Using the Artificial Neural Network to Predict the Axial Strength and Strain of Concrete-Filled Plastic Tube

Document Type : Regular Article


Assistant Professor, Department of Civil Engineering, College of Engineering, Salahaddin University, Erbil, Republic of Iraq


The main purpose of the current study was to formulate an empirical expression for predicting the axial compression capacity and axial strain of concrete-filled plastic tubular specimens (CFPT) using the artificial neural network (ANN). A total of seventy-two experimental test data of CFPT and unconfined concrete were used for training, testing, and validating the ANN models. The ANN axial strength and strain predictions were compared with the experimental data and predictions from several existing strength models for fiber-reinforced polymer (FRP)-confined concrete. Five statistical indices were used to determine the performance of all models considered in the present study. The statistical evaluation showed that the ANN model was more effective and precise than the other models in predicting the compressive strength, with 2.8% AA error, and strain at peak stress, with 6.58% AA error, of concrete-filled plastic tube tested under axial compression load. Similar lower values were obtained for the NRMSE index.


Google Scholar


Main Subjects

[1]     Wang J-Y, Yang Q-B. Investigation on compressive behaviors of thermoplastic pipe confined concrete. Constr Build Mater 2012;35:578–85.
[2]     Abdulla NA. Influence of plastic pour-in form on mechanical behavior of concrete. Structures 2019;19:193–202. doi:10.1016/j.istruc.2019.01.007.
[3]     Abdulla NA. Concrete filled PVC tube: A review. Constr Build Mater 2017;156:321–9. doi:10.1016/j.conbuildmat.2017.08.156.
[4]     Kamal A. Multi-layer UPVC piping system. QScience Proc 2016;2016:30. doi:10.5339/qproc.2016.qgbc.30.
[5]     Ahmad A, Kotsovou G, Cotsovos DM, Lagaros ND. Assessing the accuracy of RC design code predictions through the use of artificial neural networks. Int J Adv Struct Eng 2018;10:349–65. doi:10.1007/s40091-018-0202-4.
[6]     Noorzaei J, Hakim SJS, Jaafar MS, Thanoon WAM. Development of artificial neural networks for predicting concrete compressive strength. Int J Eng Technol 2007;4:141–53.
[7]     Hakim SJS, Noorzaei J, Jaafar MS, Jameel M, Mohammadhassani M. Application of artificial neural networks to predict compressive strength of high strength concrete. Int J Phys Sci 2011;6:975–81.
[8]     Prasad BKR, Eskandari H, Reddy BVV. Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr Build Mater 2009;23:117–28.
[9]     Uysal M, Tanyildizi H. Estimation of compressive strength of self compacting concrete containing polypropylene fiber and mineral additives exposed to high temperature using artificial neural network. Constr Build Mater 2012;27:404–14. doi:10.1016/j.conbuildmat.2011.07.028.
[10]    Kasperkiewicz J, Racz J, Dubrawski A. HPC Strength Prediction Using Artificial Neural Network. J Comput Civ Eng 1995;9:279–84. doi:10.1061/(ASCE)0887-3801(1995)9:4(279).
[11]    Jahangir H, Esfahani MR. Numerical Study of Bond – Slip Mechanism in Advanced Externally Bonded Strengthening Composites. KSCE J Civ Eng 2018;22:4509–18. doi:10.1007/s12205-018-1662-6.
[12]    Naderpour H, Kheyroddin A, Amiri GG. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Compos Struct 2010;92:2817–29. doi:10.1016/j.compstruct.2010.04.008.
[13]    Abdulla NA. Mechanical Behavior of Slender Composite Columns under Axial Compression Load. KSCE J Civ Eng 2020;24:208–18. doi:10.1007/s12205-020-0669-y.
[14]    Woldemariam AM, Oyawa WO, Nyomboi T. Reliability assessment of axially loaded uPVC tube confined reinforced concrete columns. Structures 2020;23:529–38. doi:10.1016/j.istruc.2019.11.009.
[15]    Saadoon AS, Jasim NA. Prediction of Ultimate Strength of PVC-Concrete Composite Columns Using FIS Models 2017.
[16]    Abdulla NA. Concrete Encased with Engineering Plastics. J Civ Eng Constr 2020;9:31–41. doi:10.32732/jcec.2020.9.1.31.
[17]    Tasdemir MA, Tasdemir C, Akyüz S, Jefferson AD, Lydon FD, Barr BIG. Evaluation of strains at peak stresses in concrete: A three-phase composite model approach. Cem Concr Compos 1998;20:301–18. doi:10.1016/S0958-9465(98)00012-2.
[18]    Dreyfus G. Neural networks: methodology and applications. Springer Science & Business Media; 2005.
[19]    Demir F. Prediction of elastic modulus of normal and high strength concrete by artificial neural networks. Constr Build Mater 2008;22:1428–35. doi:10.1016/j.conbuildmat.2007.04.004.
[20]    Dutta RK, Rao TG, Sharma A. Application of Random Forest Regression in the Prediction of Ultimate Bearing Capacity of Strip Footing Resting on Dense Sand Overlying Loose Sand Deposit. J Soft Comput Civ Eng 2019;3:28–40.
[21]    Mirmiran A. Analytical and experimental investigation of reinforced concrete columns encased in fiberglass tubular jacket and use of fiber jacket for pile splicing. 1997.
[22]    Guralnick SA, Gunawan L. Strengthening of Reinforced Concrete Bridge Columns with FRP Wrap. Pract Period Struct Des Constr 2006;11:218–28. doi:10.1061/(ASCE)1084-0680(2006)11:4(218).
[23]    Yan Z, Pantelides CP. Design-oriented model for concrete columns confined with bonded FRP jackets or post-tensioned FRP shells. Proc. 8th Int. Symp. Fiber Reinf. Polym. Reinf. Concr. Struct., University of Patras; 2007.
[24]    Binici B. Design of FRPs in circular bridge column retrofits for ductility enhancement. Eng Struct 2008;30:766–76. doi:10.1016/j.engstruct.2007.05.012.
[25]    Wu Y-F, Wang L-M. Unified Strength Model for Square and Circular Concrete Columns Confined by External Jacket. J Struct Eng 2009;135:253–61. doi:10.1061/(ASCE)0733-9445(2009)135:3(253).
[26]    Wu H-L, Wang Y-F, Yu L, Li X-R. Experimental and Computational Studies on High-Strength Concrete Circular Columns Confined by Aramid Fiber-Reinforced Polymer Sheets. J Compos Constr 2009;13:125–34. doi:10.1061/(ASCE)1090-0268(2009)13:2(125).
[27]    Fakharifar M, Chen G. Compressive behavior of FRP-confined concrete-filled PVC tubular columns. Compos Struct 2016;141:91–109. doi:10.1016/j.compstruct.2016.01.004.
[28]    Karbhari VM, Gao Y. Composite Jacketed Concrete under Uniaxial Compression—Verification of Simple Design Equations. J Mater Civ Eng 1997;9:185–93. doi:10.1061/(ASCE)0899-1561(1997)9:4(185).
[29]    Ilki A, Kumbasar N, Koc V. Low strength concrete members externally confined with FRP sheets. Struct Eng Mech 2004;18:167–94.
[30]    Al-Tersawy SH, Hodhod OA, Hefnawy AA. Reliability and code calibration of RC short columns confined with CFRP wraps. Proceedings, eighth Int. Symp. fiber Reinf. Polym. Reinf. Concr. Struct., 2007, p. 122–30.
[31]    Mohamed HM, Masmoudi R. Axial Load Capacity of Concrete-Filled FRP Tube Columns: Experimental versus Theoretical Predictions. J Compos Constr 2010;14:231–43. doi:10.1061/(ASCE)CC.1943-5614.0000066.
[32]    Sadeghian P, Fam A. Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses. Eng Struct 2015;87:162–82. doi:10.1016/j.engstruct.2015.01.024.