[1] MS. S. Concrete Technology. S. Chand publications, New Delhi. Longman Scientific & Technical England; 2009.
[2] Mehta P, Monteiro P. Concrete-Structure, properties and materials. Prentice Hall, Englewood Cliffs, N. J. 1993.
[3] AM. N. Properties of concrete. 4th Ed Pearson Educ Asia PTE Ltd Edinburgh, Engl 2011.
[4] Hassan NS. Effect of grading and types of coarse aggregates on the compressive strength and unit weight of concrete. J Tech 2011;24.
[5] Aginam CH, Chidolue CA, Nwakire C. Investigating the effects of coarse aggregate types on the compressive strength of concrete. Int J Eng Res Appl 2013;3:1140–4.
[6] Jimoh AA. A Study of the Influence of Aggregate Size and Type on the Compressive Strength of Concrete 2007.
[7] Abdullahi M. Effect of aggregate type on compressive strength of concrete. Int J Civ Struct Eng 2012;2:782.
[8] Cahyani E, Wibowo A, Wijatmiko I. Modeling of slump value and determination of influential variables with regression approach. Rekayasa Sipil 2019;13:159–65. doi:10.21776/ub.rekayasasipil.2019.013.03.2.
[9] Kanchidurai S, Krishnan PA, Baskar K. Compressive Strength Estimation of Mesh Embedded Masonry Prism Using Empirical and Neural Network Models. J Soft Comput Civ Eng 2020;4:24–35.
[10] Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H. Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite. J Clean Prod 2021;279:123697. doi:10.1016/j.jclepro.2020.123697.
[11] Razzaghi H, Madandoust R, Aghabarati H. Point-load test and UPV for compressive strength prediction of recycled coarse aggregate concrete via generalized GMDH-class neural network. Constr Build Mater 2021;276:122143. doi:10.1016/j.conbuildmat.2020.122143.
[12] Ramkumar KB, Kannan Rajkumar PR, Noor Ahmmad S, Jegan M. A review on performance of self-compacting concrete – use of mineral admixtures and steel fibres with artificial neural network application. Constr Build Mater 2020;261:120215. doi:10.1016/j.conbuildmat.2020.120215.
[13] Chen L. Modeling slump of concrete using the group method data handling algorithm 2010.
[14] Hoang N-D, Pham A-D. Estimating Concrete Workability Based on Slump Test with Least Squares Support Vector Regression. J Constr Eng 2016;2016:1–8. doi:10.1155/2016/5089683.
[15] Charhate S, Subhedar M, Adsul N. Prediction of concrete properties using multiple linear regression and artificial neural network. J Soft Comput Civ Eng 2018;2:27–38.
[16] Yousif ST, Abdullah SM. Artificial neural network model for predicting compressive strength of concrete. Tikrit J Eng Sci 2009;16:55–66.
[17] Chandwani V, Agrawal V, Nagar R. Modeling and analysis of concrete slump using hybrid artificial neural networks. Int J Civil, Struct Constr Archit Eng 2014;8:933–40.
[18] Sonebi M, Grünewald S, Cevik A, Walraven J. Modelling fresh properties of self-compacting concrete using neural network technique. Comput Concr 2016;18:903–20.
[19] Abdullahi M, Aminulai HO, Alhaji B, Abubakar A. Modelling the Slump, Compressive Strength and Density of Concrete containing Coconut Shells as partial replacement for Crushed Granite. J Res Inf Civ Eng 2017;14:24–30.
[20] Abdulla NA. Using the artificial neural network to predict the axial strength and strain of concrete-filled plastic tube. J Soft Comput Civ Eng 2020;4:63–86.
[21] Agrawal V, Sharma A. Prediction of slump in concrete using artificial neural networks. World Acad Sci Eng Technol 2010;4:279 – 286.
[22] Mirrashid M, Naderpour H. Recent Trends in Prediction of Concrete Elements Behavior Using Soft Computing (2010–2020). Arch Comput Methods Eng 2020. doi:10.1007/s11831-020-09500-7.
[23] Armaghani DJ, Asteris PG. A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Comput Appl 2021;33:4501–32. doi:10.1007/s00521-020-05244-4.
[24] Lu S, Koopialipoor M, Asteris PG, Bahri M, Armaghani DJ. A Novel Feature Selection Approach Based on Tree Models for Evaluating the Punching Shear Capacity of Steel Fiber-Reinforced Concrete Flat Slabs. Materials (Basel) 2020;13:3902. doi:10.3390/ma13173902.
[25] Sharifi Y, Hosainpoor M. A predictive model based ANN for compressive strength assessment of the mortars containing metakaolin. J Soft Comput Civ Eng 2020;4:1–12.
[26] Gowda BSK, Prasad GLE, Velmurugan R. Prediction of Mechanical Strength Attributes of Coir/Sisal Polyester Natural Composites by ANN. J Soft Comput Civ Eng 2020;4:70–94.
[27] Adamu M, Olalekan SS, Aliyu MM. Optimizing the Mechanical Properties of Pervious Concrete Containing Calcium Carbide and Rice Husk Ash Using Response Surface Methodology. J Soft Comput Civ Eng 2020;4:95–118.
[28] Jahangir H, Rezazadeh Eidgahee D. A new and robust hybrid artificial bee colony algorithm – ANN model for FRP-concrete bond strength evaluation. Compos Struct 2021;257:113160. doi:10.1016/j.compstruct.2020.113160.
[29] Chen S, Zhao Y, Bie Y. The prediction analysis of properties of recycled aggregate permeable concrete based on back-propagation neural network. J Clean Prod 2020;276:124187. doi:10.1016/j.jclepro.2020.124187.
[30] Ababneh A, Alhassan M, Abu-Haifa M. Predicting the contribution of recycled aggregate concrete to the shear capacity of beams without transverse reinforcement using artificial neural networks. Case Stud Constr Mater 2020;13:e00414. doi:10.1016/j.cscm.2020.e00414.
[31] Xu J, Chen Y, Xie T, Zhao X, Xiong B, Chen Z. Prediction of triaxial behavior of recycled aggregate concrete using multivariable regression and artificial neural network techniques. Constr Build Mater 2019;226:534–54. doi:10.1016/j.conbuildmat.2019.07.155.
[32] Dias WPS, Pooliyadda SP. Neural networks for predicting properties of concretes with admixtures. Constr Build Mater 2001;15:371–9. doi:10.1016/S0950-0618(01)00006-X.
[33] Bai J, Wild S, Ware J., Sabir B. Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Adv Eng Softw 2003;34:663–9. doi:10.1016/S0965-9978(03)00102-9.
[34] Öztaş A, Pala M, Özbay E, Kanca E, Çagˇlar N, Bhatti MA. Predicting the compressive strength and slump of high strength concrete using neural network. Constr Build Mater 2006;20:769–75. doi:10.1016/j.conbuildmat.2005.01.054.
[35] P K, IC. S. Modeling Ready Mix Concrete Slump using Artificial Neural Network. IJLTEMAS 2014;3:284.
[36] Deepak M, Gopalan R, Akshay Raj R, Shanmugi S, Usha P. Modeling of concrete slump and compressive strength using ANN. Int J Innov Technol Explor Eng 2019;8.
[37] SM. I. Performance of Bida Natural Deposit Stone as Coarse Aggregate in Self-Compacting Concrete. Unpublished M.Eng Thesis Submitted to Department of Civil Engineering, Federal University of Technology, Minna 2014 n.d.
[38] IA S, AD M, A S, AA. A. Assessment of Potentials of Bida Bush Gravel on Strength Properties of Self Compacting Concrete. , Int J Eng Res Technol 2016;5.
[39] Salihu A. A study of the compressive strength of concrete made from bida natural deposit stone. Unpubl MEng Thesis Submitt to Dep Civ Eng Fed Univ Technol Minna 2011.
[40] B. A. Statistical Modelling of Mechanical Properties of Concrete Made from Natural Coarse Aggegates from Bida Environs. Unpubl PhD Thesis Submitt to Dep Civ Eng Fed Univ Technol Minna 2016.
[41] A Y, AI. E. Flexural Strength of Revibrated Concrete Using Iron Ore Tailings (IOT) as Partial Replacement for River Sand. USEP J Res Inf Civ Eng 2020;17:4009 – 4019.
[42] Mane KM, Kulkarni DK, Prakash KB. Prediction of flexural strength of concrete produced by using pozzolanic materials and partly replacing NFA by MS. J Soft Comput Civ Eng 2019;3:65–75.
[43] Heidari A, Hashempour M, Tavakoli D. Using of Backpropagation Neural Network in Estimation of Compressive Strength of Waste Concrete. J Soft Comput Civ Eng 2017;1:54–64.
[44] Bandyopadhyay G, Chattopadhyay S. Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int J Environ Sci Technol 2007;4:141–9. doi:10.1007/BF03325972.
[45] RJ. S. Artificial Neural Networks. Mc Graw Hill, Singapore 1995.
[46] Sivanandam S, Sumathi S, Deepa S. Introduction to Neural Networks using MATLAB 6.0. Tata McGraw-Hill, New Delhi 2006.
[47] L. F. Fundamentals of Neural Networks. Prentice Hall, Englewood cliffs N.J. 1994.
[48] British Standard Institute BS EN 197-1:2011. Composition, specifications and conformity criteria for common cements. British Standard Institute, London 2011.
[49] British Standard Institute BS EN 12620-1:2009. Aggregates for concrete. British Standard Institute, London 2009.
[50] British Standard Institution. BS 882; Part 2, Aggregate from Natural Sources for Concrete (including British Standard Institution, 389 Cheswick High Road, London 1973.
[51] British Standard Institute BS EN 12350. Method of sampling fresh concrete British Standard Institute, London 2009.
[52] Minitab Statistical Software version. State College, PA. Minitab inc. 2012.
[53] Al Shalabi L, Shaaban Z, Kasasbeh B. Data mining: A preprocessing engine. J Comput Sci 2006;2:735–9.
[54] Deaho Cha, Blumenstein M, Hong Zhang, Dong-Sheng Jeng. Improvement of an Artificial Neural Network Model using Min-Max Preprocessing for the Prediction of Wave-induced Seabed Liquefaction. 2006 IEEE Int. Jt. Conf. Neural Netw. Proc., IEEE; 2006, p. 4577–81. doi:10.1109/IJCNN.2006.247085.
[55] Antanasijević D, Pocajt V, Perić-Grujić A, Ristić M. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J Hydrol 2014;519:1895–907. doi:10.1016/j.jhydrol.2014.10.009.
[56] Alasadi SA, Bhaya WS. Review of data preprocessing techniques in data mining. J Eng Appl Sci 2017;12:4102–7.
[57] Olyaie E, Zare Abyaneh H, Danandeh Mehr A. A comparative analysis among computational intelligence techniques for dissolved oxygen prediction in Delaware River. Geosci Front 2017;8:517–27. doi:10.1016/j.gsf.2016.04.007.
[58] TALIHA AF, ABIODUN MA, JONATHAN GK, SULEIMAN OES, ABDULLAHI MO. Effects of data normalization on water quality Model in a recirculatory aquaculture system Using artificial neural network. I-Manager’s J Pattern Recognit 2018;5:21. doi:10.26634/jpr.5.3.15678.
[59] Alshihri MM, Azmy AM, El-Bisy MS. Neural networks for predicting compressive strength of structural light weight concrete. Constr Build Mater 2009;23:2214–9. doi:10.1016/j.conbuildmat.2008.12.003.
[60] El-Khoja AMN, Ashour AF, Abdalhmid J, Dai X, Khan A. Prediction of Rubberised Concrete Strength by Using Artificial Neural Networks. Training 2018;30:35.
[61] Matlab. The Mathworks MatLab & Simulink, http://www.mathworks.com/ 2012.
[62] James AF DM. Neural Networks Algorithms, Applications, and Programming Techniques. Addison-Wesley Publishing Company 1991.
[63] G. K. An introduction to neural networks. UCL Press Limited, London 2004.
[64] Shihani N, Kumbhar BK, Kulshreshtha M. Modeling of extrusion process using response surface methodology and artificial neural networks. J Eng Sci Technol 2006;1:31–40.
[65] Muthupriya P, Subramanian K, Vishnuram BG. Prediction of compressive strength and durability of high performance concrete by artificial neural networks. Iran Univ Sci Technol 2011;1:189–209.
[66] S. A, M. A, A. H. Artificial neural network to evaluate 2018.
[67] Yeh I-C. Exploring Concrete Slump Model Using Artificial Neural Networks. J Comput Civ Eng 2006;20:217–21. doi:10.1061/(ASCE)0887-3801(2006)20:3(217).