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Manual estimation of compressive strength of concrete 

(CSC) is time consuming and expensive. Soft computing 

techniques are found better to statistical methods applied to 

this problem. However, sophisticated prediction models are 

still lacking and need to be explored. Extreme learning 

machine (ELM) is a faster and better learning method for 

artificial neural networks (ANNs) with solitary hidden layer 

and has enhanced generalization capacity. This article 

presents an ELM-based forecast for efficient prediction of 

CSC. A publicly available dataset from UCI repository is 

used to develop and access the performance of the model. 

The prediction accuracy of ELM is compared with few 

machine learning methods such as back propagation neural 

network (BPNN), support vector machine (SVM), auto-

regressive integrated moving average (ARIMA), and least 

squared estimation (LSE). A comparative study for the 

prediction of CSC at the curing ages of 28, 56, and 91 days 

has been carried out using all models. The experimental 

findings from ELM-based forecasting demonstrate its ability 

in predicting CSC in a robust manner. On an average, it 

achieves lowest MAPE of 0.048024, ARV of 0.052872, U of 

Theil’s statistics (UT) of 0.038772, NMSE of 0.058522, and 

standard deviation (SD) of 0.256267. Comparative analysis 

of simulation results and statistical significance test suggests 

the superiority of ELM-based CSC prediction. 
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1. Introduction 

Concrete is the most important material for construction of civil structures. An ever-growing 

demand for structural concrete is found during last few decades with respect to swift 

urbanization. Being a vital component of the structures, it experiences some abnormal effects 

i.e., wearing, freezing, and chemical attacks etc. over the lifespan of the structures. The main 

objective of investigation of concrete is to determine the CSC for each area of the structure. 

Based on the CSC, other properties like modulus of elasticity, and ductile strength etc. can be 

determined. The rebound hammer test and ultrasonic pulse velocity method are the conventional 

procedures followed for the estimation of mechanical features of concrete. However, significant 

deviations of their estimations from the true CSC values are the drawbacks of these methods.  

Data driven models are suitable alternatives of analytical models which works on establishing 

models according to available input-output data relationships to extrapolate and predict the 

output for unseen data. ANNs are systematically used for predicting the CSC in the available 

literature [1–4]. Components of concrete such as type of specimen, cement, water, fine, coarse 

masses, mixtures, and temperature play vital role in data driven model [5]. Forecasting accuracy 

of ANN is critically depending upon network scale and learning scheme [6–9]. An ANN-based 

predictive model for compressive strength assessment of mortar is proposed in [10]. The authors 

considered the mortar incorporated with metakaolin, revealed that the binder-sand ratio is an 

important parameter for this prediction, and ANN yields better prediction. Neural models for 

compression strength prediction were also proposed in [11] where ANN trained with gradient 

descent method is found generating superior results compared to multiple regression analysis. 

Gradient based learning methods are common approaches for ANN training. However, they are 

associated with few drawbacks such as lethargic convergence rate, imprecise learning and 

inclined to local minima which add computational overhead to the model [12]. To overcome 

these, ELM was proposed in [13,14]. It chooses the input-hidden weights at random. Unlike 

iterative fine-tuning, the hidden-output weights are determined analytically. Numerous 

researches and experimentations are done in the last few years for diverse applications using 

ELM which include time series prediction [15], sales forecasting [16], and stock forecasting [17]. 

It is a faster and better learning method for networks with solitary hidden layer and has enhanced 

generalization performance. Few articles used evolutionary optimization methods for the process 

of compressive strength prediction. The authors in [18] proposed a modified model using whale 

algorithm and response surface methodology for compressive strength of the confined square and 

rectangular concrete columns with fiber reinforced polymer (FRP). Their predictions are found 

accurate than comparative models. A stress prediction model using membrane hypothesis to 

formulate the confining behaviour of FRP confined rectangular columns is proposed in [19] that 

achieved good corelation with the experimental results. Three new models considering FRP 

strain efficiency factor as a function of strain ratio, confinement stiffness ratio, and combination 

of these ratios are proposed in [20]. The model with strain ration found better to others. The 

authors in [21] developed four machine learning models for design of concrete mix with and 

without plasticizer and revealed the superiority of decision tree regressor model. 
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The objective of current study is to design and access performance of a robust ELM-based 

forecast for prediction of CSC. The trained model is used to extrapolate the numerical concrete 

data available in UCI repository. Unlike conventional methods where the whole dataset is 

segregated into training and testing parts, a rolling window method is used to generate the train 

and test patterns. To access predictability of ELM-based forecast, four other models such as 

BPNN, SVM, ARIMA, and LSE are developed in similar fashion. Predictability of the 

procedures are accessed in terms of MAPE, ARV, UT, NMSE, SD, and computation periods. 

The rest of the article are segregated into: methods and materials in Section 2, experimental 

outcome summarization and analysis in Section 3 followed by closing notes. 

2. Methodologies and material 

This section describes the background methods such as ANN, ELM, BPNN, SVM, ARIMA, and 

LSE in a nutshell. The base articles for these are cited at the appropriate places. The prospective 

readers are suggested to follow the base articles for more information. The proposed ELM-based 

forecasting is discussed in details in Subsection 2.7. The summary statistics of the material used 

are discussed in Subsection 2.8. 

2.1. ANN 

ANNs are the computer programs which simulate the way in which human brain works [22]. It 

consists of hundreds of processing units as artificial neurons, which are fully connected through 

neural links. Neural links are assigned with weights (also called as synaptic weights) which plays 

the vital role in neural network learning. A typical ANN architecture is shown in Figure 1. The 

adder node calculates a linear amalgamation of inputs and the synaptic weights, and incorporates 

a bias. The induced local field of the neuron passes through the activation link to produce output. 

The signal flows from layer to layer in forward direction. Once it reaches the output layer, an 

error signal is generated by comparing the computed output with the expected output, and this 

error signal moves backward layer by layer until it reaches the input layer. There is no exact rule 

to fix the optimal number of layer and size of each layer. The decision process relies on domain 

knowledge as well as trial and error method. A supervised learning approach is followed here for 

error correction. 

The first layer corresponds to the input variable of the given problem. Each input variable 

corresponds to one neuron. The hidden layers are used to capture the non-linear relationships 

among variables. At each hidden neuron j, the weighted sum 𝑦𝑗 is calculated as in Eq. 1.  

𝑦𝑗=𝑓(𝑏𝑗+∑ 𝑤𝑖𝑗∗𝑥𝑖
𝑛
𝑖=1 ) (1) 

Where, 𝑥𝑖 is the 𝑖𝑡ℎ constituent of input vector, 𝑤𝑖𝑗 is the 𝑖𝑡ℎ input-𝑗𝑡ℎhidden neuron weight, 𝑏𝑗 

is a bias and 𝑓 is a nonlinear activation function. Suppose there are 𝑚 numbers of nodes in this 

hidden layer, then for the next hidden layer these 𝑚 outputs become the input. Then, for each 

neuron 𝑗 of the next hidden layer, the output is as in Eq.2. 
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𝑦𝑗=𝑓(𝑏𝑗+∑ 𝑤𝑖𝑗∗𝑦𝑖
𝑚
𝑖=1 ) (2) 

This signal flows in the forward direction through each hidden layer until it reaches the output 

layer. Output 𝑦𝑒𝑠𝑠𝑡 for the single output neuron is calculated using Eq. 3. 

𝑦𝑒𝑠𝑠𝑡=𝑓(𝑏𝑜+∑ 𝑣𝑗∗𝑦𝑗
𝑚
𝑗=1 ) (3) 

Where, 𝑣𝑗 is a  weight from 𝑗𝑡ℎ hidden to output neuron, 𝑦𝑗 is the weighted sum, and 𝑏𝑜 is the 

output bias. Given a set of training samples 𝑆={𝑥𝑖,𝑦𝑖}𝑖=1
𝑁  to train the ANN, let 𝑦𝑖 be the output 

of 𝑖𝑡ℎ input sample, and 𝑦𝑒𝑠𝑠𝑡 is the computed output of the same 𝑖𝑡ℎinput, then the error is 

calculated by using Eq. 4. 

 𝐸𝑟𝑟𝑜𝑟𝑖=𝑦𝑖−𝑦𝑒𝑠𝑠𝑡 (4) 

The error value that is produced by 𝑛𝑡ℎ training sample at the output of neuron 𝑖 is defined by 

 𝐸𝑟𝑟𝑜𝑟𝑖(𝑛)=𝑦𝑖(𝑛)−𝑦𝑒𝑠𝑠𝑡(𝑛) (5) 

Then the instantaneous error at neuron 𝑖 is defined by: 

𝜀𝑖(𝑛)=
1

2
𝐸𝑟𝑟𝑜𝑟𝑖

2(𝑛) (6) 

Hence the total instantaneous error of the whole network will be: 

𝜀(𝑛)=∑ 𝜀𝑖(𝑛)𝑖𝜖𝐶  (7) 

 

Fig. 1. ANN-based forecasting with multiple hidden layers. 

Input layer  
Hidden layer Output layer 

Error 
signal  

Learning algorithm 

Expected output 

Input  
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2.2. ELM 

As stated earlier, to overcome the limitations of gradient descent learning, ELM was proposed in 

[13,14]. It was proposed for training networks with one hidden layer. It considers random weight 

and bias for hidden nodes. As an alternative to iterative tuning the output weights are determined 

through generalized inverse function on the outputs from the hidden layer. For an input vector 𝑥𝑗, 

weight vector from input to 
thi  hidden neuron  𝑤𝑖=[𝑤𝑖1,𝑤𝑖2,⋯,𝑤𝑖𝑁]

𝑇,(𝑖=1,2,⋯,𝑁ℎ) and 

weights from 
thi  hidden to output neurons 𝛽𝑖=[𝛽𝑖1,𝛽𝑖2,⋯,𝛽𝑖𝑁]

𝑇, the output vector 𝑂𝑗 is 

computed as: 

𝑂𝑗= ∑ 𝛽𝑖∗𝑓(𝑤𝑖𝑥𝑗+𝑏𝑖𝑎𝑠𝑖),𝑗=1,2,⋯,𝑁
𝑁ℎ
𝑖=1  (8) 

Here 𝑁ℎ is the hidden layer size. The output weight vector 𝛽𝑖 can be attained by solving 𝐻𝛽=𝑌, 

Where, 

𝐻(𝑤𝑖,𝑥𝑖,𝑏𝑖)=[

𝑓(𝑤1𝑥1+𝑏1) ⋯ 𝑓(𝑤𝑁ℎ𝑥1+𝑏𝑁ℎ)

⋮ ⋱ ⋮
𝑓(𝑤1𝑥𝑁+𝑏1) ⋯ 𝑓(𝑤𝑁ℎ𝑥𝑁+𝑏𝑁ℎ)

]

𝑁×𝑁ℎ

 (9) 

𝛽=[
𝛽1
𝑇

⋮
𝛽𝑁ℎ
𝑇
]

𝑁ℎ×𝑚

   𝑌=[
𝑦1
𝑇

⋮
𝑦𝑁
𝑇
]

𝑁×𝑚

 

In real cases, the inequalities 𝑁ℎ≪𝑁 holds true. So, H is a non-square matrix and may be non-

singular in the majority of cases. Therefore, a combination (𝑤𝑖,𝑏𝑖,𝛽𝑖) satisfying Eq. (8) may not 

exist. So, the network can be trained by finding the least square minimum norm solution 𝛽 of (9) 

as follows: 

‖𝐻𝛽−𝑌‖=𝑚𝑖𝑛𝛽‖𝐻𝛽−𝑌‖ (10) 

𝛽=𝐻+𝑌 (11) 

Here 𝐻+ is the pseudo inverse or Moore-Penrose inverse of H. 

2.3. BPNN 

Backpropagation is the widely used learning method for ANN (shown in Figure 1) and the 

method is commonly referred as BPNN [23]. It adjusts the weights and bias of a neural network 

based on the error rate attained in the previous iteration. The modification is based on the 

gradient of a loss function with respect to the weights and bias set of the network. Proper tuning 

of these parameters (i.e., weights and bias) is the influential factor for error rate reduction and 

make the model reliable by increasing its generalization ability. The high-level steps of BPNN 

are described by the following Algorithm. 
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Algorithm: BPNN 

While (termination criteria not meeting) 

Step 1: Supply inputs through the preconnected path 

Step 2: Model the inputs using randomly initialized weights and bias 

Step 3: Compute the output for every neuron from the input layer, to the hidden 

            layers, to the output layer. 

Step 4: Compute the error in the outputs as: error = Model output – Desired   output 

Step 5: Travel back from the output layer to the hidden layer to adjust the weights such that  

the error is decreased. 

End 

 

2.4. ARIMA 

ARIMA model is extensively used statistical models for time series forecasting [24]. The model 

is based on the hypothesis that the allied time series can be generated from a linear combination 

of predefined number of past observations and a random white noise term. Mathematically the 

model is represented as follows: 

∅(S)(1−S)d(yt)=θ(S)εt (12) 

Where, ∅(𝑆)=1−∑ ∅𝑖𝑆
𝑖𝑝

𝑖=1 , 𝜃(𝑆)=1+∑ 𝜃𝑗𝑆
𝑗𝑞

𝑗=1 . The parameter p is the number of 

autoregressive, q is the moving average terms, and d is the degree of differencing. The term 𝜀𝑡 is 

the random error term and 𝑦𝑡 represents the actual observations of the time series. The random 

error term basically satisfies the i.i.d property. More generally these models are referred as 

ARIMA (p, d, q) model. 

2.5. SVM 

SVM is a popular supervised machine learning method, has demonstrated high performance in 

solving classification and regression problems [25,26]. It works on discriminating between two 

classes by generating a hyperplane that optimally separates classes after the input data are 

transformed mathematically into a high-dimensional space. The nonlinear problem in original 

space can be viewed as a linear one in high-dimensional space. Because the SVM approach is 

data-driven and model-free, it may have important discriminative power for cases where sample 

sizes are small and a large number of variables are involved. The special nonlinear functions 

called kernels are responsible to transform the input space into a multidimensional space, thus 

achieves high discriminative power. Different kernels such as linear, polynomial, Gaussian, and 

radial basis functions can be used in SVM. A SVM with kernel 𝐾, label 𝑦𝑖, and feature set 𝑥 can 

be presented as in Eq.13. 

𝑦=𝛽0+∑𝛼𝑖𝑦𝑖𝐾(𝑥(𝑖),𝑥) (13) 
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Then elements in one category will be such that the 𝑦 > 0, while elements in the other category 

will have 𝑦 < 0. The radial basis function is used as kernel in this work. 

2.6. LSE 

The LSE is based on the principle that provides a way of choosing the coefficients effectively by 

minimizing the sum of the squared errors between the estimation and desired output. it gives the 

least value for the sum of squared errors. Finding the best estimates of the coefficients is often 

called fitting the model to the data. The LSE can be represented as in Eq. 14. The prospective 

readers are suggested to refer the material in [27] for details. 

∑ 𝑒𝑟𝑟𝑜𝑟𝑡
2=∑ (𝑦𝑡−𝛽0−𝛽1𝑥1,𝑡−𝛽2𝑥2,𝑡−⋯−𝛽𝑘𝑥𝑘,𝑡)

2𝑇
𝑡=1

𝑇
𝑡=1  (14) 

2.7. ELM-based compressive strength prediction 

A pictorial view of ELM-based forecasting of cryptocurrency is depicted in Figure 2. Here, the 

base model is a neural network having single hidden layer. The network is trained by ELM. The 

input-hidden weights are assigned with random values. The output weights are computed as per 

Eq. 4. A rolling window method is used to generate the train and test patterns from the dataset. 

The method is depicted in Figure 2. The ELM-based compressive strength prediction model is 

depicted by Figure 3 and the overall steps of the forecasting process is shown in Figure 4.  

 
Fig. 2. Rolling window method for input pattern generation. 

Each sample of the dataset is considered as a data point on the time series. A window of fixed 

size is rolled over the time series. On each movement, an old datapoint is dropped and a new 

datapoint is included. The number of datapoints included by the window at any instant of time is 
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considered as one training sample. The width of the window is determined experimentally. For 

example, one train/test set is formed by the rolling window of width three is as follows. 

𝑥(𝑘)

𝑥(𝑘+1)

𝑥(𝑘+2)

𝑥(𝑘+1)

𝑥(𝑘+2)

𝑥(𝑘+3)

𝑥(𝑘+2)

𝑥(𝑘+3)

𝑥(𝑘+4)

⋮
⋮
⋮⏟                      

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎

𝑥(𝑘+3)

𝑥(𝑘+4)

𝑥(𝑘+5)⏟      
𝑇𝑎𝑟𝑔𝑒𝑡

 

𝑥(𝑘+3) 𝑥(𝑘+4) 𝑥(𝑘+5) ⋮⏟                      
𝑇𝑒𝑠𝑡 𝑑𝑎𝑡𝑎

𝑥(𝑘+6)⏟      
𝑇𝑎𝑟𝑔𝑒𝑡

 

The patterns are then normalized to scale the data into same range for each input feature so as to 

diminish the bias [28]. The 𝑡𝑎𝑛ℎ normalization method as in Eq. 15 is used to standardize the 

input data. The mean and standard deviation of a training pattern are represented as µ and σ 

respectively. 

𝑥=0.5∗(𝑡𝑎𝑛ℎ(
0.01∗(𝑥−𝜇)

𝜎
)+1) (15) 

 
Fig. 3. ELM-based compressive strength prediction model. 

After normalization the patterns are inputted sequentially to the network. A hidden neuron 

computes the weighted sum as well augments a bias. It then applies an activation to generate the 

net output. The output unit computes its net value in the same way. The model estimated an 

output (𝑦) at the output layer as in Eq.16. The amount of deviation of the estimation from the 

target (𝑦) is calculated as error as in Eq.17. The minimum is the error; closer the model 

estimation towards the actual, hence better is the prediction accuracy of the model. The 

estimation is denormalized. 
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𝑦=∑ 𝜎( 𝛽𝑖∗𝑎𝑖+𝑏)
𝑚
𝑖=1  (16) 

𝑒𝑟𝑟𝑜𝑟=𝑎𝑏𝑠(𝑦−𝑦) (17) 

 

Fig. 4. Overall steps of compressive strength prediction. 

2.8. Data 

The numerical data for experimentation are collected from the open source of UCI repository 

[29]. The dataset contains 1030 samples each of has 9 real attributes as summarized in Table 1. 

The attributes 1 – 8 are used as input for the model and last one (i.e., Concrete compressive 

strength) is used as the target. All the data points are quantitative and have numeric values only. 

From the original dataset, samples with curing age at 28, 56, and 91 days only are considered for 

experimentation. The correlation between input features is shown in Table 2. It can be seen that 

the cement, super plasticizer, and curing age are the most influential components for the 

compressive strength. The visualization of distribution of different components are shown in 

Figure 5. 
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. . . . . . . . . . . . . 
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Training / 

Testing Patterns 
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Input for 
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ELM 

 

Estimated Output 

 

Actual 

Error 

Denormalization 
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Table 1 
Summary statistics from the dataset. 

Component Mean Std Min 25% 50% 75% Max 

Cement (kg/m3) 281.16786 104.50636 102.0000 192.37500 272.90000 350.00000 540.00000 

Blast furnace slag (kg/m3) 73.895825 86.27934 0.000000 0.000000 22.000000 142.95000 359.40000 

Fly ash (kg/m3) 54.188350 63.99700 0.000000 0.000000 0.000000 118.300000 200.10000 

Water (kg/m3) 181.56728 21.35421 121.80000 164.90000 185.00000 192.00000 247.00000 

Super plasticizer (kg/m3) 6.204660 5.973841 0.000000 0.000000 6.400000 10.200000 32.200000 

Coarse Aggregate (kg/m3) 972.91893 77.75395 801.0000 932.00000 968.00000 1029.4000 1145.0000 

Fine Agg. (kg/m3) 773.58048 80.175980 594.0000 730.95000 779.50000 824.00000 992.60000 

Age (numeric) 45.662136 63.169912 1.000000 7.00000 28.000000 56.000000 365.00000 

Compressive Strength of 

Concrete (MPa) 
35.817961 16.705742 2.330000 23.710000 34.445000 46.135000 82.600000 

 

Table 2 

Correlation between input features. 

 C BFS FA W SP CA FAG AGE CSC 

Cement 1.000000 -0.275216 -0.397467 -0.081587 0.092386 -0.109349 -0.222718 0.081946 0.497832 

Blast furnace 

slag 
-0.27521 1.000000 -0.323580 0.107252 0.043270 -0.283999 -0.281603 -0.044246 0.134829 

Fly ash -0.39746 -0.323580 1.000000 -0.256984 0.377503 -0.009961 0.079108 -0.154371 -0.105755 

Water -0.08158 0.107252 -0.256984 1.000000 -0.657533 -0.182294 -0.450661 0.277618 -0.289633 

Super 

plasticizer 
0.092386 0.043270 0.377503 -0.657533 1.000000 -0.265999 0.222691 -0.192700 0.366079 

Coarse 

Aggregate 
-0.109349 -0.283999 -0.009961 -0.182294 -0.265999 1.000000 -0.178481 -0.003016 -0.164935 

Fine Agg. -0.222718 -0.281603 0.079108 -0.450661 0.222691 -0.178481 1.000000 -0.156095 -0.167241 

Age 0.081946 -0.044246 -0.154371 0.277618 -0.192700 -0.003016 -0.156095 1.000000 0.328873 

Compressive 

Strength of 

Concrete 

0.497832 0.134829 -0.105755 -0.289633 0.366079 -0.164935 -0.167241 0.328873 1.000000 
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Fig. 5. Distribution of components. 

3. Analysis of experimental outcomes and model evaluation 

The developed forecasts are trained and tested separately under the same environmental setup. 

From the original dataset, samples with curing age at 28, 56 and 91-days are only considered for 

experimentation here. The number of samples are 425, 91, and 76 respectively. The tanh function 

as in Eq. 15 for normalization as mentioned in Section 2.3. The same training and test patterns 

are fed to all models to maintain the fairness in compression. Five evaluation metrics such as 

mean absolute percentage of error (MAPE), and average relative variance (ARV), U of Theil’s 

statistics (UT), NMSE, and standard deviation (SD) are used to measure the predictability of the 

methods [18,30] as follows: 

𝑀𝐴𝑃𝐸=
1

𝑁 
∑

|𝑥𝑖−𝑥𝑖|

𝑥𝑖 

𝑁
𝑖=1 ×100% (18) 

ARV=
∑ (𝑥𝑖−𝑥𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑖−𝑋)
2𝑁

𝑖=1

 (19) 

𝑈 𝑜𝑓 𝑇ℎ𝑒𝑖𝑙=
∑ (𝑥𝑖−𝑥𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑖−𝑥𝑖+1)
2𝑁

𝑖=1

 (20) 

𝑁𝑀𝑆𝐸=
1

𝑁
∑ (𝑥𝑖−𝑥𝑖)

2𝑁
𝑖=1  (21) 

𝑆𝐷= 
√∑ (

𝑥𝑖
𝑥𝑖
−
𝐴𝑐𝑡𝑢𝑎𝑙𝑎𝑣𝑔.

𝐸𝑠𝑠𝑡𝑑.𝑎𝑣𝑔.
)
2

𝑁
1

𝑁−1
 (22) 

In the above equations, an original data point is represented as 𝑥𝑖, a model estimation is 

represented as 𝑥𝑖, and N is the total number of samples. 
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To access the capacity of the ELM-based forecast, four other methods such as ARIMA, SVM, 

BPNN, and LSE are implemented in a similar way and a comparison is done through five 

performance metrics. To overcome the biasness of the models under consideration, each model is 

simulated twenty times and the mean error value is recorded for comparisons. An ANN with 

solitary hidden layer is used as the base network and ELM is used to train it. Here, the input 

layer has eight neurons as there are eight numbers of attributes in a sample. The output layer has 

only one neuron, as there is one target output. However, the numbers of neurons in the hidden 

layer are decided experimentally. Inadequate number of hidden neurons may produce poor 

accuracy, whereas excess number of such neurons add computational overhead. Therefore, the 

size of hidden layer impacts the model performance a lot and must be decided carefully. For the 

three datasets (i.e., 28-days series, 56-days series, and 91-days series) the hidden layer size are 

chosen as 24, 16, and 16 respectively. Therefore, the optimal ANN structure for the three datasets 

is 8-24-1, 8-16-1, and 8-16-1 respectively. Radial basis function is used as the kernel for SVM. A 

three-layer architecture is used for BPNN where the hidden layer size lies in the range of 25 – 28 

and gradient descent-based backpropagation is used as the learning method. 

Different MAPE, NMSE, UT, SD, and ARV values generated from all models considering three 

data samples are recorded in Table 3 - 5. The best statistic values are highlighted in bold face. 

From Table 3, it is noted that, ELM-based model always produced lowest error values compared 

to others. For example, the MAPE, ARV, UT, NMSE, and SD values of the proposed model are 

0.033452, 0.051725, 0.024752, 0.032755, and 0.2901respectively. Similar observations are 

recorded from Table 4 and Table 5 data. The model performances can be further analyzed 

through computation time. All the experimentations are done with a system of Intel core i3 CPU, 

2.27GHz and 8.0 GB memory and matlab-2015 program writing environment. The execution 

times (in seconds) are summarized in last column of Table 3 - 5. It can be found from Table 3 

that the ELM-based prediction model required lesser running time than others, i.e., 185.015 

seconds for 28-days sample data. 

Table 3 

Error statistics and execution times from sample series with curing age at 28-days. 

Method 
Error Statistics Run time 

(Seconds) MAPE ARV UT NMSE SD 

ELM 0.033452 0.051725 0.024752 0.032755 0.2901 185.015 

SVM 0.082636 0.274423 1.014201 0.364503 0.3327 215.720 

BPNN 0.082368 0.297465 1.004255 0.047157 0.3604 274.325 

ARIMA 1.022592 0.889472 1.083962 0.365490 0.4002 144.003 

LSE 1.035935 0.897655 1.118757 0.656845 0.4512 190.945 

Table 4 

Error statistics and execution times from sample series with curing age at 56-days. 

Method 
Error Statistics Run time 

(Seconds) MAPE ARV UT NMSE SD 

ELM 0.053575 0.054265 0.048758 0.065275 0.2275 105.531 

SVM 0.085033 0.279245 0.084244 0.367377 0.2739 117.755 

BPNN 0.223653 0.297883 1.104290 0.076357 0.3155 152.005 

ARIMA 1.250905 1.007524 1.000364 0.406548 0.3411 106.362 

LSE 1.130562 0.995035 1.301725 0.686450 0.4125 110.577 
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Table 5 

Error statistics and execution times from sample series with curing age at 91-days. 

Method 
Error Statistics Run time 

(Seconds) MAPE ARV UT NMSE SD 

ELM 0.057045 0.052625 0.042805 0.077536 0.2512 92.006 

SVM 0.079382 0.298726 0.088479 0.364399 0.2825 105.704 

BPNN 0.246527 0.299036 1.293300 0.095563 0.2988 112.533 

ARIMA 1.200055 1.025262 1.030762 0.060045 0.3427 90.375 

LSE 1.320443 1.100085 1.225383 0.565332 0.3992 83.505 

 

In order to analyze the performance of the proposed approach further, the performance gain of it 

over comparative methods is calculated as in Eq. 23. The outcomes are summarized in Table 6. It 

is observed that the ELM approach attained 60% - 97% MAPE reduction, 81% - 94% ARV 

reduction, 98% UT reduction, 91% - 95% NMSE reduction, and 13% - 36% SD reduction in 

case of 28-days sample dataset. Considering 56-days sample set, it achieved 37% - 96% 

reduction in MAPE, 81% - 95% in ARV, 42% - 96% in UT, 82% - 90% in NMSE, and 17% - 

45% in SD values. Similar observations are found in case of 91-days sample set. Therefore, 

almost all cases the ELM approach found performing better to comparative models. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑔𝑎𝑖𝑛=
(𝐸𝑟𝑟𝑜𝑟 𝑓𝑟𝑜𝑚 𝑐𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒𝑙−𝐸𝑟𝑟𝑜𝑟 from 𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑚𝑜𝑑𝑒𝑙)

𝐸𝑟𝑟𝑜𝑟 𝑓𝑟𝑜𝑚 comparative 𝑚𝑜𝑑𝑒𝑙
 ×100% (23) 

Table 6 

Percentage (%) of error reduction on adopting ELM approach over comparative methods. 

Error metric 28-days sample data 56-days sample data 91-days sample data 

 SVM BPNN ARIMA LSE SVM BPNN ARIMA LSE SVM BPNN ARIMA LSE 

MAPE 60 59 97 97 37 76 96 95 28 77 95 96 

ARV 81 83 94 94 81 82 95 95 82 82 0.95 95 

UT 98 98 98 98 42 96 95 96 52 97 0.96 97 

NMSE 91 31 91 95 82 15 84 90 79 19 -29 86 

SD 13 20 28 36 17 28 33 45 11 16 27 37 

 

 
Fig. 6. Forecasting plots from sample series with 28 days curing age using ELM. 
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Fig. 7. Error distribution graph from 28-days curing age sample series using ELM. 

 
Fig. 8. Forecasting plots from sample series with 56 days curing age using ELM. 

 
Fig. 9. Error distribution graph from 56-days curing age sample series using ELM. 
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Fig. 10. Forecasting plots from sample series with 56 days curing age using ELM. 

 
Fig. 11. Error distribution graph from 91-days curing age sample series using ELM. 

To establish the better predictability of ELM-based model, the estimated model values against 

true compressive strength values are plotted in Figure 6, 8 and 10 for 28, 56, and 91-days sample 

sets respectively. For the sake of visibility, 150 observations only are plotted in Figure 6. It is 

visible that the model estimations are closer to the true compressive strength values and 

following the trend of actual data. The error distribution graphs from different datasets are 

depicted in Figure 7, 9, and 11. From these figures it is observed that for majority of the samples, 

the ELM generated error values closer to zero. 

The Wilcoxon signed-rank test is then conducted for a significance check. Outcomes of the 

paired, two-sided test for the null hypothesis shows that the change between the proposed and 
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reasonable models comes from a zero-median distribution. Rejection of the null hypothesis 

indicated by the logical value h = 1. The Wilcoxon signed-rank test results are summarized in 

Table 7. These statistic values show that the ELM-based approach is appreciably different from 

others. 

Table 7 

Statistics from Wilcoxon signed-rank test. 

Analyzed methods 
p-value 

28-days sample set 56-days sample set 91-days sample set 

ELM 

SVM 
3.2527e-5 

(h = 1) 

3.12402e-4 

(h = 1) 

3.2452e-3 

(h = 1) 

ARIMA 
3.1417e-3 

(h = 1) 

3.2741e-5 

(h = 1) 

3.3244e-3 

(h = 1) 

BPNN 
3.3522e-4 

(h = 1) 

2.3604e-3 

(h = 1) 

2.5465e-2 

(h = 1) 

LSE 
3.5316e-3 

(h = 1) 

2.03632 

(h = 1) 

3.7367e-2 

(h = 1) 

 

From the above experimental result analysis, comparative studies, and statistical significance test 

the following points can be drawn. 

¶ The ELM-based neural network model is quite capable in modelling the CSC data. 

¶ It achieved better forecasting accuracy compared to other statistical models. 

¶ Substantial reductions in error values are found on adopting ELM-based approach. 

¶ The proposed approach is significantly different from comparative models. 

4. Conclusions 

Prediction of compressive strength of concrete is an active area of research in the domain of 

manufacturing engineering. For accurate prediction of compressive strength of concrete, this 

article proposed an ELM-based forecast. The forecast has a single hidden layer ANN as the base 

architecture, and ELM as the learning method hence, possess less structural and computational 

complexity. The data driven model is evaluated on a publicly available dataset. To establish the 

superiority of ELM-based forecast, a comparative study with few standard forecasting methods 

such as BPNN, SVM, ARIMA, and LSE is carried out. From the original dataset, samples with 

curing age at 28, 56, and 91-days are considered for experimentation. The training and test 

patterns are generated by the rolling window method from the original dataset. Considering the 

three datasets, the ELM on an average achieved lowest MAPE of 0.048024, ARV of 0.052872, U 

of Theil’s statistics (UT) of 0.038772, NMSE of 0.058522, and standard deviation (SD) of 

0.256267. Also, there is significant performance gains on adopting ELM over others. Analysis 

from different error statistics and computation times reveals the superiority of the proposed 

model. Finding optimal hidden layer size manually is a limitation of current study and need to be 

automated. Exploring other sophisticated ANNs and learning algorithms can be another future 
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direction. Further, the proposed approach can be applied to other data driven problems in 

material science domain. 
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