The Need for Recurrent Learning Neural Network and Combine Pareto Differential Algorithm for Multi-Objective Optimization of Real Time Reservoir Operations

Document Type : Regular Article


1 Department of Mechanical Engineering, The Polytechnic Ibadan, Nigeria

2 University of Washington, Seattle Campus, United States

3 North Dakota State University, United States


Reservoir operations need computational models that can attend to both its real time data analytics and multi-objective optimization. This is now increasingly necessary due to the growing complexities of reservoir’s hydrological structures, ever-increasing its operational data, and conflicting conditions in optimizing the its operations. Past related studies have mostly attended to either real time data analytics, or multi-objective optimization of reservoir operations. This review study, based on systematic literature analysis, presents the suitability of Recurrent Learning Neural Network (RLNN) and Combine Pareto Multi-objective Differential Evolution (CPMDE) algorithms for real time data analytics and multi-objective optimization of reservoir operations, respectively. It also presents the need for a hybrid RLNN-CPMDE, with the use of CPMDE in the development of RLNN learning data, for reservoir operation optimization in a multi-objective and real time environment. This review is necessary as a reference for researchers in multi-objective optimization and reservoir real time operations. The gaps in research reported in this review would be areas of further studies in real time multi-objective studies in reservoir operation.


Google Scholar


Main Subjects

[1]     Naiman RJ, Dudgeon D. Global alteration of freshwaters: Influences on human and environmental well-being. Ecological Research 2011;26:865–73. doi:10.1007/s11284-010-0693-3.
[2]     Yang XE, Wu X, Hao HL, He ZL. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University: Science B 2008;9:197–209. doi:10.1631/jzus.B0710626.
[3]     Bruwier M, Erpicum S, Pirotton M, Archambeau P, Dewals BJ. Assessing the operation rules of a reservoir system based on a detailed modelling chain. Natural Hazards and Earth System Sciences 2015;15:365–79. doi:10.5194/nhess-15-365-2015.
[4]     Coerver HM, Rutten MM, Van De Giesen NC. Deduction of reservoir operating rules for application in global hydrological models. Hydrology and Earth System Sciences 2018;22:831–51. doi:10.5194/hess-22-831-2018.
[5]     Chou FNF, Wu CW. Stage-wise optimizing operating rules for flood control in a multi-purpose reservoir. Journal of Hydrology 2015;521:245–60. doi:10.1016/j.jhydrol.2014.11.073.
[6]     Chaleeraktrakoon C, Chinsomboon Y. Dynamic rule curves for flood control of a multipurpose dam. Journal of Hydro-Environment Research 2015;9:133–44. doi:10.1016/j.jher.2014.11.002.
[7]     Swan R, Bridgeman J, Sterling M. Optimisation of water treatment works performance using genetic algorithms. Journal of Hydroinformatics 2017;19:719–33. doi:10.2166/hydro.2017.083.
[8]     Kang M, Park S. Modeling water flows in a serial irrigation reservoir system considering irrigation return flows and reservoir operations. Agricultural Water Management 2014;143:131–41. doi:10.1016/j.agwat.2014.07.003.
[9]     Hsu NS, Wei CC. A multipurpose reservoir real-time operation model for flood control during typhoon invasion. Journal of Hydrology 2007;336:282–93. doi:10.1016/j.jhydrol.2007.01.001.
[10]    Hsu NS, Huang CL, Wei CC. Multi-phase intelligent decision model for reservoir real-time flood control during typhoons. Journal of Hydrology 2015;522:11–34. doi:10.1016/j.jhydrol.2014.12.013.
[11]    Siqueira VA, Sorribas MV, Bravo JM, Collischonn W, Lisboa AMV, Trinidad GGV. Atualização em tempo real do modelo HEC-RAS para previsão de vazões utilizando um algoritmo de otimização. Revista Brasileira de Recursos Hidricos 2016;21:855–70. doi:10.1590/2318-0331.011616086.
[12]    He Y, Xu Q, Yang S, Liao L. Reservoir flood control operation based on chaotic particle swarm optimization algorithm. Applied Mathematical Modelling 2014;38:4480–92. doi:10.1016/j.apm.2014.02.030.
[13]    Li YF, Xie M, Goh TN. A study of genetic algorithm for project selection for analogy based software cost estimation. IEEM 2007: 2007 IEEE International Conference on Industrial Engineering and Engineering Management 2007:1256–60. doi:10.1109/IEEM.2007.4419393.
[14]    Madani K, Hooshyar M. A game theory-reinforcement learning (GT-RL) method to develop optimal operation policies for multi-operator reservoir systems. Journal of Hydrology 2014;519:732–42. doi:10.1016/j.jhydrol.2014.07.061.
[15]    Seibert SP, Skublics D, Ehret U. The potential of coordinated reservoir operation for flood mitigation in large basins - A case study on the Bavarian Danube using coupled hydrological-hydrodynamic models. Journal of Hydrology 2014;517:1128–44. doi:10.1016/j.jhydrol.2014.06.048.
[16]    Giuliani M, Galelli S, Soncini-Sessa R. A dimensionality reduction approach for many-objective Markov Decision Processes: Application to a water reservoir operation problem. Environmental Modelling and Software 2014;57:101–14. doi:10.1016/j.envsoft.2014.02.011.
[17]    Russell SJ, Norvig P, Davis E. Artificial intelligence: a modern approach. 3rd ed. Upper Saddle River, NJ: Prentice Hall; 2010.
[18]    Sharifi Y, Hosainpoor M. A Predictive Model Based ANN for Compressive Strength Assessment of the Mortars Containing Metakaolin. Journal of Soft Computing in Civil Engineering 2020;4:1–12. doi:10.22115/scce.2020.214444.1157.
[19]    Hammid AT, Sulaiman MH Bin, Abdalla AN. Prediction of small hydropower plant power production in Himreen Lake dam (HLD) using artificial neural network. Alexandria Engineering Journal 2018;57:211–21. doi:10.1016/j.aej.2016.12.011.
[20]    Cancelliere A, Giuliano G, Ancarani A, Rossi G. A neural networks approach for deriving irrigation reservoir operating rules. Water Resources Management 2002;16:71–88. doi:10.1023/A:1015563820136.
[21]    Cheng CT, Feng ZK, Niu WJ, Liao SL. Heuristic methods for reservoir monthly inflow forecasting: A case study of xinfengjiang reservoir in pearl river, China. Water (Switzerland) 2015;7:4477–95. doi:10.3390/w7084477.
[22]    Reza Kamgar, Mohsen Khatibinia, Meisam Khatibinia. Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. International Journal of Optimization in Civil Engineering 2019;9:213–32.
[23]    Kamgar R, Bagherinejad MH, Heidarzadeh H. A new formulation for prediction of the shear capacity of FRP in strengthened reinforced concrete beams. Soft Computing 2020;24:6871–87. doi:10.1007/s00500-019-04325-4.
[24]    Kamgar R, Hatefi SM, Majidi N. A Fuzzy Inference System in Constructional Engineering Projects to Evaluate the Design Codes for RC Buildings. Civil Engineering Journal 2018;4:2155. doi:10.28991/cej-03091147.
[25]    Kamgar R, Naderpour H, Komeleh HE, Jakubczyk-Gałczyńska A, Jankowski R. A proposed soft computing model for ultimate strength estimation of FRP-confined concrete cylinders. Applied Sciences (Switzerland) 2020;10. doi:10.3390/app10051769.
[26]    Tabari MMR, Azadani MN, Kamgar R. Development of operation multi-objective model of dam reservoir under conditions of temperature variation and loading using NSGA-II and DANN models: a case study of Karaj/Amir Kabir dam. Soft Computing 2020. doi:10.1007/s00500-020-04686-1.
[27]    Al-Fahdawi OA., Barroso LR, Soares RW. Adaptive Neuro-Fuzzy and Simple Adaptive Control Methods for Alleviating the Seismic Responses of Coupled Buildings with Semi-active Devices: Comparative Study. Soft Computing in Civil Engineering 2019;3:1–20. doi:10.22115/SCCE.2019.199731.1128.
[28]    Chang LC, Chang FJ. Intelligent control for modelling or real-time reservoir operation. Hydrological Processes 2001;15:1621–34. doi:10.1002/hyp.226.
[29]    Ghosh A, Dehuri S. Evolutionary Algorithms for Multi-Criterion Optimization: A Survey. International Journal of Computing and Information Sciences 2004;2:38–57.
[30]    Goldberg DE, Deb K. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms 1991:69–93. doi:10.1016/b978-0-08-050684-5.50008-2.
[31]    Olofintoye O, Adeyemo J, Otieno F. A combined pareto differential evolution approach for multi-objective optimization. Studies in Computational Intelligence 2014;500:213–31. doi:10.1007/978-3-319-01460-9_10.
[32]    Wang CH, Tsai SW. Multi-objective optimization using genetic algorithm: Applications to imperfect preventive maintenance model. ICCSE 2011 - 6th International Conference on Computer Science and Education, Final Program and Proceedings 2011:1355–60. doi:10.1109/ICCSE.2011.6028884.
[33]    Chaves P, Chang FJ. Intelligent reservoir operation system based on evolving artificial neural networks. Advances in Water Resources 2008;31:926–36. doi:10.1016/j.advwatres.2008.03.002.
[34]    FARIAS CAS de, CELESTE AB, SAKATA Y, KADOTA A, SUZUKI K. Use of Monte Carlo Optimization and Artificial Neural Networks for Deriving Reservoir Operating Rules. Proceedings of Hydraulic Engineering 2006;50:25–30. doi:10.2208/prohe.50.25.
[35]    Valizadeh N, El-Shafie A, Mirzaei M, Galavi H, Mukhlisin M, Jaafar O. Accuracy enhancement for forecasting water levels of reservoirs and river streams using a multiple-input-pattern fuzzification approach. The Scientific World Journal 2014;2014. doi:10.1155/2014/432976.
[36]    Neelakantan TR, Pundarikanthan N V. Neural network-based simulation-optimization model for reservoir operation. Journal of Water Resources Planning and Management 2000;126:57–64. doi:10.1061/(ASCE)0733-9496(2000)126:2(57).
[37]    Santos CAG, Freire PKMM, Silva GBL, Silva RM. Discrete wavelet transform coupled with ANN for daily discharge forecasting into Três Marias reservoir. IAHS-AISH Proceedings and Reports 2014;364:100–5. doi:10.5194/piahs-364-100-2014.
[38]    Dilek S, Cakır H, Aydın M. Applications of Artificial Intelligence Techniques to Combating Cyber Crimes: A Review. International Journal of Artificial Intelligence & Applications 2015;6:21–39. doi:10.5121/ijaia.2015.6102.
[39]    Rani S, Parekh F. Application of Artificial Neural Network ( ANN ) for Reservoir Water Level Forecasting. International Journal of Science and Research 2014;3:1077–82.
[40]    Khadr M. Integration of Data-Driven Modeling and Stochastic Modeling for Multi-purpose Reservoir Simulation 2014:91–9.
[41]    Nohara D, Sumi T. Real-time sediment inflow prediction for sediment bypass operation at Miwa Dam in Japan. 2013.
[42]    Dariane AB, Moradi AM. Comparative analysis of evolving artificial neural network and reinforcement learning in stochastic optimization of multireservoir systems. Hydrological Sciences Journal 2016;61:1141–56. doi:10.1080/02626667.2014.986485.
[43]    Zhang JQ, Xu F, Fang XW. Decomposition of multi-objective evolutionary algorithm based on estimation of distribution. Applied Mathematics and Information Sciences 2014;8:249–54. doi:10.12785/amis/080130.
[44]    Jain SK, Das A, Srivastava DK. Application of ANN for reservoir inflow prediction and operation. Journal of Water Resources Planning and Management 1999;125:263–71. doi:10.1061/(ASCE)0733-9496(1999)125:5(263).
[45]    Hong JL, Hong KA. Flow Forecasting For Selangor River Using Artificial Neural Network Models to Improve Reservoir Operation Efficiency. International Journal of Hybrid Information Technology 2016;9:89–106. doi:10.14257/ijhit.2016.9.7.10.
[46]    Ehsani N, Fekete BM, Vörösmarty CJ, Tessler ZD. A neural network based general reservoir operation scheme. Stochastic Environmental Research and Risk Assessment 2016;30:1151–66. doi:10.1007/s00477-015-1147-9.
[47]    Mandic DP, Chambers JA. Normalised real time recurrent learning algorithm. Signal Processing 2000;80:1909–16. doi:10.1016/S0165-1684(00)00101-8.
[48]    Cecchini RL, Lorenzetti CM, Maguitman AG, Brignole NB. Multiobjective evolutionary algorithms for context-based search. Journal of the American Society for Information Science and Technology 2010;61:1258–74. doi:10.1002/asi.21320.
[49]    Zahiri A, Najafzadeh M. Optimized expressions to evaluate the flow discharge in main channels and floodplains using evolutionary computing and model classification. International Journal of River Basin Management 2018;16:123–32. doi:10.1080/15715124.2017.1372448.
[50]    Guliashki V, Toshev H, Korsemov C. Survey of evolutionary algorithms used in multiobjective optimization. Problems of Engineering Cybernetics … 2009:42–54.
[51]    Robič T, Filipič B. DEMO: Differential Evolution for Multiobjective Optimization. Lecture Notes in Computer Science 2005;3410:520–33. doi:10.1007/978-3-540-31880-4_36.
[52]    Xue F, Sanderson AC, Graves RJ. Pareto-based multi-objective differential evolution. 2003 Congress on Evolutionary Computation, CEC 2003 - Proceedings 2003;2:862–9. doi:10.1109/CEC.2003.1299757.
[53]    Abbass HA. The self-adaptive Pareto differential evolution algorithm. Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002 2002;1:831–6. doi:10.1109/CEC.2002.1007033.
[54]    Abbass HA, Sarker R, Newton C. PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. Proceedings of the IEEE Conference on Evolutionary Computation, ICEC 2001;2:971–8. doi:10.1109/cec.2001.934295.
[55]    Zitzler E, Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 1999;3:257–71. doi:10.1109/4235.797969.