 

coefficient. In the next step, the detail coefficient (𝑐𝐷𝐽
𝑙=1, 𝐿 = 1) is used as 𝑐𝐷𝑙𝑑𝑎𝑚𝑎𝑔𝑒𝑑  (detail 

coefficients of the damaged plate) and 𝑐𝐷𝑙𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 (detail coefficients of the undamaged plate) 

in section 3.5. Damage index, Eq. 15. Fig. 3 illustrates the Laplacian pyramid transform 

decomposition for 𝑗=1. 
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Fig. 3. The scheme of Laplacian pyramid transform for damage detection with an example for j=1. 

Section b) Second, a directional filter bank is applied on 𝑐𝐷𝑗
𝑙=1, 𝐿 = 1  (high-pass signal). 

Each high-pass signal 𝑐𝐷𝑗
𝑙=1, 𝑗 = 1,2, … , 𝐽; 𝐿 = 1  is further decomposed by a directional 

filter bank into 𝑙 high-pass directional signal (𝑐𝐷𝑗
𝑙, 𝑙 = 1,2, … , 𝐿), (𝑐𝐴𝐽 approximation 

coefficient, and 𝑐𝐷𝑗
𝑙 ,  detail coefficients) [29]. 

Therefore, by applying contourlet transform to a signal for 𝑗 = 𝐽, two parts are produced; 

approximation (𝑐𝐴𝐽 ) and detail coefficient (𝑐𝐷𝐽
𝑙), 𝑙 = 1,2, … , 𝐿 (contourlet can show details in 

various directions). In this research, as demonstrated in Fig. 4, the contourlet transform is applied 

to the structural response of flawless and imperfect plate, the node displacement in the 

fundamental mode shape, to produce the detail coefficients. In the next step, the detail 

coefficients (𝑐𝐷𝐽
𝑙, 𝑙 = 1,2, … , 𝐿 ) are utilized as 𝑐𝐷𝑙𝑑𝑎𝑚𝑎𝑔𝑒𝑑  (detail coefficients of the damaged 

plate) and 𝑐𝐷𝑙𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑(detail coefficients of the undamaged plate) in section 3.5. Damage 

index, Eq. 15. Fig. 4 indicates the decomposition of contourlet transform when 𝑗=1, 𝐿=4. 

 

Fig. 4. The scheme of contourlet transform for damage detection with an example for j=1, L=4. 

Also, selecting the appropriate Laplacian filter is very important in contourlet and Laplacian 

pyramid transforms for damage identification. Accordingly, 9/7 wavelet filter bank and PKVA 

filter (filters from the ladder structure) are utilized in this study in the second example. 
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3.4.3. Curvelet transform 

Curvelets consists of the two forms of block ridgelet transform and curvelet transform on the 

Fourier domain. In block ridgelet transform, signals are segmented into blocks, and ridgelet is 

performed on the blocks. In the curvelet transform, frequency partitioning is performed on the 

frequency domain. Therefore, the curvelet transform of a signal with basic functions 𝜓𝑎,𝑗,𝑙
𝑝

 is 

defined as: 

𝐶𝑐𝑢𝑟𝑣(𝑎, 𝑗, 𝑙, 𝑝) = 〈𝑠𝑖𝑔𝑛𝑎𝑙, 𝜓𝑎,𝑗,𝑙
𝑝  〉 (10) 

Where 𝐶𝑐𝑢𝑟𝑣(𝑎, 𝑗, 𝑙, 𝑝) is the inner product of 𝑠𝑖𝑔𝑛𝑎𝑙 with the basic functions (𝜓𝑎,𝑗,𝑙
𝑝

); 𝑎, 𝑎 >

0 scale; 𝑝 = (𝑝1, 𝑝2)𝜖𝑍
2 the sequence of translation parameters. Also, 

𝐶𝑐𝑢𝑟𝑣(𝑎, 𝑗, 𝑙, 𝑝) determines the coefficients of the curvelet transform, including high and low-

frequency parts, see ([[40]; [26]) for more information. In this research, digital curvelet 

transform is considered as the following: 

𝑆𝑖𝑔𝑛𝑎𝑙 = 𝑐𝐴𝐽 + ∑ 𝑐𝐷𝑗
𝑙𝐽

𝑗=1 ,   𝑙 = 1,2, … , 𝐿 (11) 

Where 𝑐𝐴𝐽 is a low pass version of the signal (approximation part), and 𝑐𝐷𝑗
𝑙 , 𝑙 =

1,2, … , 𝐿  represents details of the signal, see [26] for more information. Therefore, by applying 

curvelet transform on a signal for 𝑗 = 𝐽, two parts of approximation (𝑐𝐴𝐽 ) and detail coefficient 

(𝑐𝐷𝐽
𝑙), 𝑙 = 1,2, … , 𝐿 (curvelet can exhibit details in several directions) are produced. In this 

investigation, as exhibited in Fig. 5, the curvelet transform is applied to the structural response of 

intact and imperfect plate to generate the detail coefficients. In the next step, the detail 

coefficients (𝑐𝐷𝐽
𝑙, 𝑙 = 1,2, … , 𝐿 ) are used as 𝑐𝐷𝑙𝑑𝑎𝑚𝑎𝑔𝑒𝑑  (detail coefficients of the damaged 

plate) and 𝑐𝐷𝑙𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑(detail coefficients of the undamaged plate) in section 3.5. Damage 

index, Eq. 15. Fig. 5 demonstrates the curvelet transform decomposition when 𝑗=1, 𝐿=4. 

 

Fig. 5. The scheme of curvelet transform for damage detection with an example for j=1, L=4. 

3.4.4. Shearlet transform 

The shearlet transform is a multiresolution transform with basic functions 𝜓𝑎,𝑏,𝑠 defined as: 

𝜓𝑎,𝑏,𝑠(𝑥) = 𝑎
−3

4 𝜓(𝐴𝑎
−1𝑆𝑠

−1(𝑥 − 𝑏)) (12) 
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𝐴𝑎 = ( 𝑎     0
0      √𝑎

),   𝑆𝑠 = ( 1     𝑠
0        1

) (13) 

Where 𝑎, 𝑎 > 0 is scale; 𝑏𝜖𝑅2 is position; 𝑠𝜖𝑅 is the slope in the frequency domain; 𝐴𝑎 is 

parabolic scaling matrix; and 𝑆𝑠 is the shear matrix. Therefore, the shearlet transform of a signal 

is defined as: 

𝐶𝑠ℎ𝑒𝑎𝑟(𝑎, 𝑏, 𝑠) = 〈𝑠𝑖𝑔𝑛𝑎𝑙, 𝜓𝑎,𝑏,𝑠 〉 (14) 

Where 𝐶𝑠ℎ𝑒𝑎𝑟(𝑎, 𝑏, 𝑠) is the inner product of signal and the basic functions (𝜓𝑎,𝑏,𝑠). Also, 

𝐶𝑠ℎ𝑒𝑎𝑟(𝑎, 𝑏, 𝑠) defines the coefficients of the shearlet transform, which includes high and low-

frequency parts ([41]; [42]). In this study, a discrete shearlet transform was considered, which 

included the Laplacian pyramid and shearing filters [34]. First, the Laplacian pyramid transform 

was applied to a signal where the outputs consisted of  𝐽 high-pass signal 𝑐𝐷𝑗
𝑙=1, 𝑗 =

1,2, … , 𝐽;  𝐿 = 1 and low-pass signal 𝑐𝐴𝐽.Second, proper shearing filters were applied to 

𝑐𝐷𝑗
𝑙=1, 𝐿 = 1,   (high-pass signal) to generate 𝑙 high-pass directional signal (𝑐𝐷𝑗

𝑙, 𝑙 = 1,2, … , 𝐿  ); 

(𝑐𝐴𝐽 defines approximation coefficient, and 𝑐𝐷𝑗
𝑙 defines detail coefficients in 𝑙 directions). 

Therefore, by applying shearlet transform to a signal for 𝑗 = 𝐽, two parts are produced; 

approximation (𝑐𝐴𝐽 ) and detail coefficient (𝑐𝐷𝐽
𝑙), 𝑙 = 1,2, … , 𝐿 (shearlets are capable of 

demonstrating details in various directions). In this study, as demonstrated in Fig. 6, the shearlet 

transform is applied to the structural response of damaged and undamaged plates, i.e., the node 

displacement in the initial mode shape of the plates, to produce the detail coefficients. In the next 

step, the detail coefficients (𝑐𝐷𝐽
𝑙 , 𝑙 = 1,2, … , 𝐿 ) were used as 𝑐𝐷𝑙𝑑𝑎𝑚𝑎𝑔𝑒𝑑  (detail coefficients of 

the damaged plate) and 𝑐𝐷𝑙𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑  (detail coefficients of the undamaged plate) in section 3.5. 

Damage index, Eq. 15. Fig. 6 displays shearlet transform decomposition when 𝑗=1, 𝐿=6. 

 

Fig. 6. The scheme of shearlet transform for damage detection with an example for j=1, L=6. 
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3.5. Determine the damage index (DI) 

The specification of the appropriate connection, named as damage index, is a central part of the 

flaw identification process [14]. Accordingly, after obtaining detail coefficients of the damage 

and undamaged plates, a proper relationship was defined between both of them that led to the 

efficient demonstration of the defect place. The damage index is defined as follows: 

𝐷𝐼 = √
1

𝐿
∑ (𝑐𝐷𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑙 −𝑐𝐷𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑
𝑙 )2𝐿

𝑙=1
1

𝐿
∑ (𝑐𝐷𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑙 )2𝐿
𝑙=1

 (15) 

𝑐𝐷𝑑𝑎𝑚𝑎𝑔𝑒𝑑
𝑙 , and 𝑐𝐷𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑

𝑙  determine the detail coefficients of the transforms for the damaged 

and undamaged plates, respectively. 

3.6. Plot the damage index 

Finally, the defect location was obtained for each transform by plotting the damage index. In 

other words, the defect location was determined as the maximum value of the damage index in 

all transforms. As indicated in Fig. 7, the fault detection procedure was identical for all 

transforms. 

 

 

 

 

 

 

Fig. 7. The general procedure of damage detection using the structural response for the horizontal linear 

defect example. 

4. Results 

4.1. Numerical results 

This research aims to present a new approach via shearlet transform compared with the other 

transforms; the wavelet transforms, Laplacian pyramid transform, curvelet transform, and 

contourlet transform; to find defect types in plate structures. To this end, the ability of all 
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transforms to detect cracks of plate structures was evaluated with eight numerical examples. In 

all cases, a square plate with a thickness of 10 𝑐𝑚 was considered with four fixed boundary 

conditions. Properties of plate material included Young’s modulus of  𝐸 = 20 𝐺𝑃𝑎 , the mass 

density 𝜌 = 2500 𝑘𝑔/𝑚3 , and Poisson’s ratio of 𝜐 = 0.2. It is worth mentioning that for 

simulating different geometry defects in the ABAQUS software, after modeling a plate, the 

defect with different shapes was considered in the plate as a new section with various materials. 

Then, all the plate could have meshed as one unit. The next step includes gathering results of 

ABAQUS such as nodal coordinates (x and y), and displacement in the y direction for the 

damaged and undamaged plates. In MATLAB software; these four vectors are considered input 

variables. In this step, the scatter interpolate method has been used to make a mesh grid in the x 

and y directions. 

4.1.1. The plate with a point defect 

The first example contains a plate with a width of 400 𝑐𝑚 and a length of 400 𝑐𝑚, including a 

square point damage with 5 𝑐𝑚 length and width, located as shown in Fig. 8. 

 

(a) The geometry of the plate with point defect 

  

(b) Wavelet 
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(c) Laplacian pyramid 

  
(d) Curvelet 

  

(e) Contourlet 

  
(f) Shearlet 

Fig. 8. Point damage detection. 
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4.1.2. The plate with a horizontal linear defect 

The second example includes a plate with a width of 400 𝑐𝑚 and a length of 400 𝑐𝑚, containing 

a horizontal linear defect with 60 𝑐𝑚 length and 5 𝑐𝑚 width, which is located as illustrated in 

Fig. 9. 

 

(a) The geometry of the plate with horizontal linear defect  

  

(b) Haar wavelet 

  

(c) Symlet wavelet 
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(d) Discrete Meyer wavelet 

  

(e) Laplacian pyramid (9/7 filter) 

  

(f) Laplacian pyramid (PKVA filter) 

  

(g) Curvelet 
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(h) Contourlet (9/7 filter) 

  

(i) Contourlet (PKVA filter) 

  

(j) Shearlet 

Fig. 9. Horizontal linear damage detection. 

4.1.3. The plate with a diagonal linear defect 

The third example consists of a fixed support plate with a width of 400 𝑐𝑚 and a length 

of 400 𝑐𝑚, including a diagonal linear damage with 60 𝑐𝑚 length, 5 𝑐𝑚 width, and the angle of 

45° located as in Fig. 10. 
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(a) The geometry of the plate with a diagonal linear defect 

  

(b) Discrete Meyer wavelet 

  

(c) Laplacian pyramid (9/7 filter) 
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(d) Curvelet 

  

(e) Contourlet (9/7 filter) 

 
 

(f) Shearlet 

Fig. 10. Diagonal linear damage detection. 
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4.1.4. The plate with an arc defect 

The fourth example comprises a fixed support plate with a width of 400 𝑐𝑚 and a length 

of 400 𝑐𝑚, containing a curved defect with 66 𝑐𝑚 length and 1𝑐𝑚 width, and coordinates of the 

arc center are as shown in Fig. 11. 

 

(a) The geometry of the plate with arc defect 

  

(b) Discrete Meyer wavelet 

  

(c) Laplacian pyramid (9/7 filter) 
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(d) Curvelet 

  

(e) Contourlet (9/7 filter) 

 
 

(f) Shearlet 

Fig. 11. Arc damage detection. 
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4.1.5. The plate with diverse linear defects 

The fifth example includes a fixed support plate with a width of 300 𝑐𝑚, length of 300 𝑐𝑚, and 

three linear damages, including horizontal, vertical, and diagonal. The size of the defects is as 

follows: 60 𝑐𝑚 length and 5 𝑐𝑚 width; the diagonal linear defect with the angle of 30°. The 

location of these defects is depicted in Fig. 12. 

 

(a) The geometry of the plate with diverse linear defects 

 
 

(b) Discrete Meyer wavelet 

Damage A:  

Damage B :  

Damage C:  
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(c) Laplacian pyramid (9/7 filter) 

 
 

(d) Curvelet 

 

 

(e) Contourlet (9/7 filter) 
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(f) Shearlet 

Fig. 12. Diverse linear damages detection. 

4.1.6. The square plate with arc defects 

The sixth example includes a fixed support plate with a width of 300 𝑐𝑚, length of 300 𝑐𝑚, and 

three curved defects. The sizes of these defects are as follows: curve damage 𝐴 with a length of 

31 𝑐𝑚 and width of 4 𝑐𝑚; curve damage 𝐵 with the length of 50 𝑐𝑚 and width of 1 𝑐𝑚; curve 

damage 𝐶 with the length of 50 𝑐𝑚 and width of 4 𝑐𝑚. The locations of these defects are shown 

in Fig. 13. 

 

 

 

 

 

 

 

(a) The geometry of the plate with arc defects 
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Damage B:  
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(b) Discrete Meyer wavelet 

  

(c) Laplacian pyramid (9/7 filter) 

 
 

(d) Curvelet 
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(e) Contourlet (9/7 filter) 

 
 

(f) Shearlet 

Fig. 13. Arc damage detection. 

4.1.7. The plate with five diverse defects 

The seventh example includes a plate with a width of 300 𝑐𝑚 and a length of 300 𝑐𝑚, which 

contained five defects. The linear defects (horizontal, vertical, and diagonal) have a length of 

50 𝑐𝑚 and width of 5 𝑐𝑚, and the diagonal linear defect with an angle of 30°. Also, the curve 

damage has a length of 48 𝑐𝑚 and width of 2 𝑐𝑚, and dimensions of the square defect are 5 𝑐𝑚. 

The locations of these defects are indicated in Fig. 14. 
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(a) The geometry of the plate with five diverse defects. 

  

(b) Discrete Meyer wavelet 

 
 

(c) Laplacian Pyramid (9/7 filter) 
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(d) Curvelet 

  

(e) Contourlet (9/7 filter) 

 
 

(f) Shearlet 

Fig. 14. Five diverse defects detection. 
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4.1.8. The plate with six diverse defects 

The eighth example includes a plate with a width of 400 𝑐𝑚 and a length of 400 𝑐𝑚 containing 

six defects. The linear defects (horizontal, vertical, and diagonal) have a length of 60 𝑐𝑚 and a 

width of 5 𝑐𝑚, and the diagonal linear defect with the angle of 45°. Also, the curve damage has a 

length of 50 𝑐𝑚 and width of  5 𝑐𝑚, and square defect dimensions are 7 𝑐𝑚. The locations of 

these defects are displayed in Fig. 15. 

 

 

 

(a) The geometry of the plate with six diverse defects 

  

(b) Discrete Meyer wavelet 
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(c) Laplacian Pyramid (9/7 filter) 

  
(d) Curvelet 

  
(e) Contourlet (9/7 filter) 

  
(f) Shearlet 

Fig. 15. Six diverse defects detection. 
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4.2. Experimental validation 

In this section, the capabilities of the transforms (wavelet, Laplacian pyramid, contourlet, 

curvelet, and shearlet) were evaluated using the vibration response data of a steel plate proposed 

by Rucka and Wilde [43]. It is worth mentioning that the data from Rucka and Wilde's paper is 

not publicly available. Also, the experimental data includes the undamaged state exclusively; 

hence, the damaged state was attained numerically. In addition, using experimental data has 

some problems such as lack of all measured DOFs and incomplete modal data; see these 

references for more information [44–46]. Fig. 16 depicts the steel plate with the length of 𝐿 =

 560 𝑚𝑚, width of  𝐵 =  480 𝑚𝑚, and height of  𝐻 =  2 𝑚𝑚. The plate Young’s modulus, 

Poisson’s ratio, and mass density were 𝐸 = 192 GPa, 𝜐 =  0.25, and  𝜌 = 7430 𝑘𝑔/𝑚3, 

respectively. The plate included a rectangular defect with 𝐿𝑑 =  80𝑚𝑚, 𝐵𝑑 =  80𝑚𝑚, and 𝐻𝑑 =

 0.5 𝑚𝑚. The starting point of the damage was located at 𝑥 =  200𝑚𝑚 and 𝑦 =  200𝑚𝑚. The 

transforms are applied to the fundamental mode shape to identify faults. Also, data de-noising 

was carried out based on the process in section of de-noise the structural response of the plates. 

 
(a) Experimental set-up [43] 

  
(b) Wavelet 
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(c) Laplacian pyramid 

  
(d) Curvelet 

  
(e) Contourlet 

  
(f) Shearlet transform 

Fig. 16. Single experimental defect detection. 
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5. Discussion 

In the following, the results of numerical and experimental examples are presented 

comprehensively (Fig. 17 demonstrates the overall summary of the numerical examples): 

 The experimental results have displayed that the maximum values of damage index are 

located approximately at the place of the defect in all the transforms. Accordingly, the 

transforms—wavelet, Laplacian pyramid, curvelet, contourlet, and shearlet transform—

can be adopted as applicable procedures to detect defects in all studies. 

 To choose the proper wavelet based on the wavelet impact on fault demonstration, the 

ability of various wavelets— including Haar, Symlet, and Discrete Meyer wavelet – is 

evaluated in the second example. As the shape of the horizontal linear defect is more 

vivid in the Discrete Meyer wavelet demonstration. Hence, damage presentation in all 

examples is investigated via this wavelet. 

 Since selecting the proper Laplacian filter has a considerable impression on the results of 

the Laplacian pyramid and contourlet transform, both filters 9/7 and PKVA, have been 

evaluated in this study to choose the qualified filter for the defect demonstration. As the 

9/7 filter has better performance in comparison with the PKVA filter, it is considered in 

all examples to defect identification. 

 As can be seen in Fig. 17, when there is a single defect in the plate, shearlet transform 

demonstrates excellent performance compared with the wavelet and Laplacian pyramid 

transform; however, the shearlet has a relatively similar function to the curvelet and 

contourlet transform. Therefore, it can be concluded that all these three transforms are 

useable tools to detect single damages in the plate structures. 

 Based on the Fig. 17, wavelet, Laplacian pyramid, curvelet, and contourlet transform 

have poor ability to detect multiple damages with different shapes in plate structures. 

Nonetheless, the shearlet transform has shown the perfect ability to exhibit several 

damages on the plate. 

 In conclusion, based on the numerical and experimental results, it could be concluded that 

the shearlet transform is a practical and efficient transform to identify all kinds of 

damages in the plate structures. 
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1) Wavelet: poor 

2) Laplacia: poor 

3) Curvelet: excellent 

4) Contourle: excellent 

5) Shearlet: excellent 

1) Wavelet: poor 

2) Laplacian: poor 

3) Curvelet: excellent 

4) Contourlet: excellent 

5) Shearlet: excellent 

1) Wavelet: poor 
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3) Curvelet: good 
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5) Shearlet: excellent 
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5) Shearlet: excellent 
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5) Shearlet: excellent 

1) Wavelet: poor 

2) Laplacian: poor 

3) Curvelet: poor 

4) Contourlet: poor 

5) Shearlet: excellent 

Fig. 17. The overall summary of the numerical examples. 
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Appear as Usually occur in 

Show 

There is the question of why the shearlet transform has superior efficiency in comparison with 

other transforms? To answer this question, let’s consider two steps: 

• First step: Comparison of shearlet with Laplacian pyramid and wavelet transform. 

This section is summarized in three stages. 

1. The capability to show more details causes better defect detection. 

2. Shearlet has a better function to show details compared to Laplacian and wavelet 

transform. 

3. Therefore, Shearlet has superior performance to exhibit defects. 

These stages have been explained in detail as follows: 

Fig. 18. The relationship between defects and detail part. 

Consider Fig. 18; this Fig presents this fact that defects appear in discontinuities of signals. 

Discontinuities occur in the detail part. Therefore, to detect defects, we should find the detail part 

of a signal. Accordingly, each transform with the superior capability to illustrate details has 

better efficiency to display defects. Now the question is which of wavelet, Laplacian pyramid, 

and the shearlet transform can demonstrate the detail part more effectively. To find the answer 

see Fig. 19. 

 

Fig. 19. The capability to show details. 

As indicated in Fig. 19, the wavelet transform can demonstrate details in three directions 

(horizontal, vertical, and diagonal), which are three matrices. Also, the Laplacian pyramid can 

give the details in one matrix exclusively. Nonetheless, the shearlet transform can indicate detail 

coefficients in several diverse directions. Hence, shearlet demonstrates more details, providing 

superior performance to demonstrate damages. 

 

 

 

 

 

Defects Discontinuities in 

signal 

Detail part of 

signal 

Apply Laplacian 

Apply Wavelet 

Apply Shearlet 

Signal 

Detail part is produced in one matrix 

(no direction) 

 
Detail parts are produced in three 

matrices (three directions) 

 

Detail parts are produced in various 
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• Second step: Comparison of shearlet with Curvelet and contourlet transform. 

These three transforms can show details in various directions. It means they have the same 

ability to show details. Thus, there is a question of why shearlet has presented better performance 

to damage identification. The answer is the shape of basic elements, see Fig. 20. 

  

 

 

(a) curvelet (b) contourlet (c) shearlet 

Fig. 20. The basic elements. 

As shown in Fig. 20, each transform has elements with elongated shapes oriented in different 

directions; however, their basic forms are different. The shape of the basic elements of the 

shearlet transform is more proper to show defects; therefore, it offers a superior capability to 

detect damage. 

6. Conclusions 

This research proposed a new shearlet transform-based approach and compared it with four 

transforms, including wavelet, Laplacian pyramid, curvelet, and contourlet, to detect several 

types of damages, such as point, linear, and curve, in the plate structure. To assess, the 

performance of various wavelets; Haar, Symlet, and Discrete Meyer wavelets were applied, and 

the Discrete Meyer wavelet was considered the superior one. Also, 9/7 and PKVA filters were 

evaluated to find the best ability of contourlet transform to detect damages, and the 9/7 filter was 

considered the better one. Based on what was mentioned, the best performance of each transform 

was used to compare the results. According to numerical simulation results, wavelets and 

Laplacian Pyramid could not demonstrate curve defects perfectly. In addition, shearlet, curvelet, 

and contourlet transform have similar, excellent performance in the plate with single damage. 

However, only the shearlet demonstrates perfect performance to identify multiple defects in the 

plate structure. It is worth mentioning that signal-based methods have some limitations such as 

the inability to determine the severity of the damage. Hence, based on the results, the shearlet 

transform overcome the weakness of the wavelet transform. Also, it offered superior 

performance to the other multiresolution transforms (Laplacian Pyramid, curvelet, and 

contourlet) to detect damages with different shapes. In addition, the correctness of the shearlet 

transform was validated by the experimental example. Thus, the shearlet transform can be 

employed as an efficient and practicable tool for the detection of all types of damages. 
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