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Members with GFRP bars exhibit different behavior from 

those with steel bars due to the brittle and low elastic 

modulus of the GFRP bars. However, there are limited 

studies considering the optimum design of reinforced 

concrete members with GFRP bars compared with extensive 

studies for reinforced concrete members with steel bars. This 

study highlighted the performance of reinforced concrete 

beams with GFRP bars considering the optimum design. The 

behavioral flexural resistances involving compression, 

tension, and combined controls are incorporated in the 

formulation of the design constraints. Also, constraints 

including deflection serviceability limit states as well as 

construction requirements are considered. The optimization 

process is conducted using a genetic algorithm. Comparison 

with a conventional design is conducted by considering 

simply supported GFRP reinforced concrete beams in which 

the efficiency of the developed optimum design has been 

demonstrated. Analysis results show that tension-controlled 

sections govern the optimum design despite their brittle 

performance and highest reduction in strength. However, by 

increasing design restrictions including depth limits and 

deflection limits, tension-controlled sections became unable 

to provide sufficient strength and serviceability and the 

optimum design was shifted to a more ductile combined 

resisting control and then to compression-controlled sections. 
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1. Introduction 

The main task of the designer is to design the structure to satisfy both strength and serviceability 

requirements with a minimum cost. Reducing cross-sectional area and reinforcing area in 

reinforced concrete members are the main factors that contribute to reducing the cost of the 

structure. Steel has unrivaled widespread all materials as reinforcement in reinforced concrete 

structures for about 100 years due to its superior characteristics like the strength and 

compatibility with concrete. However, the vulnerability of concrete structures reinforced by steel 

bars to deterioration in aggressive conditions mainly due to corrosion of reinforcing steel bars 

has led towards seeking non-corroded reinforcing materials. The interest in adopting nonmetallic 

reinforcing materials in the construction field has been increased in the last three decades. 

Among these materials, glass fiber reinforced polymer (GFRP) materials have emerged as an 

alternative reinforcing material that was evolved as a result of extended efforts and research in 

the field of plastic and composite materials. However, the higher cost of GFRP bars than that of 

their counterpart steel bars was the main obstacle that prevented designers and clients from using 

such materials in many construction projects [1]. In contrast, the corrosion of steel bars in harsh 

conditions and related deterioration of reinforced concrete structures is a major concern in many 

countries which incur additional annual repair and maintenance costs [2]. Therefore, using GFRP 

bars as a substitute for steel bars provides the best efficient alternative to avoid corrosion 

problems and excessive maintenance costs in aggressive environments [3,4]. Usually, the 

conventional design of reinforced concrete members involves trail and error selection of member 

dimensions and determining the reinforcement area without any reference to the cost. However, 

many studies have been conducted and models were developed in the field of cost optimum 

design of structures. These studies focused on steel reinforced members and many models for 

optimum design of steel reinforced concrete beams were developed and presented in the 

literature. Among these studies, Al-Salloum and Siddiqi [5] presented a model for cost optimum 

design of singly steel reinforced concrete rectangular beam according to the ACI code 

provisions. In their model, the optimum values of steel ratio and beam depth were obtained by 

the extermination of a Lagrangian cost function that includes concrete cost, reinforcing steel cost 

and formwork cost. Also, design curves were presented in terms of optimum steel area and beam 

depth for various cost ratios. Malasri et al. [6] and Coello and Farrera [7] developed an optimum 

design model for steel reinforced concrete beams using genetic algorithms. Barros et al. [8] 

presented an optimum cost design model for singly and doubly steel reinforced concrete beams 

considering the stress-strain diagram defined in EC2-2001. Zheng et al. [9] developed a model 

for optimum design of steel reinforced concrete composite beams and used sequential 

unconstrained minimization technique to solve the problem. Fedghouche and Tiliouine [10] 

developed a procedure for optimum cost design of reinforced concrete T-beams using the 

generalized reduced gradient technique. It is obvious that developing design models and studies 

related to the optimum design of steel reinforced concrete beams are broadly covered. On the 

other hand, the GFRP reinforced concrete beams exhibit different behavior from that traditional 

steel reinforced concrete beams due to the unique mechanical properties of GFRP bars that are 

characterized by high strength, brittle and low elastic modulus. In the last three decades, 

experimental tests and studies have been carried out to investigate and understand the behavior 
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of GFRP reinforced concrete beams [11–17]. It was demonstrated that GFRP reinforced concrete 

beams perform differently from their counterpart steel reinforced concrete beams in the two 

recognized flexural modes of failure including compression and tension controls. It was noticed 

that the tension control failure (failure corresponding to GFRP bars rupture) is more brittle and 

catastrophic than the compression control failure (failure corresponding to concrete crushing). In 

addition, it was found that GFRP reinforced concrete beams are vulnerable to large deflection 

due to the low elastic modulus of the GFRP bars. Therefore, design codes and standards prefer 

compression control modes over brittle tension control modes. Also, rigorous limits on beam 

depth to confine excessive deflection of GFRP reinforced concrete members were specified 

[18,19]. Burgoyne and Balfas [1] presented design curves for GFRP reinforced and pre-stressed 

concrete beams in terms of optimum GFRP area and beam depth for various cost ratios following 

the procedure developed by Al-Salloum and Siddiqi [5]. However, Balfas and Burgoyne [20] 

considered flexural strength constraint corresponding to the balanced and compression modes of 

failure and neglected brittle tension failure. 

In this study, the cost optimum design of GFRP reinforced concrete beams is developed and 

investigated. Three zones of ultimate strength including compression control (crushing of 

concrete), transition zone and tension control (rapture of bars) are specified for designing 

reinforced concrete beams [18]. Also, strength reduction factors are specified for each 

performance of the beam within the three zones. This study investigates the zone of the ultimate 

strength that leads to the optimum design considering the effect of different design constraints. 

Constraints covering flexural strength and deflection limit are formulated by design provisions 

specified by the ACI 440.1R-15 [18]. Also, constraints including construction requirements are 

considered in the presented scheme. 

2. GFRP vs. steel reinforced concrete beam 

The flexural strength of reinforced concrete beams involves either compression control 

demonstrated by concrete crushing (specified 0.003 strain at extreme compression fiber) or 

tension control demonstrated by yielding of steel reinforcing bars or rupture of FRP bars in steel 

reinforced concrete beams and GFRP reinforced concrete beams, respectively. ACI 318-19 [21] 

favors ductile tension control in steel reinforced concrete beams over the compression control 

brittle failure. It is obvious that in steel reinforced concrete beams, ACI 318-19 [21] specifies 

lower strength reduction for tension controlled beams compared to higher strength reduction for 

compression controlled beams. In contrast, GFRP reinforced concrete beams exhibit more brittle 

behavior corresponding to tension control (rupture of GFRP bars) than those corresponding to 

compression control (crushing of concrete). Accordingly, ACI 440.1R-15 [18] specifies higher 

strength reduction for tension controlled beams compared to lower strength reduction for 

compression controlled beams. The flexural reduction factors of reinforced concrete members 

according to ACI 318-19 [21] and ACI 440.1R-15 [18] are illustrated in Table 1. In addition, 

GFRP reinforced concrete beams exhibit large deflections compared to steel reinforced concrete 

beams due to the relatively low modulus of elasticity of GFRP bars compared to that of the steel 

bars. To overcome these shortcomings, ACI 440.1R-15 [18] specifies more rigorous depth limits 

for FRP reinforced concrete beams than those specified by ACI 318-19 [21]. Table 2 compares 



 T.M.S. Alrudaini/ Journal of Soft Computing in Civil Engineering 6-3 (2022) 18-38 21 

 

total depth limits to control deflection as specified by both ACI 318-19 [21] and ACI 440.1R-15 

[18]. 

Table 1 
The flexural reduction factors for reinforced concrete members. 

Mode of failure 
Steel reinforced concrete 

beams [21] 

FRP reinforced concrete 

beams [18] 

Compression control 0.65 0.65 

Transition zone 0.65-0.9 0.55-0.65 

Tension control 0.9 0.55 

 

Table 2 
Minimum total depths of reinforced concrete beams. 

Support condition 

Minimum thickness 

Steel reinforced concrete 

beams [21] 

FRP reinforced concrete 

beams [18] 

Simply supported l/16 l/10 

One end continuous l/18.5 l/12 

Both ends continuous l/21 l/16 

Cantilever l/8 l/4 

 

3. Optimum design of FRP beams 

3.1. Objective function 

In this study, examples of simply supported beams are considered. Fig. 1 illustrates design 

variables of a typical rectangular singly reinforced concrete simply supported beam. Therefore, 

the objective function to minimize the cost of singly reinforced concrete rectangular beams with 

GFRP bars is considered. 

    
Fig. 1. Layout and cross section of a typical rectangular singly reinforced concrete simply supported 

beam. 

L 

W 
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The total cost of the beam includes the cost of concrete, GFRP bars, formworks and labor cost. 

In this study, the labor and material transportation cost are implicitly considered within material 

cost. The mathematical form of the objective function is given by 

𝐶 =  𝐶𝑓𝐴𝑓𝛾𝑓 +  𝐶𝑐𝑏ℎ +  𝐶𝑟(𝑏 + 2ℎ) + 𝐶𝑠𝐴𝑣𝛾𝑠𝐿/𝑠 (1) 

where C = total cost of the beam section; Cf = unit weight cost of GFRP bars; Cc = unit volume 

cost of concrete; Cr = unit area cost of the formwork; Af = the area of GFRP reinforcing bars; b = 

width of the beam; h = total depth of the beam; and 𝛾𝑓 = mass density of the GFRP reinforcing 

bars. 

3.2. Constraints 

Design constraints are formulated considering both ultimate and serviceability requirements for 

the design of GFRP reinforced concrete beam according to ACI 318-19 [21] and ACI 440.1R-15 

[18] codes provisions. 

Flexural strength constraint 

The design constraint incorporating ultimate flexural strength is defined by 

𝑀𝑢 − ∅𝑀𝑛 ≤  0 (2) 

where 𝑀𝑢= ultimate factored moment that obtained from structural analysis considering imposed 

factored loads; 𝑀𝑛= nominal flexural strength of GFRP reinforced concrete beam; and ∅ = 

flexural strength reduction factor. 

The flexural capacity depends on the mode of failure involving crushing of concrete, rupture of 

GFRP reinforcing bars or a combination of both. The failure mode is distinguished according to 

the GFRP reinforcement ratio (𝜌𝑓) compared to the balanced reinforcement ratio ( 𝜌𝑓𝑏) that 

expressed as 

𝜌𝑓  =  
𝐴𝑓

𝑏𝑑
 (3) 

and 

𝜌𝑓𝑏 =  0.85 𝛽1
𝑓𝑐

′

𝑓𝑓𝑢

𝐸𝑓𝜀𝑐𝑢

𝐸𝑓𝜀𝑐𝑢 +𝑓𝑓𝑢
 (4) 

where 𝑓𝑐
′ = ultimate concrete strength (MPa); 𝑓𝑓𝑢= ultimate tensile strength of the GFRP bars 

(MPa); 𝜀𝑐𝑢= ultimate concrete strain at extreme fibers that is usually set equal to 0.003; 𝐸𝑓= 

modulus of elasticity of GFRP bars (MPa); and the factor 𝛽1 is given by 

𝛽1 = 0.85 − 0.05 
𝑓𝑐

′−28

7
≥  0.65 (5) 

The compression control sections are corresponding to the reinforcement ratio greater than the 

balanced ratio ( 𝜌𝑓 > 𝜌𝑓𝑏) in which failure mode is governed by concrete crushing and the 

nominal flexural strength of the section is defined by 
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𝑀𝑛  =  𝜌𝑓𝑓𝑓 (1 − 0.59 
𝜌𝑓𝑓𝑓

𝑓𝑐
′ ) 𝑏𝑑2 (6) 

where 

𝑓𝑓  =  (√
(𝐸𝑓𝜀𝑐𝑢)

2

4
+  

0.85 𝛽1𝑓𝑐
′

𝜌𝑓
𝐸𝑓𝜀𝑐𝑢 − 0.5𝐸𝑓𝜀𝑐𝑢) ≤ 𝑓𝑓𝑢 (7) 

On the other hand, tension control is associated with the reinforcement ratio less than the 

balanced ratio ( 𝜌𝑓 < 𝜌𝑓𝑏) in which the failure mode is governed by the rupture of GFRP bars 

and the nominal flexural strength of the section is given by 

𝑀𝑛  =  𝜌𝑓𝑓𝑢 (1 −
𝛽1

2

𝜀𝑐𝑢

𝜀𝑐𝑢+𝜀𝑓𝑢
) 𝑏𝑑2 (8) 

where 𝜀𝑓𝑢 = ultimate strain of the GFRP bars. 

Flexural strength reduction factors specified by ACI 440.1R-15 [18] are illustrated in Table 1. 

ACI 440.1R-15 [18] specifies the limits of the compression control like 𝜌𝑓 ≥  1.4 𝜌𝑓𝑏 while 

tension control limits like 𝜌𝑓 ≤ 𝜌𝑓𝑏. In addition ACI 440.1R-15 [18] specifies a strength 

reduction factor that varies linearly between 0.55 and 0.65 for the transition zone corresponding 

to the reinforcement ratio between 𝜌𝑓𝑏 and 1.4 𝜌𝑓𝑏 . 

Shear strength 

According to ACI 318-19 [21], shear strength is resisted by beam cross section at; 

𝑉𝑢 − ∅𝑉𝑐 ≤  0 (9) 

The nominal shear strength of the section without shear reinforcement is defined by 

𝑉𝑐  =  0.083 √𝑓𝑐
′ 𝑏𝑑 (10) 

When the shear forces exceed the shear strength and lie in the range given by; 

0.083∅ √𝑓𝑐
′ 𝑏𝑑 ≤  𝑉𝑢  ≤  0.17∅ √𝑓𝑐

′ 𝑏𝑑 

Minimum shear reinforcement is required. 

𝑉𝑢 − ∅(𝑉𝑐 + 𝐴𝑣𝑓𝑦𝑑/𝑠) ≤  0 (11) 

Where s is the spacing between stirrups. Using steel bars with 10 mm diameter for stirrup 

provides area of reinforcement Av equal to 142 mm
2
 to provide minimum reinforcement yields a 

reinforcement at distance (s) equal to lesser of d/2 and 600 mm. Then, shear constraint becomes. 

𝑉𝑢 − ∅(𝑉𝑐 + max (2𝐴𝑣𝑓𝑦, 𝐴𝑣𝑓𝑦𝑑/600 )) ≤  0 (12) 

Otherwise, when ultimate shear stress exceeded cross section shear strength, stirrups are 

arranged at distance equal to lesser of d/4 and 300 mm and shear constraint is. 
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𝑉𝑢 − ∅(𝑉𝑐 + max (4𝐴𝑣𝑓𝑦, 𝐴𝑣𝑓𝑦𝑑/300 )) ≤  0 (13) 

Minimum reinforcement constraint 

ACI 440.1R-15 [18] recommends minimum FRP reinforcement to avoid premature rupture of 

FRP bars in which it is expressed as 

𝐴𝑓,𝑚𝑖𝑛  =  
0.41 √𝑓𝑐

′

𝑓𝑓𝑢
𝑏𝑤𝑑 ≥

2.3

𝑓𝑓𝑢
𝑏𝑤𝑑 (14) 

Therefore, the minimum reinforcement constraint becomes 

𝐴𝑓  −  𝐴𝑓,𝑚𝑖𝑛 ≥  0 (15) 

Deflection limit constraint 

ACI 318-19 [21] specifies immediate deflection (∆𝑖𝐿 ) and long terms deflection (∆𝐿𝑇 ) using the 

following equations 

∆𝑖𝐿 = (∆𝑖)𝐿𝐿+𝐷𝐿 −  (∆𝑖)𝐷𝐿 (16) 

and 

∆𝐿𝑇 = (∆𝑖)𝑢𝑛𝑠 𝐿𝐿 + 𝜆[ (∆𝑖)𝐷𝐿 + 0.2(∆𝑖)𝐿𝐿] (17) 

(∆𝑖)𝐿𝐿= deflection due to live load alone; (∆𝑖)𝐷𝐿= deflection due to dead load alone; (∆𝑖)𝐿𝐿+𝐷𝐿= 

deflection due to live and dead loads; (∆𝑖)𝑢𝑛𝑠 𝐿𝐿= deflection due to unsustained load and 𝜆= 

parameter associated to long term deflection that equal to 0.6 ξ for singly reinforced concrete 

beams and ξ is taken equal to 1 and 2 for duration short duration and for more than five years, 

respectively [21]. Also, ACI 318-19 [21] specifies short term and long term deflection limits. 

Accordingly, short term and long term deflection constraints are expressed by 

∆𝑖𝐿 − ∆𝑠𝑡 𝑙𝑖𝑚𝑖𝑡≤  0 (18) 

and 

∆𝐿𝑇 − ∆𝑙𝑡 𝑙𝑖𝑚𝑖𝑡≤  0 (19) 

where ∆𝒔𝒕 𝒍𝒊𝒎𝒊𝒕 and ∆𝒍𝒕 𝒍𝒊𝒎𝒊𝒕 = short term and long term deflection limits, respectively. 

Depth to width ratio constraints 

In the design of reinforced concrete beams, it is common in practice to specify the upper and 

lower limits of beams total depth to width ratio. Typically values of beams total depth to width 

ratio (h/b) vary between 1 and 3. The beams total depth to width ratio constraints are considered 

in the developed model using the following equations for the lower and upper limits, respectively 

𝑏 − ℎ < 0 (20) 

ℎ − 3𝑏 <  0 (21) 
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Maximum total depth 

Arising from construction requirements, maximum total depth of the beam ℎ𝑚𝑎𝑥 is commonly 

defined. In this study maximum total depth of the beam is considered using the following 

inequality 

ℎ − ℎ𝑚𝑎𝑥 <  0 (22) 

4. Optimization method (Genetic algorithm) 

Genetic algorithms have been successfully implemented in broad applications of structural 

optimization [22–25]. Genetic algorithm is an iterative computer based method that is routinely 

adopted for solving stochastic search and optimization problems [26]. The genetic algorithm 

follows the survival of the fittest individuals in generating the successive populations that mimic 

the biological evolution. From the search space, genetic algorithm starts by selecting the 

individuals in a random form of the initial population (solution). The individuals represent the 

parents of the individual children for the following generation. Based on the objective function 

corresponding to the optimization problem, the genetic algorithm evaluated the potential 

solutions in the current population and the fitness value is assigned. Creating children population 

process involves parent selection, crossover, mutation and acceptance. Parents are selected based 

on their fitness and then parents mutated and crossover is processed to create children 

individuals. Then parents are interchanged randomly and the process of creating children is 

repeated until achieving the best fitness value of individuals (children) that will be selected to 

constitute the following generation. The process of generating successive populations 

(generations) by the genetic algorithm continues until satisfying the stop criteria. Genetic 

algorithm uses various stopping criteria including specified number of generations, processing 

time limit or the tolerance limits corresponding to improved solution. Accordingly, genetic 

algorithm steps include; 

Initialization 

A group of chromosomes is randomly selected within the boundary of the problem. Genetic 

algorithms deal with representative codes of the problem parameters (solutions) rather than 

directly deal with parameters themselves in which individual solutions or chromosomes are 

coded using vectors of components (genes) linked to problem parameters. Thus, the first step of 

genetic algorithm is the construction of a set of possible values of design parameters randomly 

generated within the ranges of the problem constraints. All possible values of parameters are 

encoded to form genes that linked together to form the individuals (solutions) in terms of strings 

of values referred to as chromosomes. Usually, chromosomes are coded using binary forms in 

which each form represents different solution. For instance, two selected chromosomes with nine 

binary variables are randomly represented such as; Chromosome1 100110110 and Chromosome2 

100011110. 
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Selection 

The second step is the selection of parent chromosomes from the initial generation. The selected 

parents are those of higher potential fitness (here the higher fitness represents the lower costs) 

than others depending on fitness selection method. The process of choosing potential best fit set 

of parent chromosomes from the initial generation using a specific method refers to a selection 

process. The selection process is repeated in each successively developed generation until the 

termination at the last generation according to the assigned termination criteria. More details 

about selection method can be found in [26]. 

Crossover 

The crossover is the operation that randomly cut genes from chromosomes of parent generation 

and exchange them with other genes from other chromosomes from the same parent generation 

to produce new chromosomes that represent children generation. Therefore, the developed 

children chromosomes consist of shared genes from two parent chromosomes. 

Mutation 

Mutation is the process that follows crossover that randomly changes one or several genes within 

a chromosome to produce new children in order to avoid premature convergence that may leads 

to local optima. The process is conducted by replacing selected bits with 0 by 1 and vice versa 

that corresponding to binary encoding of chromosomes. 

Termination 

Steps from second to forth are repeated until the process is terminated. Subsequently, the 

population develops from generation to generation, deficient individuals are gradually 

disappeared and efficient individuals are survived and optimized. Processing genetic algorithm 

by MATLAB [27] adopts four termination criteria including number of limited generations (the 

default is100 times the number of defined variables), limits of processing time, attaining a 

defined value of best fitness. Otherwise, the process terminates at the generation after several 

successive unchanged values of fitness (stall generations). 

Satisfying constraint 

In the constraint optimization including genetic algorithm technique, two types of solutions are 

developed including feasible solutions and infeasible solutions. Feasible solutions satisfy 

constraints conditions while infeasible solutions violate constraints conditions. However, the 

optimum solution occurs at the boundary between the two solutions. Penalty function is adopted 

to handle the solution at the boundary between the infeasible and feasible solutions. The 

infeasible solutions are penalized based on the degree of violation. However, both feasible and 

close infeasible solutions are used for reproduction of children generation. In this study, the 

modeling and the analysis are conducted using MATLAB R software [27]. The flow chart of 

genetic algorithm operations is depicted in Fig. 2. 
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Fig. 2. Genetic algorithm operations flow chart. 

5. Results 

Two examples are presented to evaluate the validity and efficiency of the presented cost 

optimum design procedure using the genetic algorithm. The first example involves a comparison 

between the optimal design obtained from the presented procedure and the conventional design 

of a typical model presented and designed by ACI 440R-06 [28]. The effect of varying costs of 

materials on the optimal design compared to conventional design is considered. The second 

example involves a parametric investigation to study the sensitivity of the optimal design to the 

effect of strength and construction constraints demonstrated by the beam depth as well as the 
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effect service deflection limits on the optimum design of the concrete beams reinforced with 

GFRP bars. 

Example 1 

A typical GFRP reinforced concrete rectangular beam conventionally designed by ACI 440.1R-

06 [28] committee is selected in this study to compare the design results obtained from the 

proposed optimum design with that of the conventional design. The main change on the ACI 

440.1R-06 [28] is the deflection calculations. In this study, deflection calculations are repeated to 

satisfy ACI 440.1R-15 [18]. However, similar design results are obtained in which the design 

was governed by the flexural limits. The beam is a simply supported interior beam spanning (L) 

over 3.35 m and carrying superimposed dead load and service live load of 3 kN/m and 5.8 kN/m 

(20% sustained), respectively. The design requirements entail that the beam deflection does not 

exceed l/240. Also, the depth of the beam is limited to 356 mm due to construction restrictions 

The compressive strength of the concrete 𝑓𝑐
′ = 27.6 MPa. The GFRP bars have tensile strength 

𝑓𝑓𝑢= 620.6 MPa, rupture strain 𝜀𝑓𝑢= 0.014 and modulus of elasticity 𝐸𝑓= 44800 MPa. Design 

variables include beam width B= 178 𝑚𝑚, beam thickness H ≤ 356 𝑚𝑚 and reinforcement 

ratio 

𝜌𝑓 varied between the minimum value of 0.0037 and maximum assumed value of 0.01. In this 

study, a continuous variation of design parameters is assumed. 

In this study, the optimization model has been run several times to investigate best values of 

genetic algorithm parameters that provide stable and optimum solution. The number of 

generations is varied between 100 and 500, number of stall generations varied between 20 and 

100, number of population number varied between 4 and 42 and tolerance values have been 

varied between default value 10
-6

 and 10
-15

 in which the stable solution has been investigated. A 

stable solution has been achieved at number of population equal to 26, number of generations 

greater than 10, stall generations equal to 20 and tolerance value of 10
-12

. Figs. 3 and 4 illustrate 

the investigation results considering the effect of number of populations and generations on the 

optimum design; respectively. 

 
Fig. 3. Variation of cost with population number. 
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Fig. 4. Variation of cost with number of generations. 

On the other hand, analysis results are compared with conventional design. Table 3 shows 

comparison results between the conventional design and the optimum design considering cost 

ratios of GFRP bars to concrete (Cf/Cc) equal to 150 and formwork to concrete (Cfw/Cc) equal to 

0.5. Also, values of design variables and cost considering three resisting modes, tension control, 

compression control and combined control are illustrated in Table 3. The values of design 

variables include dimensions and reinforcement ratio as well as the total estimated cost. 

Table 3 
Comparison of the design obtained from the developed model and conventional procedure. 

 

It is obvious that considering different failure controls resulted in different design details and 

costs despite of that each failure control meets ACI 440.1R-15 [18] provisions. It is common that 

the cost of materials is varied around the world and even within the country. Cost ratios include 

GFRP bars cost to concrete cost ratio (Cf/Cc) and formwork cost to concrete cost ratio (Cfw/Cc) 

are adopted in this study to illustrate the sensitivity of the optimum design with varying materials 

costs. To investigate the effect of varying cost ratios (Cf/Cc) on design results and the total cost, 

the cost ratio (Cf/Cc) is varied including the values of 100, 150, 200 and 250. However, 

formwork cost to concrete cost ratio (Cfw/Cc) is maintained at constant value of 0.5. The 

optimum design results including values of design variables and cost considering the effect of 

cost ratio (Cf/Cc) are illustrated in Table 4. Also, the effect of varying cost ratio on the 

conventional and optimum design considering different resistance modes is shown in Fig. 5. 

Design variables presented in Table 4 represent optimum design of the beam corresponding to 

the behavior within transition zone. Table 4 shows that the increases in cost ratio leads to 

increase in total cost despite that the design variables related to optimal design are not altered. 

Also, the required reinforcement ratio corresponding to the optimum design is close to the lower 

bond (value of 0.0038) of the transition zone. The other two resisting controls behave in a similar 

trend. 

Design 
b 

(mm) 

h 

(mm) 
𝝆𝒇 Cost 

Cost 

reduction % 

ACI 440-R [28] 178 305 0.0128 0.1399Cc ---- 

Optimal design (Concrete crushing control) 178 326 0.008 0.1283Cc 8.29 

Optimal design (Transition zone) 178 326 0.0057 0.1084Cc 22.5 

Optimal design (GFRP bars rupture control) 178 356 0.0038 0.0997Cc 28.7 
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Table 4 
Optimal cost design results considering effect of varying cost ratio Cf/Cc. 

Optimum design 

Cf/Cc 100 150 200 250 

bopt (mm)  178 178 178 178 

hopt (mm)  353 356 356 356 

𝝆𝒇𝒐𝒑𝒕 0.0038 0.0038 0.0038 0.0038 

Copt 0.0875 Cc 0.0997 Cc 0.1117 Cc 0.1236 Cc 

Conventional 

design 

bconv (mm)  178 178 178 178 

dconv (mm)  305 305 305 305 

𝝆𝒇𝒄𝒐𝒏𝒗 0.0128 0.0128 0.0128 0.0128 

Cconv 0.1116 Cc 0.1399 Cc 0.1686 Cc 0.1970 Cc 

Cost reduction (%) 21.6 28.7 33.7 37.2 

 

 
Fig. 5. Effect of cost ratio (Cf/Cc) on the total cost corresponding to different behavior. 

Example 2 

In this example, a simply supported interior beam spanning over 5 m and carrying superimposed 

dead load and service live load of 15 kN/m and 9 kN/m (20% sustained), respectively is 

considered. The compressive strength of the concrete 𝑓𝑐
′ = 30 MPa. The GFRP bars have tensile 

strength 𝑓𝑓𝑢= 496 MPa, rupture strain 𝜀𝑓𝑢= 0.014 and modulus of elasticity 𝐸𝑓= 41000 MPa. The 

influence of the limit of the beam total depth on the optimum design is studied considering the 

beam total depth equal to 450 mm, 500 mm, 550 mm, 600 mm and 650 mm. The short term and 

long term deflection limits of l/180 and l/240, respectively are assumed. The GFRP bars cost to 

concrete cost ratio (Cf/Cc) of constant value equal to 150 is considered. Design variables include 

beam width ranged from 300 mm to 500 mm , reinforcement ratio 𝜌𝑓 varied between the 

minimum value of 0.0046 and maximum assumed value of 0.04 and beam total depth varied 

from 300 mm to maximum limits considering values equal to 450 mm, 500 mm, 550 mm, 600 

mm and 650 mm as upper limit of the parametric investigation. A continuous variation of design 

parameters is assumed. The variation of cost with the number of developed generations is 

illustrated in Fig. 6 for the case of depth limit equal to 550 mm. It is obvious that after thirty 

generations, a stable optimum solution has been achieved. On the other hand, Table 5 and Fig. 7 

illustrate the effect of total depth limits on the optimum design values. 
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Fig. 6. Variation of cost with number of generations for depth limit equal to 550 mm. 

Table 5 
Optimum cost design results considering effect of varying total depth limits. 

Failure control 
 Total depth limit (mm) 

 450 500 550 600 650 

Compression 

control 

 

bopt (mm)  427 363 361 300 

hopt (mm) ------- 498 550 560 625 

𝝆𝒇𝒐𝒑𝒕  0.0154 0.0124 0.0113 0.0113 

Copt  0.652 Cc 0.534 Cc 0.5144 Cc 0.481 Cc 

Transition 

zone 

bopt (mm)   404 333 340 

hopt (mm) ------- ------ 545 600 610 

𝝆𝒇𝒐𝒑𝒕   0.0107 0.0093 0.0081 

Copt   0.540 Cc 0.453 Cc 0.439 Cc 

Tension 

control 

bopt (mm)    386 318 

dopt (mm) ------- ------ ------ 600 650 

𝝆𝒇𝒐𝒑𝒕    0.007 0.0071 

Copt    0.453 Cc 0.410 Cc 

 

 
Fig. 7. Effect of total depth limits on the total cost corresponding to different beam behavior. 
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It is shown that increasing restriction on the beam depth has a significant influence on the 

optimum design and the total cost of the beam. It is obvious that decreasing total depth limit 

from 650 mm to 600 mm results in increase in the total cost of about 10.5 %, 3.2 %, and 6.9 % 

corresponding to tension control, transition zone and compression control, respectively. Also, it 

shows that the optimum cost corresponding to tension control is significantly influenced by 

varying the limits of the beam total depth compared to the compression control. However, the 

optimum cost corresponding to the combined control has been slightly affected. It is clear that 

tension-control resistance governs the minimum cost in beams with a total depth limit of 650 mm 

while both the tension-controlled section and the section at the transition zone have similar costs 

corresponding to total depth limit of 600 mm. Further decreasing the thickness limit to 550 mm 

resulted in the inability of tension control to provide the required strength for the beam section 

and the required strength is only achieved by compression control resistance. Also, decreasing 

total depth limit to 500 mm results in inability of both combined control (transition zone) and 

tension control to provide the required strength for the beam section and the required strength is 

only achieved by compression control resistance with increase in cost of about 35.6 % over that 

section with a total depth of 650 mm. Eventually, the section failed in resisting the applied loads 

by any resisting mode when the total depth limit decreased to 450 mm as illustrated in Table 5. 

On the other hand, the effect of assigning constant beam width on the optimum design is studied. 

The design variables include constant beam widths equal to 350 mm, 400 mm, 450 mm and 500 

mm are considered, a reinforcement ratio 𝜌𝑓 varied between the minimum value of 0.0046 and 

maximum assumed value of 0.04 and assumed beam total depth varied from 300 mm to 900 mm. 

Also, a continuous variation of design parameters is assumed. The variation of cost with the 

number of developed generations is illustrated in Fig. 8 for the case of defined beam width equal 

to 350 mm. It is obvious that after thirty-five generations, a stable optimum solution has been 

achieved. On the other hand, Table 6 and Fig. 9 illustrate the influence of beam width on the 

optimum design values. 

 
Fig. 8. Variation of cost with number of generations for assigned beam width equal to 350 mm. 
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Table 6 
Optimum cost design results considering effect of varying limits of beams width. 

Failure control 
 Width limit (mm) 

350 400 450 500 

Compression 

control 

bopt (mm)  350 400 450 500 

hopt (mm)  792 843 814 824 

𝝆𝒇𝒐𝒑𝒕 0.012 0.012 0.012 0.012 

Copt 0.79 Cc 0.967 Cc 1.08 Cc 1.18 Cc 

Transition 

zone 

bopt (mm)  350 400 450 500 

hopt (mm)  758 744 734 691 

𝝆𝒇𝒐𝒑𝒕 0.0086 0.0086 0.0086 0.0087 

Copt 0.627 Cc 0.702 Cc 0.800 Cc 0.826 Cc 

Tension 

control 

bopt (mm)  350 400 450 500 

dopt (mm)  730 699 690 641 

𝝆𝒇𝒐𝒑𝒕 0.0047 0.0047 0.0047 0.0047 

Copt 0.454 Cc 0.501 Cc 0.555 Cc 0.573 Cc 

 

 
Fig. 9. Effect of defined width on the total cost corresponding to different beam behavior. 

It is shown that using specified larger widths leads to larger sections with increased total cost of 

the beam. It is obvious that increasing width of the beam from 350 mm to 500 mm results in 

increase in the total cost of about 26 %, 32 %, and 49 % corresponding to tension control, 

combined control and compression control, respectively. It is obvious that the influence of 

increasing beam width on the optimum cost corresponding to tension control is less than that 

corresponding to the combined control and compression control, respectively. Also, it is clear 

that tension-control resistance governs the minimum cost in beams corresponding to all defined 

beam widths. 

Further investigations considering the influence of the deflection limits are conducted. The cost 

optimum design is computed for various long term deflection limits including values of l/240, 

l/360, l/480 and l/560. A constant total depth limit of 650 mm is adopted. Design variables 

include beam width ranged from 300 mm to 500 mm , reinforcement ratio 𝜌𝑓 varied between the 

minimum value of 0.0046 and maximum assumed value of 0.04 and assumed beam thickness 
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varied from 300 mm to 900 mm. Also, a continuous variation of design parameters is assumed. 

Also, the GFRP bars cost to concrete cost ratio (Cf/Cc) of constant value equal to 150 is 

considered. The variation of cost with the number of developed generations is illustrated in Fig. 

10 for the case of deflection limit equal to l/360 mm. It is obvious that after forty generations, a 

stable optimum solution has been achieved. 

The optimum design values using the presented procedure considering various deflection limits 

and corresponding to different resistance modes are illustrated in Table 7 and Fig. 11. Results 

show that the optimum design values and the corresponding minimum cost have varied with 

varying deflection limits. Also, it is obvious that the optimum design corresponding to tension 

control is significantly influenced by varying deflection limits compared to the combined control 

and compression control. The total cost per meter length of the beam increases about 18.3 %, 

14.8 %, and 6.9 % corresponding to tension control, combined control and compression control, 

respectively by varying the deflection limits from l/240 to l/360. It is noted that the increase in 

cost results from the increase in section dimensions with higher values in tension control than 

those in combined control and in compression control. However, adopting more rigorous 

deflection limits equal to l/480 and l/560 result in the failure of the tension control section to 

satisfy the design requirements. 

 
Fig. 10. Variation of cost with number of generations for the case of deflection limit of L/360. 

Table 7 
Optimum cost design results considering effect of varying deflection limits. 

Failure control 
Deflection limit 

 l/240 l/360 l/480 l/560 

Compression 

control 

 

bopt (mm)  300 308 328 357 

hopt (mm)  625 650 650 640 

𝝆𝒇𝒐𝒑𝒕 0.0113 0.0113 0.0142 0.0144 

Copt 0.481 Cc 0.514 Cc 0.630 Cc 0.679 Cc 

Transition 

zone 

bopt (mm)  340 335 384 390 

dopt (mm)  610 650 650 650 

𝝆𝒇𝒐𝒑𝒕 0.0081 0.0096 0.0098 0.0104 

Copt 0.439 Cc 0.504 Cc 0.586 Cc 0.617 Cc 

Tension 

control 

bopt (mm)  318 387 ----- ----- 

dopt (mm)  650 650 ----- ----- 

𝝆𝒇𝒐𝒑𝒕 0.0071 0.0068 ----- ----- 

Copt 0.410 Cc 0.485 Cc ----- ----- 
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Fig. 11. Effect of deflection limits on the total cost corresponding to different beam behavior. 

The effect of shear constraint on the performance of the design model is investigated by 

conducting the analysis with and without shear constraint. Further investigations were conducted 

by increasing loads. Analysis results of the considered models show that the shear constraint 

have negligible influence on the optimum design and equations 9 and 10 have been satisfied. In 

contrast, the effect of shear constraint becomes tangible with increasing load. In this study, only 

results of models that govern by flexural constraints are presented. 

5. Conclusion 

In this study, cost optimization of concrete beams singly reinforced by GFRP bars based on ACI 

440.1R-15 [18] and ACI 318-19 [21] codes is presented and investigated. Concrete beams 

reinforced by GFRP bars exhibit different ultimate strength performance including crushing of 

concrete, rapture of bars and balanced failure (transition zone) depending on the values of the 

design variables. This study estimates the values of design variables corresponding to different 

failure performance that lead to optimum cost design. Also, the effect of different design 

constrains on the optimum design has been investigated in this study. The design procedure 

involves determining section dimensions, required reinforcement area of GFRP bars 

corresponding to the optimum cost while satisfying the provisions and limitations of the ACI 

440.1R-15 [18] and ACI 318-19 [21] codes. The objective function is formulated by including 

the cost of the GFRP bars, concrete and formwork. A Series of constrains is formulated including 

strength behavior, serviceability limits, design requirements specified by ACI 440.1R-15 [18] 

and ACI 318-19 [21] codes as well as construction restrictions. Beam flexural strength controlled 

by either concrete crushing, GFRP bars rupture or combined failure is included in the 

formulations of the strength constraints. The optimization is processed using genetic algorithms. 

Typical examples are presented in order to demonstrate the validity and efficiency of the 

presented approach in which the results are compared with the conventional design. Also, 

parametric investigations are conducted to identify the effect of different binding constraints on 

the optimum cost design. The following conclusions are observed from the results of the 

analysis: 
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1- Optimum cost design is clearly achieved by using the presented approach compared to 

the conventional design. 

2- Adopting the presented cost optimization approach increases the level of integrity of the 

design in which the design requirements are processed systematically and automatically. 

3- The high GFRP cost to concrete cost ratio result in tendency of the required 

reinforcement area to the lower bond of each resistance control in cases with relaxed restrictions 

and the least cost is corresponding to the tension control that governs the optimum design despite 

the specified highest strength reduction corresponding to this resisting mode. 

4- By increasing design restriction, the tension control mechanism becomes unable to 

provide sufficient strength in which resistance is shifted to the transition zone and compression 

control. 

5- The sensitivity analyses have demonstrated that the optimum design is remarkably 

influenced by deflection limits as well as the strength limits. 

6- The optimum design corresponding to tension control is more sensitive to varying design 

parameters than that corresponding to the combined control and that corresponding to the 

compression control. 

Finally, this study can be extended by adopting discrete variation of parameters in the modeling 

and studying optimum design of continuous beams, slabs and frame structures with FRP 

reinforcement bars. 
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