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Reservoir operations need computational models that can 

attend to both its real time data analytics and multi-objective 

optimization. This is now increasingly necessary due to the 

growing complexities of reservoir’s hydrological structures, 

ever-increasing its operational data, and conflicting 

conditions in optimizing the its operations. Past related 

studies have mostly attended to either real time data 

analytics, or multi-objective optimization of reservoir 

operations. This review study, based on systematic literature 

analysis, presents the suitability of Recurrent Learning 

Neural Network (RLNN) and Combine Pareto Multi-

objective Differential Evolution (CPMDE) algorithms for 

real time data analytics and multi-objective optimization of 

reservoir operations, respectively. It also presents the need 

for a hybrid RLNN-CPMDE, with the use of CPMDE in the 

development of RLNN learning data, for reservoir operation 

optimization in a multi-objective and real time environment. 

This review is necessary as a reference for researchers in 

multi-objective optimization and reservoir real time 

operations. The gaps in research reported in this review 

would be areas of further studies in real time multi-objective 

studies in reservoir operation. 
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1. Introduction 

Reservoirs, being formed or modified water bodies, are of great economic importance, and 

largely instrumental to environmental (human and aquatic) safety [1,2]. To this end, reservoir 

purposes, which include power generation, water supply for industrial and domestic uses, flood 

control, recreation, agricultural irrigation, and also disposal of wastes on few occasions [3], must 

be duly optimized for effective performance. Many related studies have been conducted in view 

of optimizing reservoir operations. A three-stage generic framework of release rule for reservoir 

[4,5], dynamic rule curves multipurpose reservoir involving flood control [6,7], water flows 

network modeling system [8,9] real time flood control [9,10] and evolutionary algorithms for 

reservoir operations optimization [11,12] among others, are some of these studies. These studies 

made remarkable contributions, such as the storage at the end of operation which is useful for 

conservation and reservoir operations [5], secured downstream reservoir operation [6], synthetic 

stream flow and reservoir regulation (SSARR) models for irrigation return flows [8]. Many of 

these studies [13–15] are for singular objectives, with few on multi-objective optimization of 

real-time reservoir operations [10,16], using different algorithms, including but not limited to 

recurrent learning neural network (RLNN). 

RLNN is an ANN type of architecture with a self-feedback loop and hidden neurons. Single-

layer feedforward and multilayer feedforward networks (also known as multilayer perceptron) 

are other types of ANN architecture [17,18]. Fundamentally, ANN, modelled after the 

information processing mechanism of human brain and neurons, is a parallel and massively 

simple processing units from distributed processor. In mimicry of human brain, the knowledge of 

the environment is acquired by a learning process and stores the acquired knowledge using 

interneuron connection strength which is known widely as synaptic weight [17,19]. It is mainly 

partitioned into three layers; namely, input, hidden and output layers as found in Figure 1. 

 
Fig. 1. Structure of ANNs [17]. 

ANN, unlike stochastic models which are process-driven, is a data-driven model, and thus 

capable of dealing with uncertainties in events, varieties of data, and the frequency and the 

velocity of data update [20]. It also has strong linear and non-linear mapping, environmental 

adaptability and learnability [21]. Different criteria used to design tuned mass damper in high-

rise building were compared [22]. The study considers the soil-structure interaction effects. In 

another study, shear contribution of fiber reinforced polymer was predicted in reinforced 
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concrete beams that are strengthened [23]. The modeling used multigene genetic programming. 

The study produced competitive results showing the efficacy of the algorithm to beam design. A 

fuzzy inference system was successfully used to evaluate building designing process [24]. Other 

examples of applications of optimization to real life situations are provided [25] with an 

application of NSGA-II and DANN model having successful applications [26]. The study by 

[18] presents the use of ANN to predict the mortal compressive strength. Adaptive neuro-fuzzy 

was implemented to adjust the behavior of training data in a new study [27]. 

RLNN has been applied in diverse fields and its extensive application in reservoir operation 

optimization has received considerable attention [28]. Combine Pareto Multi-objective 

Differential Evolution (CPMDE), on the other hand, is an evolutionary algorithm, and of 

different metaheuristics. Evolutionary algorithms (EAs), generally, are computational methods 

modelled after natural theory of evolution. The algorithms comprises of a two way steps where 

selection follows random variation [29,30]. CPMDE works with specified Pareto methods for 

multi-objective optimization [31]. 

This study, as a preliminary contribution to real time multi-objective optimization solutions for 

dam operations, reviews the suitability of a hybrid algorithm of Recurrent Learning Neural 

Network (RLNN), as suitable ANN architecture, and CPMDE, as a Differential Evolution 

algorithm which can be further developed for real time operations. The next sections of this 

paper review past related studies, specifically the architectures of the neural network used in the 

reservoir operation optimization’s studies. The third section further describes RLNN, as the 

identified most suitable type of ANN architecture, for optimizing real time reservoir operations. 

The fourth section describes CPMDE algorithm for optimizing multi-objective reservoir 

operations. The fifth section, as a conclusion, summarizes the need for the hybridization of 

RLNN and CPMDE algorithm for a multi-objective real time optimization of reservoir 

operations. 

2. Review of past related studies 

2.1. Neural network architecture for reservoir operation optimization 

Studies in computational modelling of reservoir operations, in terms of time-based or discrete 

event system engineering, can be categorized into real and non-real time operations. ANN 

techniques of different architectures have been employed for varying objectives in solving the 

optimization problems of reservoir operations. Multilayer feedforward [4,20,32–39], 

backpropagation [38], recurrent learning neural networks [9,10] and single layer feedforward 

[19,40] are noticeable ANN architectures in this regard. The architecture of these ANN varies 

and invariably determine their suitability and performance for individual use cases. 

Feedforward ANN, which are differentiated by the number of processing layers – single and 

multi, allows information movement in only one direction, without touching the node twice. 

Feedforward neural networks do not have memory; consider only the current input, and do not 

act with the order of time. Therefore, it is generally bad at predicting the next event. 
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Backpropagation architecture, on the other hand, describes a backward movement through the 

neural network in order to find some partial derivatives of the weights’ errors in view of 

subtracting them from the weight. These derivatives are used by gradient descent which 

iteratively minimizes the error function. Thus, continuously train the data to identify the best 

fitness. 

Recurrent learning neural network are suitable for sequential data, such as time-series data, 

video, speech and text in natural language processing. It is an ANN architecture with internal 

memory and thus can remember the important things about the inputs received. It has the ability 

of forming better context of understanding sequence compared to other algorithms because it can 

map input to output in a many-to-many. Recurrent neural network tweaks its weight through 

gradient descent and backpropagation through time (BPTT). Table 1 presents a review articles –

systematically sought, sorted and collated –on optimization of reservoir operations for different 

tasks, using ANN. The review categorizes the studies into real-time and non-real-time 

optimization to highlight the type of ANN architecture employed, the reservoir operation 

designed for, and any supporting algorithm where applicable. 

It is shown, from Table 1, that there are limited available studies on real time framework for 

reservoir operation optimization, when compared with non-real time studies. Bridging this 

scholarly gap is essential. More importantly, considering the evolving technologies for capturing 

reservoir data in real time, such as satellite altimeter and water level sensor, there is ease of 

decision making when such data is readily available for analysis and process optimization. Even 

though multilayer feed‐forward network is mostly used in these studies, recurrent neural network 

is the network architecture fundamentally meant for real time optimization and performed better 

than multilayer feedforward network for real time optimization of reservoir operation [10]. 

3. Recurrent learning neural network for optimizing real time reservoir 

operations 

RRLNN is an ANN algorithm built on the recurrent network architecture. Its synaptic weights 

are adjusted in real time, that is, as the network processes its signal. It has input-feedback layer 

with another processing layer comprising of computation nodes. The synaptic connections are 

feedforward and feedback structures. The description of its state-space is given in equations 1 

and 2. 

𝑿(𝑛 + 1) = 𝜑(𝑾𝑎𝑿(𝑛) + 𝑾𝑏𝑼(𝑛)) (1) 

𝒀(𝑛) = 𝑪𝑿(𝑛) (2) 

𝑾𝑎 is a q-by-q matrix; 𝑾𝑏 is a q-by-(𝑚 + 1) matrix; 𝑪 is a p-by-q matrix; and 𝜑 is the 

activation function, defined as amplitude limiting object of the output. Equation 1 and 2 are the 

process and measurement equations of the RRLNN model. In these, 𝑿(𝑛) is the vector state of a 

nonlinear discrete-time system, 𝑼(𝑛) is the input applied to the system, and 𝒀(𝑛) is the output of 

the system. 
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Table 1 

Review of ANN-based Studies on Real-Time Reservoir and Non-Real-Time Operation Optimization. 

 Reservoir operation Network Architecture 
Supporting algorithm (if 

applicable) 
Reference 

Real 

time 

Forecasting water level Multilayer feedforward Feed Forward Backpropagation [39] 

“Intelligent control 

system for reservoir 

operation” 

Not indicated 

“Genetic algorithm (GA) and a 

fuzzy rule base (FRB) 

programming” 

[28] 

Multilayer feedforward Genetic algorithm [33] 

Prediction model for 

sediment inflow  

Multilayer feedforward 

network 
Multivariable Linear Regression [41] 

Forecasting flood 
“Real-time recurrent network” 

Fuzzy rules applied in “Adaptive 

Network-based Fuzzy Inference 

System (ANFIS)” 

[10] 

“Real-time recurrent network” Genetic algorithm and Fuzzy rule [9] 

Rainfall forecasting 
Multilayer feedforward 

network 

“Feedforward algorithm using 

hyperbolic tangent transfer 

function” 

[32] 

Hydropower energy Single step evolving ANN Particle Swarm Optimization [42] 

Non-real 

time 

Hydropower 

performance prediction 
Single-layer perceptron  None [19] 

Predicting sediment 

estimation  
Multi-layer perceptron 

Radial basis function in dynamic 

programming  
[38] 

Forecasting reservoir 

storage for 

Hydropower dam 

operation 

Multilayer feedforward 

network 
None [31] 

Multilayer feedforward 

network 

Quantum-behaved particle swarm 

optimization (QPSO) 
[21] 

Developing reservoir 

hedging/operating 

rules 

Multilayer feedforward Implicit stochastic optimization [34] 

Multilayer feedforward Dynamic programming [20] 

Multilayer feedforward Fuzzy rule [4] 

Forecasting the daily 

flow discharge 

Multilayer feedforward 

“Feed-forward neural network 

and error Back-propagation 

learning algorithm”. 

[43] 

Multilayer neural network 

Linear and non-linear regression 

formulated through dynamic 

programming. 

[44] 

Multilayer neural network 
Genetic algorithm and Support 

Vector Machine 
[21] 

Multi-Layer Perceptron None [45] 

Forecasting reservoir 

water level 

Multilayer neural network Fuzzy rule [35] 

Multilayer feed‐forward 

networks 
None [31] 

Reservoir inflow 

Levenberg-Marquardt Back 

Propagation (LMBP) 

algorithm 

None [42] 

Simulating 

hydrological 

performance & 

activities 

Not indicated None [46] 

Single layer feed‐forward 

network 

“Dynamic stochastic model with 

Thomas-Fiering model, and 

Hidden Markov Model (HMM)” 

[46] 

Multilayer feed‐forward 

networks 

Backpropagation algorithm in a 

Hooke and Jeeves nonlinear 

programming model. 

[36] 

Water distribution 

prediction 
Multilayer feed‐forward 

networks 

Discrete wavelet transform 

(DWT) for noise cleansing 
[37] 
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Fig. 2. Real time Recurrent Learning Neural Network [47]. 

In summary, the parameters for the real time recurrent learning algorithm are dimensionality of 

input space (𝑚), dimensionality of state space (𝑞), dimensionality of output space (𝑝), and 

synaptic weight vector of neuron (nodes) (𝑾𝑗), where 𝑗 = 1, 2, … , 𝑞. RRLNN is initialized by (i) 

setting the synaptic weights of the algorithm to selected small values from a uniformly-

distributed range, (ii) setting the initial value of the state vector 𝑿(0) = 0, and (iii) setting 

𝚲j (0) = 0, (𝚲j (𝑛) is defined as a partial derivative of the state vector 𝑿(𝑛) when the weight 

vector is 𝑾𝑗), for 𝑗 = 1, 2, … , 𝑞. 

The computation is for 𝑛 = 0, 1, 2, …, where: 

𝚲j (𝑛) =  
𝜕𝑿(𝑛)

𝜕𝑾𝑗
 (3) 

And, 𝐔j (𝑛) is a q-by-(𝑞 + 𝑚 + 1) matrix whose rows are all zeros, except the jth row, and 

Ф(𝑛) is a q-by-q diagonal matrix, with kth diagonal element being a partial derivative of the 

activation function (𝜑). 

Therefore, the computation to initialize 𝚲j (0) is: 

𝚲j (𝑛 + 1) =  Ф(𝑛)[𝑾𝑎(𝑛)𝚲j (𝑛) + 𝐔j (𝑛)] (4) 

𝐞(𝑛) = 𝒅(𝑛) − 𝑪𝑿(𝑛) (5) 

∆𝐖j (𝑛) = η𝐶𝚲j (𝑛)𝒆(𝑛) (6) 

The core strength of RRLNN in its optimization of real time operations is the use of 

instantaneous gradient (denoted as ∆𝐖ᶓ(n)) of the synaptic weight vector ∆𝐖j (see eqn. 6), as 

against true gradient (∆𝐖ᶓtotal ) used in non-real time optimization. 

ᶓ(n), the instantaneous sum of squared errors at time 𝑛, is defined in terms of 𝐞(𝑛) (see equation 

5): 

ᶓ(𝑛) =
1

2
𝒆𝑇(𝑛)𝒆(𝑛) (7) 

On another hand, for system stability during real time operation optimization, the learning 

parameter, η (see equation 6), could be made small enough that it makes time scale of the weight 

changes to be smaller than the time scale needed for the network operation. RRLNN, though 

being a computational model capable and sufficient for real time operation optimization, would 
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necessarily be supported by an evolutionary algorithm for a multi-objective operational 

framework. 

4. Combine pareto differential evolution algorithm for optimizing multi-

objective reservoir operations 

CPMDE can be mathematically represented thus (see eqn.8). 

𝑥[𝑡 + 1] = 𝑠(𝑣(𝑥[𝑡])) (8) 

The population at time 𝑡 is denoted as 𝑥[𝑡], and operated on by random variation 𝑣. With the 

selection 𝑠, a new population 𝑥[𝑡 + 1] is produced. 

EAs conceptually simulate evolution of individual structures through selection, mutation and 

crossover processes. They maintain rule-based evolving population structures, with cross over 

and mutations as genetic operators [29]. EAs’ application are recorded in a range of domain 

problems, and the target function is optimized [48,49]. Implementation simplicity, flexibility and 

robustness, and its no-need-for-derivative-information are the factors considered that informed 

the EA usage in some computational optimizations [33,50]. Most importantly, the strength of 

EAs when using it to solve some multi-objective optimization problems is responsible for its 

wide range of domain applicability. 

In solving real world engineering problems, there are always several conflicting criteria and 

goals, and this characterizes multi-objective optimization. EAs are, however, meant to proffer 

adequate solutions for such conflicting multi-objective paradigms through optimization of the 

several conflicting criteria by searching for an optimal vector, and this is not used as a single 

value. The Pareto front is optimal solutions set; a non-dominated and non-inferior set of 

solutions that present as solutions to multi-objective optimization problems [31]. The multi-

objective optimization problem, according to [50] in its general is presented in Figure 3: 

1 Minimize/Maximize 𝑓𝑚 (𝑥), 𝑚 = 1, 2, … , 𝑀; 

 subject to  

2 𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1, 2, … , 𝐽; 

3 ℎ𝑘(𝑥) = 0, 𝑘 = 1, 2, … , 𝐾; 

4 𝑥𝑖
(𝐿)

≤  𝑥𝑖 ≤  𝑥𝑖
(𝑈)

, 𝑖 = 1, 2, … , 𝑛; 

Fig. 3. Multi-objective Optimization Problem [50]. 

The solution is a variable vector with a corresponding objective vector. It is 𝒙 ∈  𝑹𝑛 of 𝑛 

decision variables, where 𝒙 =  (𝑥1, 𝑥2 , … , 𝑥𝑛)𝑇. The values 𝑥𝑖
(𝐿)

 and 𝑥𝑖
(𝑈)

 are corresponding 

lower and upper bounds for the variable 𝑥𝑖, respectively. Therefore, the solutions to satisfy the 

constraints (2) – (4), as shown above, is a possible decision variable space 𝑺 ⊂  𝑹𝑛. The 

objective functions (1) constitute a dimensional space 𝑀, also called objective space 𝒁 ⊂  𝑹𝑀. 

There is a point 𝑧 ∈  𝑹𝑀 in the objective space for each solution 𝒙 in the decision variable 

space. This is denoted by 𝒇 (𝒙)  =  𝒛 =  (𝑧1, 𝑧2, … , 𝑧𝑀)𝑇 . Multiple Pareto-optimal solutions, in 

solving multi-objective optimization, are therefore meant to discover values close to the Pareto 
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front as much as possible. It also needs to be as diverse as it can be in the non-dominated front 

obtained [50,51]. 

On another hand, in solving multi-objective optimization problems, DE is a simple but strong 

EA, which has been widely employed. Though DE was initially employed for single-objective 

optimization problems, it has now been successfully applied to multi-objective optimization 

problems [51–55]. The commonality in these DE approaches, however, is that new candidate 

solutions are created by combining the parent individual with other individuals within the same 

population. The new candidate only replaces the parent if it has better fitness, otherwise, it is 

discarded. It is an ambitious selection scheme that outperforms traditional EAs. 

1 “Evaluate the initial population 𝑃 of random individuals”.  

2 “While stopping criterion not met, do”: 

2.1 “For each individual 𝑃𝑖(𝑖 = 1, … , 𝑝𝑜𝑝𝑆𝑖𝑧𝑒) from 𝑃 repeat”: 

(a) “Create candidate 𝐶 from 𝑃𝑖”. 

(b) “Evaluate the candidate”. 

(c) “If the candidate is better than the parent, the candidate replaces the parent. Otherwise, the 

candidate is discarded”. 

2.2 “Randomly enumerate the individuals in 𝑃”. 

Fig. 4. Outline of Differential Evolution Procedure [51]. 

CPMDE is a differential evolutionary algorithm and it works according to the generic procedural 

format of DE (as presented in Figure 4), to solve multi-objective optimization problem (as 

presented in Figure 2). It potentially outperforms traditional EAs, as typical of DE. Its novel 

workability in creation of candidate (see 2.1(a) in Figure 4), or new selection from each 

population generation, is by combining methods of Pareto ranking and Pareto dominance. These 

methods –Pareto ranking and Pareto dominance– are mostly singly used by past related studies. 

In Pareto ranking, ranks are assigned to every solution in both the trial and target population 

based on their non-domination levels. In doing this, solutions are selected with the best ranked 

for propagation to the next generation. In Pareto dominance, however, ranks are not assigned, but 

a winning solution at the dominance space moves to the next generation. CPMDE has been 

found to perfectly handle optimization constraints, provide diverse solution sets, and robust 

enough on tuneable problems [31]. The algorithm procedure of CPMDE is presented in Figure 5. 

1 “Input the DE parameters required”. 

2 “Randomly initialize all solution vectors within the limits of the variable bounds”. 

3 “Set the generation counter, 𝑔 = 0.” 

4 “Generate a trial population using DE’s mutation and crossover operations”. 

5 “Domination check is performed on the combined trial and target population. All non-dominated 

solutions as ‘non-dominated’ while marking others as ‘dominated’”. 

6 “Play domination tournaments at each population index”.  

7 “Increase the generation counter, 𝑔, by 1, that is, 𝑔 = 𝑔 + 1”. 

8 “If 𝑔 < 𝑔𝑀𝑎𝑥, then go to step (4) above. Else, go to step (9)”.  

9 “Remove the dominated solutions in the last generation”. 

10 “Output the non-dominated solutions” 

Fig. 5. Combine Pareto Differential Evolution (CPMDE) Algorithm Procedure [31]. 
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5. Conclusion 

Reservoir operations include, but not limited to, hydropower generation, marsh land restoration, 

river sediment estimation, flood and water inflow level forecasting, reservoir control system and 

recreation and conservation, environmental conservation, flood mitigation, and rural-urban water 

supply. These operations differ in mechanism and therefore in the design of their underlying 

hydrological and computational models. Reservoirs designed for many objectives is called multi-

objective reservoir. It can also be designed for many operations. Therefore, it logically demands 

more complex design models and larger operational data to handle. 

Also, real time reservoir operations are operations whose variables are captured and processed in 

real time using technology for accurate and timely decision making. Instead of the technological, 

but periodic, inspection of reservoirs to capture needed information for decision-making and 

operational optimization, information and communication technologies (ICT), such as 

Piezometers, are permanently located at the reservoirs’ locations. These ICT tools capture, 

transfer and process the needed reservoirs’ operational data for process optimization. Therefore, 

real time reservoir operations’ data are captured, transferred, and processed in real time for 

optimization and decision making. 

The need for RRLNN and CPMDE for multi-objective real time reservoir operation optimization 

can be summarily classified into four. First, with the preponderance of real time data capturing 

technologies, such as Piezometers, satellite altimeter and water level sensor, more data are 

generated real time and needed to be deployed into analytics system, also in real time. This is a 

practical implication of such computational models for domain experts’ decision-making process. 

Second, for specificity, RRLNN and CPMDE are combinable algorithms with prospect to attend 

to the real time and multi-objective functions and constraints of reservoir operations. RRLNN, 

being an extension of recurrent network –an ANN network architecture suitable for real time 

functionality, while CPMDE is a novel DE algorithm suitable for multi-objective optimization. 

Training the RRLNN operational data with CPMDE, with its learning parameter, η, will present a 

computational model that adequately handles the reservoir operational data in real time within a 

multi-objective framework. Third, aside the practical problems in optimizing real time reservoir 

operations within a multi-objective framework that the hybridization of RRLNN and CPMDE 

would solve, the model presents a new frontier in computational modelling. It presents a 

hybridization process whereby the non-dominated vectors from the CPMDE serves the data 

population or the training of the RRLNN. This includes training the RRLNN’s nodes and 

abstracting its data hidden layers. Fourth, the hybrid of RRLNN and CPMDE would be the basis 

for the design and development of an intelligent system that handles multi-objective decision 

making of reservoir operations in real time. 
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