[1] Nguyen H, Vu T, Vo TP, Thai H-T. Efficient machine learning models for prediction of concrete strengths. Constr Build Mater 2021;266:120950. https://doi.org/10.1016/j.conbuildmat.2020.120950.
[2] Mohe NS, Shewalul YW, Agon EC. Experimental investigation on mechanical properties of concrete using different sources of water for mixing and curing concrete. Case Stud Constr Mater 2022;16:e00959. https://doi.org/10.1016/j.cscm.2022.e00959.
[3] Kavya A, Venkateshwara Rao A. Experimental investigation on mechanical properties of concrete with M-sand. Mater Today Proc 2020;33:663–7. https://doi.org/10.1016/j.matpr.2020.05.774.
[4] T. V. Vietnam’s Mekong Delta province faces serious sand dearth, Tuoi Tre News n.d.
[5] Needhidasan S, Ramesh B, Joshua Richard Prabu S. Experimental study on use of E-waste plastics as coarse aggregate in concrete with manufactured sand. Mater Today Proc 2020;22:715–21. https://doi.org/10.1016/j.matpr.2019.10.006.
[6] Karthik S, Rao PRM, Awoyera PO. Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ - Eng Sci 2017;29:400–6. https://doi.org/10.1016/j.jksues.2016.12.003.
[7] Nanthagopalan P, Santhanam M. Fresh and hardened properties of self-compacting concrete produced with manufactured sand. Cem Concr Compos 2011;33:353–8. https://doi.org/10.1016/j.cemconcomp.2010.11.005.
[8] Li H, Huang F, Cheng G, Xie Y, Tan Y, Li L, et al. Effect of granite dust on mechanical and some durability properties of manufactured sand concrete. Constr Build Mater 2016;109:41–6. https://doi.org/10.1016/j.conbuildmat.2016.01.034.
[9] Akin OO, Abejide OS. Modelling of concrete compressive strength admixed with GGBFS using gene expression programming. J Soft Comput Civ Eng 2019;3:43–53. https://doi.org/10.22115/scce.2019.178214.1103.
[10] Hoang N-D. Machine Learning-Based Estimation of the Compressive Strength of Self-Compacting Concrete: A Multi-Dataset Study. Mathematics 2022;10:3771. https://doi.org/10.3390/math10203771.
[11] Ahmadi-Nedushan B. An optimized instance based learning algorithm for estimation of compressive strength of concrete. Eng Appl Artif Intell 2012;25:1073–81. https://doi.org/10.1016/j.engappai.2012.01.012.
[12] Pham A-D, Hoang N-D, Nguyen Q-T. Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression. J Comput Civ Eng 2016;30. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000506.
[13] Latif SD. Concrete compressive strength prediction modeling utilizing deep learning long short-term memory algorithm for a sustainable environment. Environ Sci Pollut Res 2021;28:30294–302. https://doi.org/10.1007/s11356-021-12877-y.
[14] Zhao Y, Hu H, Song C, Wang Z. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement 2022;194:110993. https://doi.org/10.1016/j.measurement.2022.110993.
[15] Bui D-K, Nguyen T, Chou J-S, Nguyen-Xuan H, Ngo TD. A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete. Constr Build Mater 2018;180:320–33. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
[16] Chou J-S, Chiu C-K, Farfoura M, Al-Taharwa I. Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques. J Comput Civ Eng 2011;25:242–53. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088.
[17] Khademi F, Akbari M, Jamal SM, Nikoo M. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete. Front Struct Civ Eng 2017;11:90–9. https://doi.org/10.1007/s11709-016-0363-9.
[18] Deshpande N, Londhe S, Kulkarni S. Modeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression. Int J Sustain Built Environ 2014;3:187–98. https://doi.org/10.1016/j.ijsbe.2014.12.002.
[19] Ly, Pham, Dao, Le, Le, Le. Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Appl Sci 2019;9:3841. https://doi.org/10.3390/app9183841.
[20] Czarnecki S, Shariq M, Nikoo M, Sadowski Ł. An intelligent model for the prediction of the compressive strength of cementitious composites with ground granulated blast furnace slag based on ultrasonic pulse velocity measurements. Measurement 2021;172:108951. https://doi.org/10.1016/j.measurement.2020.108951.
[21] Sharafati A, Naderpour H, Salih SQ, Onyari E, Yaseen ZM. Simulation of foamed concrete compressive strength prediction using adaptive neuro-fuzzy inference system optimized by nature-inspired algorithms. Front Struct Civ Eng 2021;15:61–79. https://doi.org/10.1007/s11709-020-0684-6.
[22] Young BA, Hall A, Pilon L, Gupta P, Sant G. Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods. Cem Concr Res 2019;115:379–88. https://doi.org/10.1016/j.cemconres.2018.09.006.
[23] Song H, Ahmad A, Farooq F, Ostrowski KA, Maślak M, Czarnecki S, et al. Predicting the compressive strength of concrete with fly ash admixture using machine learning algorithms. Constr Build Mater 2021;308:125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.
[24] Asteris PG, Skentou AD, Bardhan A, Samui P, Pilakoutas K. Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models. Cem Concr Res 2021;145:106449. https://doi.org/10.1016/j.cemconres.2021.106449.
[25] Cook R, Lapeyre J, Ma H, Kumar A. Prediction of Compressive Strength of Concrete: Critical Comparison of Performance of a Hybrid Machine Learning Model with Standalone Models. J Mater Civ Eng 2019;31. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002902.
[26] Chopra P, Sharma RK, Kumar M, Chopra T. Comparison of Machine Learning Techniques for the Prediction of Compressive Strength of Concrete. Adv Civ Eng 2018;2018:1–9. https://doi.org/10.1155/2018/5481705.
[27] Thai H-T. Machine learning for structural engineering: A state-of-the-art review. Structures 2022;38:448–91. https://doi.org/10.1016/j.istruc.2022.02.003.
[28] Hoang N-D, Tran X-L, Huynh T-C. Prediction of Pile Bearing Capacity Using Opposition-Based Differential Flower Pollination-Optimized Least Squares Support Vector Regression (ODFP-LSSVR). Adv Civ Eng 2022;2022:1–25. https://doi.org/10.1155/2022/7183700.
[29] Nguyen H, Nguyen N-M, Cao M-T, Hoang N-D, Tran X-L. Prediction of long-term deflections of reinforced-concrete members using a novel swarm optimized extreme gradient boosting machine. Eng Comput 2022;38:1255–67. https://doi.org/10.1007/s00366-020-01260-z.
[30] Chalabi M, Naderpour H, Mirrashid M. Seismic resilience index for RC moment frames of school buildings using neuro-fuzzy approach. Nat Hazards 2022;114:1–26. https://doi.org/10.1007/s11069-022-05377-w.
[31] Garg C, Singhal A, Singh P, Namdeo A, Rai JK. Soft computing based formulations for prediction of compressive strength of sustainable concrete: a comprehensive review. Innov Infrastruct Solut 2022;7:156. https://doi.org/10.1007/s41062-022-00754-7.
[32] Naderpour H, Rafiean AH, Fakharian P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J Build Eng 2018;16:213–9. https://doi.org/10.1016/j.jobe.2018.01.007.
[33] Golafshani EM, Behnood A, Arashpour M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Constr Build Mater 2020;232:117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
[34] Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 2021;279:123697. https://doi.org/10.1016/j.jclepro.2020.123697.
[35] Moradi MJ, Khaleghi M, Salimi J, Farhangi V, Ramezanianpour AM. Predicting the compressive strength of concrete containing metakaolin with different properties using ANN. Measurement 2021;183:109790. https://doi.org/10.1016/j.measurement.2021.109790.
[36] Naderpour H, Rezazadeh Eidgahee D, Fakharian P, Rafiean AH, Kalantari SM. A new proposed approach for moment capacity estimation of ferrocement members using Group Method of Data Handling. Eng Sci Technol an Int J 2020;23:382–91. https://doi.org/10.1016/j.jestch.2019.05.013.
[37] Golafshani EM, Behnood A. Predicting the mechanical properties of sustainable concrete containing waste foundry sand using multi-objective ANN approach. Constr Build Mater 2021;291:123314. https://doi.org/10.1016/j.conbuildmat.2021.123314.
[38] Karami H, Ghazvinian H, Dehghanipour M, Ferdosian M. Investigating the Performance of Neural Network Based Group Method of Data Handling to Pan’s Daily Evaporation Estimation (Case Study: Garmsar City). J Soft Comput Civ Eng 2021;5:1–18. https://doi.org/10.22115/scce.2021.274484.1282.
[39] Faraj RH, Mohammed AA, Omer KM. Modeling the compressive strength of eco-friendly self-compacting concrete incorporating ground granulated blast furnace slag using soft computing techniques. Environ Sci Pollut Res 2022;29:71338–57. https://doi.org/10.1007/s11356-022-20889-5.
[40] Rezazadeh Eidgahee D, Jahangir H, Solatifar N, Fakharian P, Rezaeemanesh M. Data-driven estimation models of asphalt mixtures dynamic modulus using ANN, GP and combinatorial GMDH approaches. Neural Comput Appl 2022. https://doi.org/10.1007/s00521-022-07382-3.
[41] Ahmed HU, Mohammed AS, Mohammed AA. Proposing several model techniques including ANN and M5P-tree to predict the compressive strength of geopolymer concretes incorporated with nano-silica. Environ Sci Pollut Res 2022;29:71232–56. https://doi.org/10.1007/s11356-022-20863-1.
[42] Pan L, Wang Y, Li K, Guo X. Predicting compressive strength of green concrete using hybrid artificial neural network with genetic algorithm. Struct Concr 2022. https://doi.org/10.1002/suco.202200034.
[43] Zhang J, Li D, Wang Y. Toward intelligent construction: Prediction of mechanical properties of manufactured-sand concrete using tree-based models. J Clean Prod 2020;258:120665. https://doi.org/10.1016/j.jclepro.2020.120665.
[44] Asghari V, Leung YF, Hsu S-C. Deep neural network based framework for complex correlations in engineering metrics. Adv Eng Informatics 2020;44:101058. https://doi.org/10.1016/j.aei.2020.101058.
[45] Asadi Shamsabadi E, Roshan N, Hadigheh SA, Nehdi ML, Khodabakhshian A, Ghalehnovi M. Machine learning-based compressive strength modelling of concrete incorporating waste marble powder. Constr Build Mater 2022;324:126592. https://doi.org/10.1016/j.conbuildmat.2022.126592.
[46] Haque MA, Chen B, Javed MF, Jalal FE. Evaluating the mechanical strength prediction performances of fly ash-based MPC mortar with artificial intelligence approaches. J Clean Prod 2022;355:131815. https://doi.org/10.1016/j.jclepro.2022.131815.
[47] Kim P. MATLAB Deep Learning. Berkeley, CA: Apress; 2017. https://doi.org/10.1007/978-1-4842-2845-6.
[48] Tavana Amlashi A, Mohammadi Golafshani E, Ebrahimi SA, Behnood A. Estimation of the compressive strength of green concretes containing rice husk ash: a comparison of different machine learning approaches. Eur J Environ Civ Eng 2022:1–23. https://doi.org/10.1080/19648189.2022.2068657.
[49] Calin O. Deep Learning Architectures. Cham: Springer International Publishing; 2020. https://doi.org/10.1007/978-3-030-36721-3.
[50] Mendenhall W, Sincich T, Boudreau NS. A second course in statistics: regression analysis. vol. 6. Prentice Hall New York; 2003.
[51] Aggarwal CC. Neural Networks and Deep Learning. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-94463-0.
[52] Goodfellow I, Bengio Y, Courville A. Deep learning (adaptive computation and machine learning series). Cambridge Massachusetts 2017:321–59.
[53] Haykin S. Neural networks and learning machines. Pearson Education India; 2009.
[54] Hinton G, Srivastava N, Swersky K, Tieleman T, Mohamed A. Coursera: Neural networks for machine learning. Lect 9c Using Noise as a Regul 2012.
[55] Kingma Diederik P, Adam JB. A method for stochastic optimization. ArXiv Prepr ArXiv14126980 2014.
[56] Kochenderfer MJ, Wheeler TA. Algorithms for optimization. Mit Press; 2019.
[57] Dozat T. Incorporating nesterov momentum into adam 2016.
[58] Ding X, Li C, Xu Y, Li F, Zhao S. Dataset of long-term compressive strength of concrete with manufactured sand. Data Br 2016;6:959–64. https://doi.org/10.1016/j.dib.2016.01.065.
[59] Ding X, Li C, Xu Y, Li F, Zhao S. Experimental study on long-term compressive strength of concrete with manufactured sand. Constr Build Mater 2016;108:67–73. https://doi.org/10.1016/j.conbuildmat.2016.01.028.
[60] Ghazvinian H, Karami H, Farzin S, Mousavi S-F. Introducing affordable and accessible physical covers to reduce evaporation from agricultural water reservoirs and pools (field study, statistics, and intelligent methods). Arab J Geosci 2021;14:2543. https://doi.org/10.1007/s12517-021-08735-3.
[61] Wong T-T, Yeh P-Y. Reliable Accuracy Estimates from k -Fold Cross Validation. IEEE Trans Knowl Data Eng 2020;32:1586–94. https://doi.org/10.1109/TKDE.2019.2912815.