

Contents lists available at SCCE

Journal of Soft Computing in Civil Engineering

Journal homepage: www.jsoftcivil.com

Neural Models for Unconfined Compressive Strength of Kaolin Clay Mixed with Pond Ash, Rice Husk Ash and Cement

A. Priyadarshee¹, S. Chandra², D. Gupta³, V. Kumar^{4*}

1. Assistant Professor, Department of Civil Engineering, MIT Muzaffarpur, Bihar, India

2. CSIR-NEERI, Delhi Zonal Centre, India

3. Department of Civil Engineering. NIT Jalandhar, India

4. Assistant Professor, Department of Civil Engineering, Central University of Haryana, India

Corresponding author: vikask@cuh.ac.in

https://doi.org/10.22115/SCCE.2020.223774.1189

ARTICLE INFO

Article history: Received: 16 March 2020 Revised: 12 May 2020 Accepted: 28 May 2020

Keywords: Kaolin clay; Artificial neural network; Pond ash; Rice husk ash; Cement and unconfined compressive strength.

ABSTRACT

In this study an Artificial Neural Network (ANN) model was used to predict the Unconfined Compressive Strength (UCS) of Kaolin clay mixed with pond ash, rice husk ash and cement content model under different curing period. The input parameters included percentages of admixtures added along with clay content and curing period. The curing Period range was 7, 14 and 28 days considered in neural model. The feedforward back propagated neural model with Levenberg Marqaurdt gradient descent with momentum constant was used to predict the UCS and optimized topology of 5-10-1 was obtained. The sensitivity analysis based on weights of neural model indicated that all admixtures contributed 70% to the UCS of Kaolin clay. The comparison of ANN model with Multiple Regression Analysis (MRA) model indicated that ANN models were performing better than MRA model with values of r as R^2 as 0.98 and 0.97 respectively in testing phase of neural model and for MRA model r was 0.94 and R^2 as 0.88.

1. Introduction

The strength of soil plays an important role in long-term stability of structures over soil. To accomplish this in many cases, soil improvement using admixtures is done and is termed as soil How to cite this article: Priyadarshee A, Chandra, S, Gupta D, Kumar V. Neural models for unconfined compressive strength of kaolin clay mixed with pond ash, rice husk ash and cement. J Soft Comput Civ Eng 2020;4(2):85–102. https://doi.org/10.22115/scce.2020.223774.1189.

2588-2872/ © 2020 The Authors. Published by Pouyan Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

improvement. Addition of admixture to soil is one of the soil improvement techniques widely used and is economical and if admixtures are such that waste utilization is done then it is also an environment friendly way. To improve the engineering behavior of soil, different cementing and non-cementing materials are available. Lime, cement etc. are the example of cementing material, while fly ash, pond ash, rice husk ash etc. are the examples of non-cementing materials which are by-products of other processes and also a better waste management option. Many researchers have studied the behavior soil mixed with different admixtures like lime, cement, fibers, fly ash etc. [1–10]. All such studies have shown that these materials have potential to improve the strength behavior of soil. These materials can be used in construction of different geotechnical structures like road subgrade, embankment, retaining wall etc.[11–16].

Utilization of the wastes like pond ash and rice husk ash, which are industrial wastes and agricultural wastes respectively, the proper disposal and utilization is of utmost important so that circularity in products along with environment sustainability can be achieved. Pond ash is an industrial waste generated from the thermal power plants after burning of coal. Pond ash is low density material, which is normally not an active pollutant. But due to bulk production, it creates environmental problem. Researchers like [17,18] through laboratory tests have found that pond ash as admixture can improve the soil behavior. Similar to pond ash, rice husk ash is also a waste product, which is produced due to the burning of the rice husk. It can also be used for different geotechnical constructions [19,20]. Potential of rice husk ash as admixture for the improvement of the behavior of soil through laboratory investigation is considered by different researchers [21–24].

The strength values of such soils can be measured directly or indirectly but laboratory tests are time taking and cost intensive, therefore development of estimation model is of prime importance to have simulation before and decide series of experiments [25]. Based upon the laboratory results many prediction models using multiple regression analysis are developed to estimate the strength behavior of soil-admixture mix [10] These models have to be fitted with variable polynomial functions and type of polynomial which is time consuming and yields results which cannot capture non-linearity [25]. In fact, getting a proper model is a time consuming as well as crucial task for any human and automated system. Most of the time, one has to rely upon analytical and hit and trial things. To avoid such bottle necks and limitations, many researchers have recommended use of Artificial Neural Networks (ANN's) [26]. These have been used for prediction of unconfined compressive strength of geopolymer stabilized clayey soil[27], prediction of soil behaviour [28], prediction of maximum dry density [29] and also for prediction of unconfined compressive strength of soft rocks [30]. It can be used in many civil engineering problems like prediction of ultimate bearing capacity of skirted footing [31], free swell index for expansive soils [32] and also be used for the prediction of the strength behavior of the mix [26,33,34]. From the literature study, it was identified that ANN models have not been used for soils like clay stabilized with waste material like pond ash and rice husk ash in combination with cement. Therefore, this study uses ANN model to predict the Unconfined Compressive Strength (UCS) of Kaolin clay mixed with admixtures for stabilization.

2. Materials and methods

In this study, Kaolin clay mixed with pond ash and rice husk ash was tested for its unconfined compressive strength [35]. As per Unified Soil Classification System (USCS) soil is classified as CL (Clay with low plasticity) with specific gravity (G) as 2.7, Liquid Limit (LL) as 43.3% and Plastic Limit (PL) as 19.5% along with Plasticity Index (I_p) as 23.8. The optimum moisture content (OMC) obtained was 18.3% and Maximum dry density was 17.5 kN/m³.

Pond ash used as an admixture is the waste product produced due to the burning of coal in thermal power plant. As per ASTM C 618-1992, pond ash used in the study was classified as F type. The pond ash used was rounded and sub-rounded with light grey color and specific gravity (G) as 2.10 and was non-plastic. The silt and clay proportion in ash was 41.6% while fine sand was 44.6%.

Rice husk ash is basically a waste material produced from processing of rice. 20-25% of rice husk get generated during processing of rice from paddy. About 25% of rice husk ash gets produced after burning of the rice husk. The properties of the rice husk ash depend upon the burning temperature. The ash was basically non-plastic in nature and major chemical constituents were SiO_2 , Fe_2O_3 and Al_2O_3 .

3. Methodology

3.1. Artificial neural network

The science of Artificial Neural Networks (ANN's) is based on the biological neuron, and the architecture is designed according to the elements of a neuron. On the basis of biological neuron, the first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pits. Neurons are the fundamental component of the central nervous system and it consists of the nucleus, dendrites, cell body, and axon. The dendrites gather signals coming from the neighboring neurons and then transmit it to the cell body. The cell body consists of the nucleus of the neuron. If the sum of the received signal is greater than the threshold value, then the neuron send an electrical pulse along the axon to the next neuron. Based on this biological working, ANN processes the incoming information in a similar way. The network is composed of large, highly interconnected processing elements (neurons) working in parallel to perform a particular task. Neural networks can learn through the example and provide an approximate solution. Fig.1. shows the elementary model of artificial neural network. It is a one form of artificial intelligence and unlike standard statistical prediction model, it is a class driven nonlinear approach.

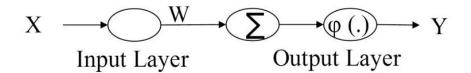


Fig. 1. Elementary model of Artificial Neural Network.

3.1.1. Neural architecture

In artificial neural networks there are mainly two broad types of architecture - feedforward networks and feedback networks. Feedforward or multi-layer networks have been extensively used while making neural model. In such models, it may consist of several layers as hidden layer and one output layer as shown in Fig. 2. In most of the applications where neural network is used one or two hidden layers are kept in the architecture. The detailed working of these multi-layer networks also known as multilayer perceptron is presented in Annexure-I.

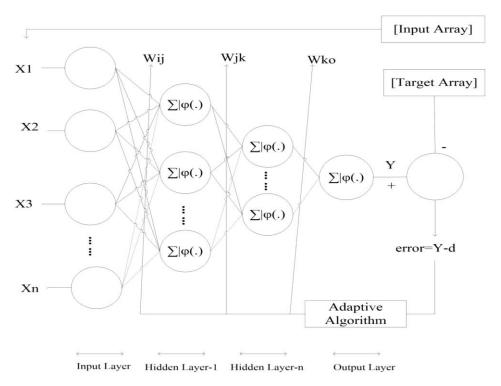


Fig. 2. Architecture of multilayer perceptron.

In Fig.2., X is input of the neural network and each input is multiplied by weight W. Similarly, $\varphi(.)$ and Y are the activation function and the output of the neural network model respectively.

The number of neurons in each hidden layer can be fixed by trial and error process and also depending upon the complexity of process to be modeled. ANN's comprises numerous interconnected networks which help to form a relationship between historical sets of inputs and corresponding output. This is achieved by repeatedly providing input/output data to an ANN network and the model output as well as target value are compared to find out the error which is further utilized for adjusting the model coefficients i.e. neural network weights. This process assist to minimize an error function of any ANN based model. The activation function $\varphi(.)$ is needed to introduce nonlinearities into the network. The activation function is chosen to satisfy some specification of the problem that neuron is attempting to solve. There are 3 main types of activation function, i.e., tan-sigmoid, log-sigmoid and linear. Broadly, the activation function may be sigmoid or hyperbolic tangent type. Fig.3. depicts the graphical representation of three different activation functions.

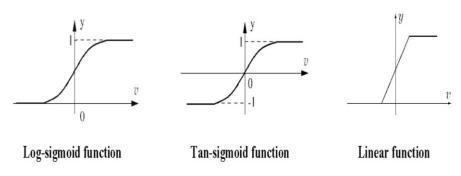


Fig. 3. Activation functions used in neural model.

3.1.2. Data for neural model, pre-processing and data division

In this study, the outcomes of experiments conducted over Kaolin clay mixed with different admixtures were used for database development for neural model. All the series of tests were collated and total 129 data points were obtained to develop neural model for prediction of unconfined compressive strength (UCS). The dataset was collated and randomized in order to avoid network from just memorizing while making models. Once the dataset is finalized, it is processed, randomized and normalized as it has to pass through activation function. The normalization can be done in any range from [-1,1] or [0,1] but in this study it has been taken in range [0.1,0.9] to avoid saturation in dataset [36]. Once collated the data was randomly divided into two set of data. One set of the data known as training set was used for training of neural network with 70% (91 points) randomly selected data points. This set of the data helps to develop the neural network model. Other set of data known as testing set with 15% samples included 19 points and validation also with 15% includes 19 points. These were used for validation and testing of the trained neural model [37]. The test data is one which is not presented to the network while training and was not seen by model before. The neural interpretation figure (NIF) used in the study is shown in Fig. 4.

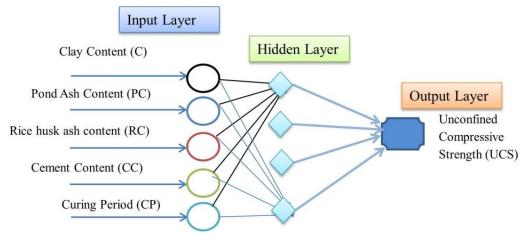


Fig. 4. Neural Interpretation Figure for ANN used in the study.

The Simulation task was implemented in Matlab® 2015 software, using PC with hardware specification of 4 Gb installed memory, Intel Core i3 CPU @ 1.70 GHz processor and Microsoft Windows 8 operating system.

3.1.3. Model input and output

The experiments conducted on Kaolin clay for its unconfined compressive strength had variable parameters such as clay content (C), Pond ash (PC), Rice husk ash content (RC), Cement content (CC) and Curing Period (CP). Therefore, these variable parameters were used as input data during the development of the model. Unconfined compressive strength (UCS) was considered as target data or output data. The range of the values of input data is presented in Table 1.

Table 1

90

Range of input values used for development of the ANN model.

S
%
%
⁄0
%
days
)

The statistics of data used for development of neural models for prediction of UCS using neural model is presented in Table 2.

Table 2

Statistical Parameters for all inputs and output used in neural model.

Variable	Clay Content (C) (%)	Pond Ash Cement (PC) (%)	Rice husk ash content (RC) (%)	Cement Content (CC) (%)	Curing Period (CP) (days)	Unconfined Compressive Strength (UCS) (kN/m ²)
Parameter						
Min	46.00	0.00	0.00	0.00	7	118.00
Max	100.00	50.00	20.00	4.00	28	512.00
Average	69.43	21.51	7.14	2.00	16.33	258.69
SD	18.63	18.60	7.49	1.63	8.73	80.38

3.2. Multiple regression analysis

In this study, apart from ANN model multiple regression analysis was also done to predict UCS of Kaolin clay. The UCS was taken as dependent variable and C, PC, RC, CC and CP as independent variable. After various combinations, the equation obtained after regression analysis is given below.

$$\frac{UCS_m}{UCS_{C7}} = -1.003 + 1.568 * \left[\frac{CC}{100}\right]^2 + 2.477 * \left[\frac{PC}{100}\right]^{0.5} + 2.287 * \left[\frac{RC}{100}\right]^{0.5} + 6.731 * \left[\frac{C}{100}\right]^{0.5} + 0.017 * CP$$
(1)

where, UCS_m is Unconfined Compressive Strength of mix and UCS_{C7} is unconfined compressive strength of clay alone at 7 days curing period. Using Equation (1) the coefficient of determination (R²) was 0.88 for prediction of UCS and the results obtained from regression and actual values were plotted and a close-fit was obtained (Fig. 5).

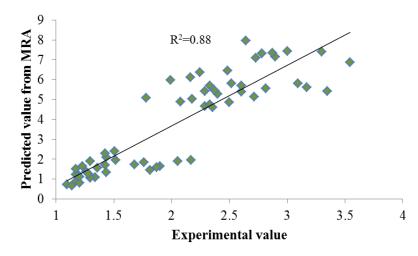


Fig. 5. Comparison between Regression model and experimental values.

4. Results and discussion

4.1. Neural architecture

The number of neurons plays an important role in the performance of the proposed neural network based strength predictive model and it is essential to select the appropriate number of neurons for optimizing the performance level. Different numbers of neurons were adopted to evaluate the efficiency level of the proposed network. The comparison of the performance of the neural network with different numbers of neurons was done in terms of mean square error (MSE) as in Eq.(1) and is shown in Fig. 6 [38].

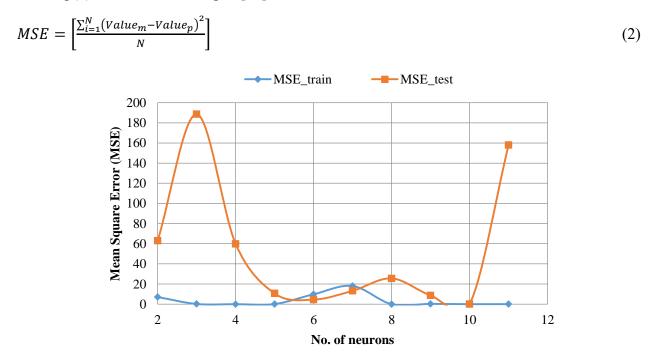


Fig. 6. Variation in MSE with number of neurons.

The number of neurons was varied from 2 to 11 in hidden layer with tan-sigmoid activation function between input and hidden layer and purelin as transfer function between hidden layer and output layer. During this process, it was observed that at neurons 10, the testing and training error was less and model has better predictive power. Therefore, the optimized topology for prediction of UCS of Kaolin clay mixed with PC, RC and CC was 5-10-1. The performance of model at optimized topology is shown in Fig.7.

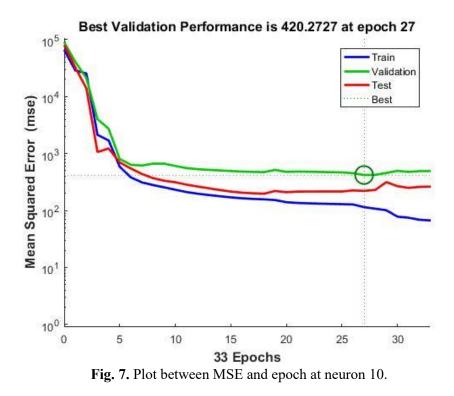


Fig.6. shows the performance of model when 5-10-1 trained architecture was used for prediction of UCS. It can be seen that at after epoch 27 the training error was reducing but testing error was increasing, therefore the model after 5 more epochs got terminated and optimized performance was achieved at 27 epochs. With 10 neurons in hidden layer, the model has better predictive power which is the main objective of constructing and optimizing the neural model.

4.2. Performance of model

The obtained neural model with 5-10-1 architecture was trained with Levenberg-Marquardt algorithm with gradient descent and momentum back-propagation. The parameters fixed for the model are given in Table 3.

The performance of model with number of neurons varied from 2 to 11 in hidden layer was assessed using Mean Square Error (MSE) and correlation coefficient (r) and results obtained are shown in Table 4. Value of 'r' can be calculated using Equation (3) [39].

$$r = \frac{\sum_{i=1}^{N} (Value_p - \overline{Value_p})(Value_m - \overline{Value_m})}{\sqrt{\sum_{i=1}^{N} (Value_p - \overline{Value_p})^2} \sqrt{\sum_{i=1}^{N} (Value_m - \overline{Value_m})^2}}$$
(3)

where, $Value_m$ is result obtained from experiments , $Value_p$ is result predicted by model, $Value_m$ is mean of results from experiment and $Value_p$ is mean of results from model.

S. No.	Neural Network Parameters	Adopted Parameters
1	Training Function	Trainlm(.)
2	Learning Function	Learngdm(.)
3	Performance Function	MSE(.)
4	Number of neurons	10
5	Activation Function	tansig(.)
6	epoch	1000
7	min_grad	$1e^{-07}$
8	max_fail	1000

Table 3

Parameters fixed for Neural model.

Table 4

Performance parameters of trained artificial neural model.

Neurons	Structure		MSE	r
2	5-2-1	Training	7.1036	0.8373
		Testing	62.9299	0.4876
3	5-3-1	Training	0.2125	0.9568
		Testing	188.537	0.9404
4	5-4-1	Training	0.0279	0.9026
		Testing	59.8785	0.9075
5	5-5-1	Training	0.1271	0.9795
		Testing	10.6892	0.9188
6	5-6-1	Training	9.8292	0.9451
		Testing	4.5469	0.8858
7	5-7-1	Training	18.0555	0.9638
		Testing	13.2486	0.9051
8	5-8-1	Training	0.0136	0.9882
		Testing	25.595	0.9409
9	5-9-1	Training	0.3004	0.9698
		Testing	8.7589	0.9554
10	5-10-1	Training	0.0395	0.9906
		Testing	51.34	0.9856
11	5-11-1	Training	0.0704	0.9794
		Testing	157.97	0.9466

From Table 4 it can be seen that error during testing significantly reduces when number of neurons were kept at 10 in hidden layer and correlation coefficient during training and testing was high. Once the model was trained, it was tested on unseen data and also was validated. The performance of model during training, testing and validation is shown in Fig. 8.

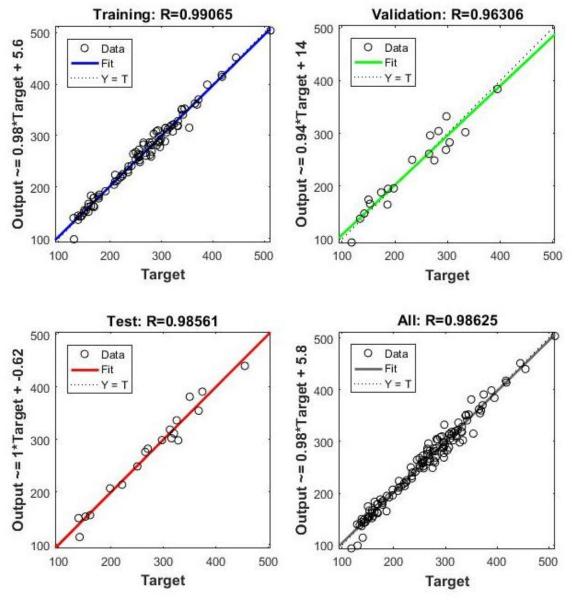


Fig. 8. Performance of optimized ANN for UCS.

From Fig. 7. it can be seen that optimized model has higher values of correlation coefficient during training, testing and validation, which means that model was able to predict values closer to actual values of UCS and hence this model indicates that well optimized ANN can be used to predict UCS of Kaolin clay mixed with CC, PC and RC under varying ranges.

The Predicted values and experimental values for all data points are presented in Table 5.

Conditions						UCS (kN/m ²)	
Test. No	Clay (%)	Pond Ash (%)	Rice Husk Ash (%)	Cement (%)	Curing Period (Days)	Experimental	Predicted
1	100	0	0	0	7	118	120
2	100	0	0	0	14	130	122
2 3	100	0	0	0	28	140	131
4	98	0	0	2	7	163	151
5	98	0	0	2	14	187	161
6	98	0	0	2	28	210	212
7	96	0	0	4	7	174	174
8	96	0	0	4	14	191	205
9	96	0	0	4	28	225	226
10	95	0	5	0	7	129	138
11	95	0	5	0	14	138	144
12	95	0	5	0	28	150	164
13	93	0	5	2	20 7	250	258
13	93	0	5	2	14	270	262
15	93	0	5	2	28	295	202
16	91	0	5	4	20 7	265	262
10	91	0	5	4	14	205	202
18	91 91	0	5	4	28	312	307
18	91 90	0	10	4	28 7	150	166
20	90 90	0	10	0	14	150	164
20 21	90 90	0	10 10	0	28	169	104
	90 88		10 10		28 7		
22		0		2		275	308
23	88	0	10	2	14	297	295
24	88	0	10	2	28	320	317
25	86	0	10	4	7	293	295
26	86	0	10	4	14	317	323
27	86	0	10	4	28	340	357
28	85	0	15	0	7	138	152
29	85	0	15	0	14	149	149
30	85	0	15	0	28	158	166
31	83	0	15	2	7	257	264
32	83	0	15	2	14	280	260
33	83	0	15	2	28	307	290
34	81	0	15	4	7	281	273
35	81	0	15	4	14	304	301
36	81	0	15	4	28	324	328
37	80	0	20	0	7	138	149
38	80	0	20	0	14	145	155
39	80	0	20	0	28	153	196
40	78	0	20	2	7	233	248
41	78	0	20	2	14	255	265

Table 5Comparison of experimental and predicted values of unconfined compression tests.

42	78	0	20	2	28	282	289
43	76	0	20	4	7	250	246
44	76	0	20	4	14	277	268
45	76	0	20	4	28	298	284
46	90	10	0	0	7	134	136
47	90	10	0	0	14	142	137
48	90	10	0	ů 0	28	153	149
49	88	10	ů 0	2	7	258	254
50	88	10	0	2	14	278	263
51	88	10	0	2	28	295	203
52	86	10	0	4	20 7	250	256
53	86	10	0	4	14	250	280
56	86	10	0	4	28	315	200 296
50 57	80	20	0	4 0	28 7	142	153
58	80 80	20 20	0	0	14	142	133
58 59		20 20		0			
	80 78		0		28	163	155
60	78 78	20	0	2	7	245	282
61	78	20	0	2	14	256	294
62	78 76	20	0	2	28	283	309
63	76	20	0	4	7	265	269
64	76	20	0	4	14	297	298
65	76	20	0	4	28	325	329
66	70	30	0	0	7	160	160
67	70	30	0	0	14	168	158
68	70	30	0	0	28	179	163
69	68	30	0	2	7	257	278
70	68	30	0	2	14	280	303
71	68	30	0	2	28	307	320
72	66	30	0	4	7	299	282
73	66	30	0	4	14	322	308
74	66	30	0	4	28	339	342
75	60	40	0	0	7	158	166
76	60	40	0	0	14	169	170
77	60	40	0	0	28	178	171
78	58	40	0	2	7	275	266
79	58	40	0	2	14	297	286
80	58	40	0	2	28	320	306
81	56	40	0	4	7	328	288
82	56	40	0	4	14	354	309
84	56	40	0	4	28	369	349
85	50	50	0	0	7	168	171
86	50	50	0	0	14	178	175
87	50	50	0	ů 0	28	186	182
88	48	50	0	2	7	235	234
89	48	50	0	2	14	255	251
90	48	50	0	2	28	265	278
91	46	50	0	4	20 7	265	288
92	46	50	0	4	14	285	308
93	46	50	0	4	28	312	355
15	ru	50	0	т	20	514	555

94	50	45	5	0	7	198	192
95	50	45	5	0	14	208	204
96	50	45	5	0	28	220	223
97	48	45	5	2	7	270	298
98	48	45	5	2 2	14	332	318
99	48	45	5	2	28	365	370
100	46	45	5	4	7	308	319
101	46	45	5	4	14	342	358
102	46	45	5	4	28	389	427
103	50	40	10	0	7	221	215
104	50	40	10	0	14	235	228
105	50	40	10	0	28	256	262
106	48	40	10	2	7	345	331
107	48	40	10	2 2 2	14	395	359
108	48	40	10	2	28	445	427
109	46	40	10	4	7	418	349
110	46	40	10	4	14	455	408
111	46	40	10	4	28	512	466
112	50	35	15	0	7	210	206
113	50	35	15	0	14	224	216
114	50	35	15	0	28	242	244
115	48	35	15	2	7	290	316
116	48	35	15	2	14	331	342
117	48	35	15	2	28	374	408
118	46	35	15	4	7	332	342
119	46	35	15	4	14	367	400
120	46	35	15	4	28	417	443
121	50	35	20	0	7	198	182
122	50	35	20	0	14	214	202
123	50	30	20	0	28	236	252
124	48	30	20	2	7	267	290
125	48	30	20	2	14	310	315
126	48	30	20	2	28	350	352
127	46	30	20	4	7	297	284
128	46	30	20	4	14	334	317
129	46	30	20	4	28	372	361

4.3. Sensitivity analysis

For understanding the effect of all inputs on UCS of Kaolin clay, the sensitivity analysis was done by using the weights obtained from optimized neural model for input to hidden layer and hidden layer to output layer. It was carried out as per the methodology suggested in [40] [40] and is represented in Fig.9. The analysis helped to identify the effect of different admixtures along with curing period on UCS of Kaolin clay. The analysis revealed that, Rice husk ash content (RC) contributed most to the UCS of clay with 26% followed by Pond ash content (PC) with 24%. It was also revealed that all the parameters selected for constructing the neural model were

contributing minimum to 10%. It can also be said that admixtures are affecting the UCS by 70% and rest is curing period and clay content.

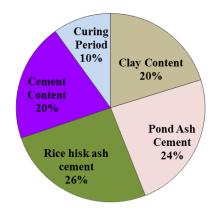


Fig. 9. Relative importance of different parameters affecting UCS.

4.4. Comparison of MRA and ANN

In this study, MRA and ANN models were developed to predict the UCS of Kaolin clay and the comparison for both the models is presented in Table 6.

Table 6

Comparison of MRA and ANN.

	Prediction models				
	ANN		MRA		
Performance measures	Training	Testing			
r	0.9906	0.9856	0.9418		
\mathbb{R}^2	0.9813	0.9714	0.8870		
MSE	0.0395	51.34	68.7603		
RMSE	0.1987	7.1651	8.2921		

From Table 6, it can be inferred that ANN models compared to MRA models have better predictive power for predicting the UCS of Kaolin clay. This is evident as correlation coefficient (r) and coefficient of determination (R^2) for optimized neural model is more compared to MRA model. The error obtained from neural model is less compared to MRA model hence ANN model with 5-10-1 topology in this study is a better predicting model.

5. Conclusion

In this study, multilayer perceptron was used to predict the Unconfined Compressive Strength (UCS) of Kaolin clay mixed with pond ash and rice husk ash along with cement. It was found that neural model with 5-10-1 architecture was the best performing model and it has performed better than the regression model. The LM algorithm with gradient descent and momentum constant back-propagation was used to predict UCS values and tansigmoid activation function was used with purelin transfer function. The sensitivity analysis showed that admixtures used in the study contributed 70% to the UCS of Kaolin clay. The r and R² values for ANN were 0.98

and 0.97 for testing phase while MRA had lower r and R^2 as 0.94 and 0.88 respectively. It was also inferred that ANN model had better performance when compared to regression models.

Funding

This research received no external funding.

Conflicts of interest

The authors declare no conflict of interest.

Authors contribution statement

AP, VK: Conceptualization, Methodology, original draft DG: Data Collection and Experimental work, Resources, SC: ANN Modelling, Validation, Visualization, review and editing

Appendix 1

Methodology of strength prediction based on multilayer perceptron

The multilayer perceptron (MLP) comprises of several layers i.e., an input, hidden and output layers. It consists of more than one hidden layer where nodes of each layers are usually interconnected through a pre-initialized set of normal distributed random weights.

For the training, the experimental data need to arrange into inputs (features) and output (desired/target) arrays. The inputs of MLP network i.e., $\{X1, X2, \dots, Xn\}$ are obtained from the input array. The network output ' Y_n ' is obtained by the sum of their weighted inputs which can be expressed mathematically as Eq. (A1).

$$Y_n = \left[\left(\sum_i X_{ij} \times W_{ij} \right) - b_n \right] \tag{A1}$$

Then, apply the outcome to a nonlinear activation/threshold function ' $\varphi(.)$ ' and the predictive model output is obtained by the Eq. (A2)

$$Y = [\varphi(.) \times Y_n] \tag{A2}$$

Where, W_{ij} is the synaptic weight coefficient and b_n is the bias respectively. Similarly, 'd' is the desired value which is chosen from the target array and it is utilized in finding network error by comparing network output. (dtail abou strength). The error 'e' expressed as,

$$error: e(n) = Y - d(n) \tag{A3}$$

Typically, the MLP based network errors are used to adjust network interconnection weights through a backpropagation (BP) algorithm. It is a gradient search based algorithm which helps to select the optimum set of weights of MLP by minimizing error repeatedly. Rest equation of this section highlight the functionality of BP and the instant error energy in the output layer is,

$$\xi(n) = \frac{1}{2} \sum_{i=}^{n} e_i^2(n)$$
(A4)

The weights are updated in different layers according to,

$$w_{kl}(n+1) = w_{kl}(n) + \Delta w_{kl}(n) \tag{A5}$$

$$w_{jk}(n+1) = w_{jk}(n) + \Delta w j_k(n) \tag{A6}$$

$$w_{ij}(n+1) = w_{ij}(n) + \Delta w_{ij}(n)$$
 (A7)

Where, $\Delta w_{kl}(n)$, $\Delta w j_k(n)$ and $\Delta w_{ij}(n)$ are the change in the weights of the second hidden layer-to-output layer, first hidden layer-to-second hidden layer and input layer-to-first hidden layer respectively. That is,

$$\Delta w_{kl}(n) = -2\mu \frac{d\xi(n)}{dw_{kl}} = 2\mu \frac{dy_l(n)}{dw_{kl}} = 2\mu e(n)\varphi_l'[w_{kl}f_k + \alpha_l]$$
(A8)

The threshold of each layer can be updated in a similar manner, i.e.,

$$\alpha_l(n+1) = \alpha_l(n) + \Delta \alpha_l(n) \tag{A9}$$

$$\alpha_k(n+1) = \alpha_k(n) + \Delta \alpha_k(n) \tag{A10}$$

$$\alpha_j(n+1) = \alpha_j(n) + \Delta \alpha_j(n) \tag{A11}$$

Similarly, the change in threshold is represented as,

$$\Delta \alpha_l(n) = 2\mu e(n)\varphi_l'[w_{kl}f_k + \alpha_l] \tag{A12}$$

By attaining the minimum error, training will over and then proposed model get tuned with the best set of weight which can be utilized in predicting strength of any unknown input data.

References

- [1] Mitchell JK. Soil improvement state of the art report. Proc 10t Int Conf Soil Mechancs Found Eng Vol 4, Int Soc Soil Mech Found Eng Stock Sweden, 509-565 1981.
- [2] Lee SL, Yong KY. Grouting in substructure construction. Proc 9th Reg Conf Soil Mech Found Eng Vol 2, Int Soc Soil Mech Found Eng Bangkok, Thailand, 41-49 1991.
- [3] Sherwood PT. Soil stabilized with cement and lime: state of the art review. ", Her Majesty's Stationery office, London. 1993.
- [4] Bell FG. Lime stabilization of clay minerals and soils. Eng Geol 1996;42:223–37. doi:10.1016/0013-7952(96)00028-2.
- [5] Maher MH, Ho YC. Mechanical Properties of Kaolinite/Fiber Soil Composite. J Geotech Eng 1994;120:1381–93. doi:10.1061/(ASCE)0733-9410(1994)120:8(1381).
- [6] Petersen D, Link R, Pandian N, Krishna K, Sridharan A. California Bearing Ratio Behavior of Soil/Fly Ash Mixtures. J Test Eval 2001;29:220. doi:10.1520/JTE12249J.
- [7] Phani Kumar BR, Sharma RS. Effect of Fly Ash on Engineering Properties of Expansive Soils. J Geotech Geoenvironmental Eng 2004;130:764–7. doi:10.1061/(ASCE)1090-0241(2004)130:7(764).

- [8] Edil TB, Acosta HA, Benson CH. Stabilizing Soft Fine-Grained Soils with Fly Ash. J Mater Civ Eng 2006;18:283–94. doi:10.1061/(ASCE)0899-1561(2006)18:2(283).
- [9] Priyadarshee A, Gupta D, Kumar V, Sharma V. Comparative Study on Performance of Tire Crumbles with Fly Ash and Kaolin Clay. Int J Geosynth Gr Eng 2015;1:38. doi:10.1007/s40891-015-0033-3.
- [10] Priyadarshee A, Kumar A, Gupta D, Pushkarna P. Compaction and Strength Behavior of Tire Crumbles–Fly Ash Mixed with Clay. J Mater Civ Eng 2018;30:04018033. doi:10.1061/(ASCE)MT.1943-5533.0002171.
- [11] Raymond S. Utilization of pulverized fuel ash. Civ Eng Public Work Rev 1958;53:1013–1016.
- [12] Winterkorn HT. Soil stabilization foundation engineering hand book, H. F. Winterkorn and F. Y. Fang, eds., Van Nostrand Reinhold, New York. 1975.
- [13] Toth PS, Chan HT, Cragg CB. Coal ash as structural fill, with special reference to Ontario experience. Can Geotech J 1988;25:694–704. doi:10.1139/t88-080.
- [14] Eldin NN, Senouci AB. Use of Scrap Tires in Road Construction. J Constr Eng Manag 1992;118:561–76. doi:10.1061/(ASCE)0733-9364(1992)118:3(561).
- [15] Bosscher PJ, Edil TB, Kuraoka S. Design of Highway Embankments Using Tire Chips. J Geotech Geoenvironmental Eng 1997;123:295–304. doi:10.1061/(ASCE)1090-0241(1997)123:4(295).
- [16] Eid HT, Stark TD, Evans WD, Sherry PE. Municipal Solid Waste Slope Failure. I: Waste and Foundation Soil Properties. J Geotech Geoenvironmental Eng 2000;126:397–407. doi:10.1061/(ASCE)1090-0241(2000)126:5(397).
- [17] Bera AK. Effect of the pond ash content on the engineering properties of fine grained soil. Indian Geotech Conf GEOtrendz, IIT Mumbai 2010:405–8.
- [18] Jorat ME, Marto A, Namazi E, Amin MFM. Engineering characteristics of kaolin mixed with various percentages of bottom ash. Electron J Geotech Eng 2011;16:841–50.
- [19] Payá J, Monzó J, Borrachero M., Mellado A, Ordoñez L. Determination of amorphous silica in rice husk ash by a rapid analytical method. Cem Concr Res 2001;31:227–31. doi:10.1016/S0008-8846(00)00466-X.
- [20] Jayasree PK, Balan K, Peter L, Nisha KK. Volume Change Behavior of Expansive Soil Stabilized with Coir Waste. J Mater Civ Eng 2015;27:04014195. doi:10.1061/(ASCE)MT.1943-5533.0001153.
- [21] Basha EA, Hashim R, Mahmud HB, Muntohar AS. Stabilization of residual soil with rice husk ash and cement. Constr Build Mater 2005;19:448–53. doi:10.1016/j.conbuildmat.2004.08.001.
- [22] Anwar Hossain KM. Stabilized Soils Incorporating Combinations of Rice Husk Ash and Cement Kiln Dust. J Mater Civ Eng 2011;23:1320–7. doi:10.1061/(ASCE)MT.1943-5533.0000310.
- [23] Sarkar G, Islam MR, Alamgir M, Rokonuzzaman M. Interpretation of rice husk ash on geotechnical properties of cohesive soil. Glob J Res Eng 2012;12.
- [24] Sharma RS, Phanikumar BR, Rao BV. Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride, and Rice-Husk Ash. J Mater Civ Eng 2008;20:509–15. doi:10.1061/(ASCE)0899-1561(2008)20:8(509).
- [25] Kalkan E, Akbulut S, Tortum A, Celik S. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environ Geol 2009;58:1429–40. doi:10.1007/s00254-008-1645-x.

- [26] Shahin MA, Maier HR, Jaksa MB. Predicting Settlement of Shallow Foundations using Neural Networks. J Geotech Geoenvironmental Eng 2002;128:785–93. doi:10.1061/(ASCE)1090-0241(2002)128:9(785).
- [27] Mozumder RA, Laskar AI. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network. Comput Geotech 2015;69:291–300. doi:10.1016/j.compgeo.2015.05.021.
- [28] Gunaydin O, Gokoglu A, Fener M. Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks. Adv Eng Softw 2010;41:1115–23. doi:10.1016/j.advengsoft.2010.06.008.
- [29] Suman S, Mahamaya M, Das SK. Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques. Int J Geosynth Gr Eng 2016;2:11. doi:10.1007/s40891-016-0051-9.
- [30] Mohamad ET, Jahed Armaghani D, Momeni E, Alavi Nezhad Khalil Abad SV. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull Eng Geol Environ 2015;74:745–57. doi:10.1007/s10064-014-0638-0.
- [31] Dutta RK, Rani R, Rao TG. Prediction of ultimate bearing capacity of skirted footing resting on sand using artificial neural networks. J Soft Comput Civ Eng 2018;2:34–46.
- [32] Dutta RK, Singh A, Rao TG. Prediction of Free Swell Index for the Expansive Soil Using Artificial Neural Networks. J Soft Comput Civ Eng 2019;3:47–62.
- [33] Shahin MA, Jaksa MB, Maier HR. Artificial neural network applications in geotechnical engineering. Aust Geomech 2001;36:49–62.
- [34] Sahu R, Patra CR, Sivakugan N, Das BM. Use of ANN and Neuro Fuzzy Model to Predict Bearing Capacity Factor of Strip Footing Resting on Reinforced Sand and Subjected to Inclined Loading. Int J Geosynth Gr Eng 2017;3:29. doi:10.1007/s40891-017-0102-x.
- [35] ASTM D. Standard test method for unconfined compressive strength of cohesive soil. ASTM Stand D 2006;2166.
- [36] Basheer I., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 2000;43:3–31. doi:10.1016/S0167-7012(00)00201-3.
- [37] Kartam N, Flood I, Garrett JH. Artificial neural networks for civil engineers: fundamentals and applications, American Society of Civil Engineers; 1997.
- [38] Kumar V, Kumar A. Predicting the Settlement of Raft Resting on Sand Reinforced with Planar and Geocell Using Generalized Regression Neural Networks (GRNN) and Back Propagated Neural Networks (BPNN). Int J Geosynth Gr Eng 2018;4:30. doi:10.1007/s40891-018-0148-4.
- [39] Sunayana, Kalawapudi K, Dube O, Sharma R. Use of neural networks and spatial interpolation to predict groundwater quality. Environ Dev Sustain 2020;22:2801–16. doi:10.1007/s10668-019-00319-2.
- [40] Garson DG. Interpreting neural network connection weights 1991;6:47–51.