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Rocks were subjected to the deformation test under five 

different confining stresses (0, 5, 10, 15, and 20 MPa) using 

the Hoek cell to determine changes in the elastic properties 

of the rocks under confining stress, and the results were 

evaluated based on density, porosity, Schmidt hardness, and 

compressive strength. A total of nine different rocks, two 

granites, two andesites, two limestones, one tuff, one diorite, 

and one marble, were used. When the confining stress was 

increased from 0 MPa to 5 MPa and from 5 MPa to 10 MPa, 

elasticity increased by approximately 20%. When the 

confining stress was increased from 10 MPa to 20 MPa, the 

increase was 7% in comparison with the previous value. 

Then, to formulate the modulus of elasticity for rocks under 

the triaxial stress conditions, a new and intelligent approach 

to gene application, gene expression programming was 

utilized. The success of the model was thoroughly assessed 

based on measurable criteria such as the root mean square 

error, mean absolute percentage error, and coefficient of 

determination. Furthermore, the success of the model was 

comprehensively assessed based on the model testing, and 

0.88 and 0.81 R
2
 values were obtained for training and 

validation, respectively. The performance of the gene 

expression programming-based formulation was compared 

with the formulae previously proposed in the literature. The 

gene expression method exhibited the best performance, and 

it was identified to calculate the modulus of elasticity under 

triaxial stress conditions more effectively. 
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1. Introduction 

The characterization of the engineering properties of rocks plays a vital role in planning the 

engineering structure in terms of stability and cost analysis. The modulus of elasticity (E) 

represents an essential parameter for understanding the deformation behavior of rocks and is 

among the most significant mechanical properties of rocks concerning their areas of usage. The 

said parameter is crucial in tunnel projects, slope consistency, pillar configuration, rock 

destruction and drilling, dams, and numerous other civil and mining applications. It has been 

widely utilized to analyze structural deformations, shrinkage, creep, crack control, etc. 

The modulus of elasticity is used for the purpose of determining the deformation properties of 

wood, metal, concrete, rocks, and many other materials. The mentioned parameter represents the 

ratio of stress to corresponding strain in material under tension or compression. It may be 

obtained from unconfined compressive strength (G1) tests and the incline of tensile test stress-

strain diagrams for rocks. The deformation test performed to determine the modulus of elasticity 

is difficult, time-consuming, and requires particular specimens and equipment. Many authors 

have tried to identify this parameter using more easily identified material properties due to the 

difficulties in determining the modulus of elasticity using regression analysis [1–4], genetic 

programming applications, e.g. artificial neural networks [4–8], fuzzy logic [9–11], and genetic 

algorithms [12–14]. 

The elasticity test is performed only under uniaxial stresses. Nevertheless, in practice, 

underground rocks are also affected by confining stress (G3), assuming that G2= G3≠0 and the 

modulus of elasticity (E) may be insufficient to reflect the actual conditions of rocks. In real 

situations, rocks are exposed to confining stress, and the effects of their elasticity characteristics 

under confining stress vary. In previous studies, it was stated that the strength and the modulus of 

elasticity of rocks would increase with the increase in G3. However, there are not many studies in 

the literature on the rate of this increase and estimating the respective values. Liang et al. [15] 

and Ma et al. [16] investigated the stress-strain relationships for rock salt and anhydrite. On the 

contrary, Li et al. [17] reported that the modulus of elasticity was independent of strain rate. 

Hoek and Brown [18], Arora [19], and Asef and Reddish [20] developed a different formula for 

predicting the modulus of elasticity with confining pressure. 

This study's goal was to predict E at a triaxial stress state using a novel approach, gene 

expression programming (GEP). The complicated relationship between the parameters affecting 

the E value may be easily modeled using the GEP approach, unlike classical methods. Two 

hundred fifty-six data sets were collected from experimental studies using nine different rocks 

(two granites, two andesites, two limestones, one tuff, one diorite, and one marble). E was used 

as an output, and five parameters, including G3 (MPa), G1 (MPa), porosity (g/cm
3
) (𝜃), ultrasonic 

sound velocity (km/s), and Schmidt rebound hardness (SH), were used as the input parameters. 

The model was trained with 192 data sets of the experimental results, following which 64 data 

sets were utilized for testing. The result of the obtained GEP-based formulation was tested and 

compared to the formulations proposed by Arora
 
[19] and Asef and Reddish [20] using 
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experimental data. It was observed that the findings acquired using the model corresponded to 

the experimental data at a high rate. 

2. Material and experimental methods 

2.1. Rock characteristics 

The physical characteristics of the sampled rocks were identified by 𝜃 and ultrasonic P-wave 

velocity. The samples were cored from large blocks in the laboratory, and their testing was 

carried out following the procedures described in ISRM [21] . Density (𝜌) and  𝜃 were found by 

employing the water saturation and caliper techniques on the NX-sized samples, using five 

samples every time. The high-frequency ultrasonic pulse technique described by ASTM [22] was 

employed to measure the velocities of the P (compression) waves using the 1 MHz nominal 

frequency. The wave velocity through the sample was computed using the travel time from the 

transmitter to a receiver. A minimum of five measurements was made from every rock type, and 

they were averaged. 

The measured mechanical properties were UCS and rebound tests, which were determined in 

accordance with the standards by ISRM [21]. A minimum of five core samples from every rock 

were exposed to strength tests, which were conducted using a fully automatic, servo-controlled, 

instrumented, and computer-controlled press machine. Rebound tests were conducted on the 

block samples using the Digi-Schmidt 2000 concrete test hammer. At least twenty measurements 

at various points of every sample were performed for the rebound hardness of rocks. Table 1 

summarizes the physical and mechanical characteristics of the rocks examined. This table shows 

that the standard deviation values were high because of working with natural materials. 

Table 1 
Basic physical and mechanical characteristics of rocks. 

   

 Min. Max. Mean Std. Dev. 

𝜃 (%)  0.36 18.23 4.36 6.16 

𝜌 (gr/cm
3
)  1.85 2.86 2.57 0.33 

Vp (Km/s)  2.17 5.82 4.28 1.38 

SH  43.00 70.60 58.18 8.05 

G1 (MPa)  28.00 167.97 81.14 34.95 

E (MPa)  1278.20 28260.20 10854.07 5513.98 

 

2.2. Elasticity at a triaxial stress state 

Triaxial compression tests with different G3 were carried out according to ISRM [21] using a 

hydraulic servo-control test system comprised of three major sub-systems, including a servo-

controlled press machine, automatic axially loading unit, instrumentation, and a personal 

computer. G3 was achieved through hydrostatic pressure using an automatic pressure system for 

confining stress in a Hoek triaxial cell. A series of G3 at 5, 10, and 15 MPa and at 20 MPa for 
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only two rocks (one limestone and one granite) were applied as confining pressure. The 

maximum confining stress was limited to 20 MPa, which was equivalent to a load of 

approximately 800 m depth representing the limit of the depth of most engineering works. Axial 

loading and G3 were simultaneously increased to the pre-established values, following which G3 

was fixed, and axial loading continued to be increased at a constant speed up to the pre-

determined stresses. The axial strains of the test samples were measured by the linear variable 

differential transformer (LVDT) using the software prepared for controlling the press machine. A 

PC continuously showed and performed the recording of the axial load and the axial 

displacement during the test. The tangential 𝐸 was derived as a tangent to the stress-strain curve 

(E=∆G/∆є) at 50% of the maximum stress (G1) derived (Fig. 1). The E values for different G3 

values of the nine various rocks used in the study are presented in Fig. 2. It is observed that when 

G3 was increased from 0 to 5 and from 5 to 10, the increase in the modulus of elasticity was 

20%, and when G3 was increased from 10 to 15, the mean modulus of elasticity increased by 7% 

on average in the used rocks. 

 
Fig. 1. Determination of the modulus of elasticity. 

 
Fig. 2. The correlation between E and G3. 

The effects of G1 and G3 on the E values are shown in Fig. 3. In particular, when G3 was applied 

as 5 and 10 MPa, it was observed that the modulus of elasticity was about 20% higher compared 

to the previous value. When G3 was applied as 20 MPa, the modulus of elasticity continued to 

increase. However, this rate was only 7% higher than the value at 15 MPa. The most important 

reason for this was the fact that the discontinuities in the studied rocks were continuous to trap 



 U. Atici/ Journal of Soft Computing in Civil Engineering 4-4 (2020) 47-60 51 

 

up to 10 MPa. After 10 MPa, the closing procedure was continued, but the effect on deformation 

was reduced. In case of the low confining stress, the rocks with low G1 and high 𝜃 regarding the 

increase in the modulus of elasticity were relatively low. When the confining stress increased, the 

increase in the modulus of elasticity was higher. However, in the rocks with high G1 and low 𝜃, 
the situation was the opposite (Fig. 4). Likewise, the highest rate of increase in the modulus of 

elasticity was observed in rocks with the highest SH as the confining stress increased (Fig. 5). 

 
Fig. 3. The correlation between E and G1, G3. 

 
Fig. 4. The correlation between E and 𝜃, G3. 

 
Fig. 5. The correlation between E and SH, G3. 
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3. Gene expression programming (GEP) 

Although classical modeling methods such as regression analysis have many advantages, these 

methods need a correlation between independent and dependent variables [23]. The significant 

weakness of traditional modeling methods is their being not equipped for providing useful 

prediction conditions for complicated cases. The soft computing approach surpasses the 

problems and disadvantages of regression analysis and yields incredible and accurate results [9]. 

To overcome this limitation, new methodologies have been proposed. The researchers have 

produced rearranged prediction conditions without accepting an earlier type of the current 

relationship. Gene expression programming (GEP) is another amazing, transformative AI-based 

technique created by Ferreira [24]. It is a groundbreaking developmental calculation that 

combines both the basic direct chromosomes of a settled length like the ones utilized in 

hereditary calculations and the ramified structures of various sizes and shapes like the parse trees 

of hereditary programming. Its assessment arrangement of any information resembles that of the 

biological assessment and is a PC program that is encoded in direct chromosomes of a settled 

length. In the mentioned methodology, a scientific capacity characterized as a chromosome with 

multiple qualities is produced by utilizing the information exhibited to it. 

To create a GEP demonstration, five segments, including the function set, terminal set, control 

parameters, fitness function, and stop condition, are needed. After encoding the issue for the 

competitor arrangement and determining the wellness work, the calculation randomly makes an 

underlying populace of reasonable people (chromosomes) and afterward, changes over every 

chromosome into an articulation tree related to a scientific articulation. A short time later, the 

anticipated target is contrasted, and the real one and the wellness score for every chromosome 

are resolved. If it is adequately high, the calculation stops. Nevertheless, a part of the 

chromosomes are chosen by utilizing roulette wheel testing, and after this process, they are 

transformed to acquire the new ages. This closed cycle proceeds until the wanted wellness score 

is achieved, following which the decoding of the chromosomes is performed for the best 

arrangement of the issue [25,26]. 

GEP has two languages, such as the language of qualities and the language of ETs. In GEP, on 

account of the basic decisions about the structure of ETs and their associations, it is reasonable to 

promptly induce the phenotype presented as the arrangement of quality and vice versa. This 

comprehensible bilingual documentation is named the Karva language [24]. For example, a 

numerical articulation [𝑎 ∗ (𝑎/𝑏)] + [√𝑎/𝑏2 ] may be expressed by a two-quality chromosome or 

an ET, as seen in Fig. 6. The said figure indicates how two qualities are encoded as a straight 

string and how they are communicated as an ET. The reader is referred to the study conducted by 

Ferreira [24,27] to obtain more detailed information. 

3.1. Overview of gene expression programming 

Due to the failed linear, nonlinear either single or multiple regression in terms of providing the 

suitable outcomes, in this study, the principal point of improvement of GEP-based definitions 

was to produce the numerical capacities for the prediction of E at 5, 10, 15, and 20 MPa G3 at a 

triaxial stress state. While training and testing the GEP model, G3, density (𝜌), 𝜃, SH, Vp, and G1 

were used as the input variables, whereas E was used as the output variable. 
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Fig. 6. The case of the GEP expression tree. 

The GEP model was created with 256 data sets of the rock samples acquired from this 

experimental research. The numbers of the experimental data sets utilized for initial practices and 

testing/validation in the mentioned model were 191 and 63, respectively. Table 2 summarizes the 

parameters utilized in the development of the GEP model. 

Many GEP models were tested to find the best model using the GeneXproTools software. Four 

basic arithmetic operations (+, −, ∗, /) and several primary mathematical functions (Exp, Ln, X
2
, 

3Rt, Atan, Min, Max, Avg2, Tanh, Not, Inv) were used, and the RMSE limitation was determined 

as the fitness function. 

In the GEP analysis, the setting parameter values significantly affected the output model's fitness. 

They contained the chromosome number, the number of genes, the head size of the gene, and the 

ratio of genetic operators. To select the chromosomal tree, in other words, the head's length and 

the gene number, the GEP models primarily utilized a single gene and two lengths of heads and 

increased the number of genes and heads, consecutively, in every run, while the testing and 

training performance of every model was monitored. Following a number of tests, for the 

models, the numbers of genes 3 and eight heads were revealed to yield the best outcomes. The 

linking of the sub-ETs (genes) was performed as a result of subtraction. 

Table 2 
GEP parameters utilized for the models created. 

Definition of the parameter GEP Model 

Fitness function RMSE 

Number of chromosomes 30 

Gene number  3 

Mutation rate 0.00138 

Inversion rate 0.00546 

One-point recombination rate 0.00277 

Two-point recombination rate 0.00277 

Gene recombination rate 0.00277 

Gene transposition rate 0.00277 

Literals 17 

Arithmetic operators + - x / 

Mathematical function Exp, Ln, X
2
, 3Rt, Atan, Min, Max, Avg2, Tanh, Not, Inv 

Head size 8 

Tail Size 9 

Gene Size 26 

Linking function Subtraction 
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Finally, an association of all genetic operators, including transposition, mutation, and crossover, 

was utilized as the set of genetic operators. The chromosome 30 was determined as the best 

generation of individuals in estimating E. The accurate formulation after replacing the constants 

based on the constructed models for E is given by the following formula: 

𝐸 = {68.564 (
10𝑉𝑝

𝑀𝑖𝑛(𝑓𝑥;𝑆𝐻)
∗ (𝜃 ∗ 𝑓𝑥)} − {𝑀𝑖𝑛(2094.579𝑉𝑝

2; ((𝑉𝑝 + 𝜌) ∗ (𝜎3 ∗ 𝑆𝐻)} −

{[(
(𝑆𝐻+𝜎1)+(𝑉𝑝∗𝜎1

2
) ∗ (𝜌 ∗ 𝑆𝐻)] ∗ 𝐴𝑇𝑎𝑛(−17.39𝜃)} (1) 

Fig. 7 presents the expression tree of the formulation for the model, where d0, d1, d2, and d3 

denote G3, 𝜌, 𝜃, SH, Vp, and G1. Table 3 contains the list of the constants utilized in the 

formulation. 

Table 3 
Coefficients used in the GEP model. 

Constant Gene I Gene II Gene III 

C0 8.45 4.09 -2.93 

C1 6.19 8.65 6.02 

C2 -4.61 -4.79 1.65 

C3 5.49 -204.14 7.46 

C4 2.65 8.53 -2.04 

C5 -0.39 -2.55 -9.48 

C6 -6.03 -8.69 -17.39 

C7 6.19 -5.13 1.67 

C8 9.13 0.27 9.00 

C9 -9.63 9.27 -5.84 

 

4. Results and discussion 

The current section investigates the findings of the analysis of the created model and a 

quantitative evaluation of the model's predictive abilities. In assessing the model, defining the 

model's performance and the criteria for estimation accuracy is essential. To produce the GEP 

models and demonstrate the prediction ability of the GEP, the database consisting of the test 

information was separated into two sets, training and testing. From the 256 data sets, for the 

training and testing processes, 192 and 64 experimental data sets, respectively, were selected in a 

random way. 

To compare the performance of the model with the previous models in the literature, three 

previously utilized models were determined. These models are the models of Hoek and Brown 

[18], Arora[19], and Asef and Reddish [20]. 

Hoek and Brown developed a highly accepted formula that uses the modulus of elasticity, strain, 

Poisson's ratio, and confining pressure. This is shown by equation (2). However, it is both very 

expensive and technically difficult to determine the Poisson's ratio used in this equation under 

triaxial stress conditions. 
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Fig. 7. Expression tree of the GEP approach model. 

𝐸𝜀1 = 𝜎1 − 𝜗(𝜎2 + 𝜎3) (2) 

Where 𝜗 is the Poisson′s ratio. 
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Arora suggested a model using three different rock types (plaster of Paris, Jamrani sandstone, 

and Agra sandstone) upon the estimation of the modulus of elasticity with confining pressure. 

This empirical equation is given below: 

𝐸(𝜎3=0)

𝐸(𝜎3=𝜎2≠0)
= 1 − 𝑒𝑥𝑝 (−0.1

𝜎1

𝜎3
) (3) 

Asef and Reddish developed the model with its own test data and proposed a new model. It is 

stated that this model illustrates a significant improvement by obtaining the coefficient of 

determination (R
2
:0.69) with the original data of Arora and its own experimental data using 

arkose sandstone. This empirical equation is presented below:  

𝐸(𝜎3=𝜎2≠0)

𝐸(𝜎3=0)
=

200(
𝜎3
𝜎1

)+𝑏

(
𝜎3
𝜎1

)+𝑏
 (4) 

Where b=15+60e
-0.18G1

, E(G3=0) is the modulus of elasticity at the unconfined compressive 

strength (GPa), E(G3= G2≠0) is the modulus of elasticity at a given confining stress (GPa), G3 and 

G1 are the confining stress (MPa) and unconfined compressive strength (MPa), respectively. 

The results of the created model utilizing GEP and models proposed by Arora and Ased and 

Reddish were assessed based on the root mean square error (RMSE) values, mean absolute 

percentage error (MAPE), and the coefficient of determination (R
2
). The above-mentioned 

criteria are presented in equations 5, 6, and 7, respectively. 

𝑀𝐴𝑃𝐸 =
1

𝑛
[

∑ |𝑡𝑖−𝑜𝑖|𝑛
𝑖=1

∑ 𝑡𝑖
𝑛
𝑖=1

∗ 100] (5) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑡𝑖 − 𝑜𝑖)2𝑛

𝑖=1

2
 (6) 

𝑅2 = [
(𝑛 ∑ 𝑡𝑖𝑜𝑖−(∑ 𝑡𝑖 ∑ 𝑜𝑖

𝑛
𝑖=1

𝑛
𝑖=1 )𝑛

𝑖=1 )
2

(𝑛 ∑ 𝑡𝑖
2−(∑ 𝑡𝑖

𝑛
𝑖=1 )

2𝑛
𝑖=1 )(𝑛 ∑ 𝑜𝑖

2−(∑ 𝑜𝑖
𝑛
𝑖=1 )

2𝑛
𝑖=1 )

] (7) 

Where t denotes the experimental value, o refers to the predicted value, and n refers to the total 

number of data. 

RMSE indicates the sample standard deviation between the observed and predicted values, while 

MAPE represents a measure of the prediction accuracy of the forecasting method in statistics, for 

instance, in the estimation of trends, and it generally presents accuracy as a percentage. R
2
 was 

used as the criterion for evaluating the agreement between the experimental and predicted values. 

The statistical performances of the model established by GEP and the models proposed by Arora 

and Asef and Reddish are summarized in Table 4. As seen in Table 4, for both the training and 

validation sets, the GEP model had low MAPE, RMSE and high R
2
 values. The R

2
 values related 

to the experimental and predicted data from the GEP model for training and testing were 0.88 

and 0.81, respectively, implying that the model was capable of explaining 88% and 0.81% of the 

variation in the data. 
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Table 4 
Performance statistics of the model. 

 GEP Model Arora’s Model Asef and Reddish's Model 

 Training Validation Training Validation Training Validation 

MAPE 0.069 0.264 0.173 0.465 1.198 3.80 

RMSE 1904.84 2688.59 3991.40 4085.46 27206.39 30446.23 

R
2
 0.88 0.81 0.56 0.60 0,62 0.62 

 

The graphical comparison of the E values predicted by the GEP-based models and models 

proposed by Arora and Asef and Reddish in the training and validation phases to their 

experimental values is presented in Figs. 8 and 9, respectively. As is observed from the figures in 

question, the experimental values were close to the estimated values for the GEP-based models. 

They demonstrated the successful performance of GEP models in predicting E at a triaxial stress 

state using 𝜃, 𝜌, Vp, SH, and G1. The models proposed by Arora and Asef and Reddish exhibited 

a similar performance to each other in the current experimental data. However, the performances 

of these models are lower than that of the GEP-based model. 

 
Fig. 8. Comparison of the measured and predicted E results of the training set. 

 
Fig. 9. Comparison of the measured and predicted E results of the validation set. 
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5. Conclusion 

In this study, the triaxial compression test for nine different rocks (two granites, two andesites, 

two limestones, one tuff, one diorite, and one marble) was carried out at four confining stress 

values (5, 10, 15, and 20 Mpa) to determine the behavior of rocks at a triaxial stress state. The 

GEP-based formulation is displayed for predicting the modulus of elasticity (E) from some mass 

characteristics of rocks by utilizing the GEP system, which is a novel methodology for this kind 

of issues. In the GEP model, confining stress, density, porosity, Schmidt hardness, ultrasonic p-

wave velocity, and uniaxial compressive strength were utilized as the input variables, whereas E 

was used as the output variable. For this purpose, 256 data sets were used. The comparison of the 

performance of the GEP-based model with the formulae previously suggested in the literature by 

Arora
 
[19] and Asef and Reddish [20] was made using the root mean square error (RMSE) 

values, mean absolute percentage error (MAPE), and the coefficient of determination (R
2
).   

From the present study, the following was concluded: 

 With the increase in the support pressure, there was a considerable increase in the modulus 

of elasticity. However, when the support pressure was further increased, a reduction in the 

increasing modulus of elasticity was determined. The reason for this may be the closure of 

micro and/or macro fractures under confining pressure. The mentioned finding is parallel 

to the findings obtained by Asef and Reddish. 

 In the rocks with high Schmidt hardness values, it was observed that the increase in the 

modulus of elasticity was higher when the confining stress was increased. However, the 

increase in the modulus of elasticity was found to be lower in the rocks with low strength 

and high porosity.  

 In the present research, a novel and practical approach to formulating the modulus of 

elasticity under three-axis loading conditions was applied. The suggested model is 

empirical, and experimental results constitute its basis. The verification of the GEP model's 

validity was performed by the statistical performance criteria utilized to assess the model, 

such as root mean square error (RMSE), mean absolute percentage error (MAPE), and the 

coefficient of determination (R
2
). These statistical parameters of GEP formulations also 

contributed to the excellent performance of GEP models in predicting the modulus of 

elasticity for natural stones.  

 The models proposed by Arora and Asef and Reddish exhibited a similar performance to 

each other in the current experimental data. However, the performance of these models is 

lower in comparison with the GEP-based model. 

 GEP is an appropriate method for estimating the 𝐸 value of rocks from anisotropic and 

heterogeneous materials as well as revealing nonlinear practical connections in which it is 

not possible to apply traditional techniques. Moreover, using GEP, the 𝐸 value may be 

assessed without conducting complex and tiresome research facility tests. The proposed 

GEP formulations were easy since they could be used by anyone, who is not fully familiar 

with the GEP method, in comparison with other artificial intelligence methods. 
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