Neural Models for Unconfined Compressive Strength of Kaolin Clay Mixed with Pond Ash, Rice Husk Ash and Cement

Document Type : Regular Article


1 Assistant Professor, Department of Civil Engineering, MIT Muzaffarpur, Bihar, India

2 CSIR-NEERI, Delhi Zonal Centre, India

3 Department of Civil Engineering. NIT Jalandhar, India

4 Assistant Professor, Department of Civil Engineering, Central University of Haryana, India


In this study an Artificial Neural Network (ANN) model was used to predict the Unconfined Compressive Strength (UCS) of Kaolin clay mixed with pond ash, rice husk ash and cement content model under different curing period. The input parameters included percentages of admixtures added along with clay content and curing period. The curing Period range was 7, 14 and 28 days considered in neural model. The feedforward back propagated neural model with Levenberg Marqaurdt gradient descent with momentum constant was used to predict the UCS and optimized topology of 5-10-1 was obtained. The sensitivity analysis based on weights of neural model indicated that all admixtures contributed 70% to the UCS of Kaolin clay. The comparison of ANN model with Multiple Regression Analysis (MRA) model indicated that ANN models were performing better than MRA model with values of r as R2 as 0.98 and 0.97 respectively in testing phase of neural model and for MRA model r was 0.94 and R2 as 0.88.


Google Scholar


Main Subjects

[1]     Mitchell JK. Soil improvement state of the art report. Proc 10t Int Conf Soil Mechancs Found Eng Vol 4, Int Soc Soil Mech Found Eng Stock Sweden, 509-565 1981.
[2]     Lee SL, Yong KY. Grouting in substructure construction. Proc 9th Reg Conf Soil Mech Found Eng Vol 2, Int Soc Soil Mech Found Eng Bangkok, Thailand, 41-49 1991.
[3]     Sherwood PT. Soil stabilized with cement and lime: state of the art review. ”, Her Majesty’s Stationery office, London. 1993.
[4]     Bell FG. Lime stabilization of clay minerals and soils. Eng Geol 1996;42:223–37. doi:10.1016/0013-7952(96)00028-2.
[5]     Maher MH, Ho YC. Mechanical Properties of Kaolinite/Fiber Soil Composite. J Geotech Eng 1994;120:1381–93. doi:10.1061/(ASCE)0733-9410(1994)120:8(1381).
[6]     Petersen D, Link R, Pandian N, Krishna K, Sridharan A. California Bearing Ratio Behavior of Soil/Fly Ash Mixtures. J Test Eval 2001;29:220. doi:10.1520/JTE12249J.
[7]     Phani Kumar BR, Sharma RS. Effect of Fly Ash on Engineering Properties of Expansive Soils. J Geotech Geoenvironmental Eng 2004;130:764–7. doi:10.1061/(ASCE)1090-0241(2004)130:7(764).
[8]     Edil TB, Acosta HA, Benson CH. Stabilizing Soft Fine-Grained Soils with Fly Ash. J Mater Civ Eng 2006;18:283–94. doi:10.1061/(ASCE)0899-1561(2006)18:2(283).
[9]     Priyadarshee A, Gupta D, Kumar V, Sharma V. Comparative Study on Performance of Tire Crumbles with Fly Ash and Kaolin Clay. Int J Geosynth Gr Eng 2015;1:38. doi:10.1007/s40891-015-0033-3.
[10]    Priyadarshee A, Kumar A, Gupta D, Pushkarna P. Compaction and Strength Behavior of Tire Crumbles–Fly Ash Mixed with Clay. J Mater Civ Eng 2018;30:04018033. doi:10.1061/(ASCE)MT.1943-5533.0002171.
[11]    Raymond S. Utilization of pulverized fuel ash. Civ Eng Public Work Rev 1958;53:1013–1016.
[12]    Winterkorn HT. Soil stabilization foundation engineering hand book, H. F. Winterkorn and F. Y. Fang, eds., Van Nostrand Reinhold, New York. 1975.
[13]    Toth PS, Chan HT, Cragg CB. Coal ash as structural fill, with special reference to Ontario experience. Can Geotech J 1988;25:694–704. doi:10.1139/t88-080.
[14]    Eldin NN, Senouci AB. Use of Scrap Tires in Road Construction. J Constr Eng Manag 1992;118:561–76. doi:10.1061/(ASCE)0733-9364(1992)118:3(561).
[15]    Bosscher PJ, Edil TB, Kuraoka S. Design of Highway Embankments Using Tire Chips. J Geotech Geoenvironmental Eng 1997;123:295–304. doi:10.1061/(ASCE)1090-0241(1997)123:4(295).
[16]    Eid HT, Stark TD, Evans WD, Sherry PE. Municipal Solid Waste Slope Failure. I: Waste and Foundation Soil Properties. J Geotech Geoenvironmental Eng 2000;126:397–407. doi:10.1061/(ASCE)1090-0241(2000)126:5(397).
[17]    Bera AK. Effect of the pond ash content on the engineering properties of fine grained soil. Indian Geotech Conf GEOtrendz, IIT Mumbai 2010:405–8.
[18]    Jorat ME, Marto A, Namazi E, Amin MFM. Engineering characteristics of kaolin mixed with various percentages of bottom ash. Electron J Geotech Eng 2011;16:841–50.
[19]    Payá J, Monzó J, Borrachero M., Mellado A, Ordoñez L. Determination of amorphous silica in rice husk ash by a rapid analytical method. Cem Concr Res 2001;31:227–31. doi:10.1016/S0008-8846(00)00466-X.
[20]    Jayasree PK, Balan K, Peter L, Nisha KK. Volume Change Behavior of Expansive Soil Stabilized with Coir Waste. J Mater Civ Eng 2015;27:04014195. doi:10.1061/(ASCE)MT.1943-5533.0001153.
[21]    Basha EA, Hashim R, Mahmud HB, Muntohar AS. Stabilization of residual soil with rice husk ash and cement. Constr Build Mater 2005;19:448–53. doi:10.1016/j.conbuildmat.2004.08.001.
[22]    Anwar Hossain KM. Stabilized Soils Incorporating Combinations of Rice Husk Ash and Cement Kiln Dust. J Mater Civ Eng 2011;23:1320–7. doi:10.1061/(ASCE)MT.1943-5533.0000310.
[23]    Sarkar G, Islam MR, Alamgir M, Rokonuzzaman M. Interpretation of rice husk ash on geotechnical properties of cohesive soil. Glob J Res Eng 2012;12.
[24]    Sharma RS, Phanikumar BR, Rao BV. Engineering Behavior of a Remolded Expansive Clay Blended with Lime, Calcium Chloride, and Rice-Husk Ash. J Mater Civ Eng 2008;20:509–15. doi:10.1061/(ASCE)0899-1561(2008)20:8(509).
[25]    Kalkan E, Akbulut S, Tortum A, Celik S. Prediction of the unconfined compressive strength of compacted granular soils by using inference systems. Environ Geol 2009;58:1429–40. doi:10.1007/s00254-008-1645-x.
[26]    Shahin MA, Maier HR, Jaksa MB. Predicting Settlement of Shallow Foundations using Neural Networks. J Geotech Geoenvironmental Eng 2002;128:785–93. doi:10.1061/(ASCE)1090-0241(2002)128:9(785).
[27]    Mozumder RA, Laskar AI. Prediction of unconfined compressive strength of geopolymer stabilized clayey soil using Artificial Neural Network. Comput Geotech 2015;69:291–300. doi:10.1016/j.compgeo.2015.05.021.
[28]    Gunaydin O, Gokoglu A, Fener M. Prediction of artificial soil’s unconfined compression strength test using statistical analyses and artificial neural networks. Adv Eng Softw 2010;41:1115–23. doi:10.1016/j.advengsoft.2010.06.008.
[29]    Suman S, Mahamaya M, Das SK. Prediction of Maximum Dry Density and Unconfined Compressive Strength of Cement Stabilised Soil Using Artificial Intelligence Techniques. Int J Geosynth Gr Eng 2016;2:11. doi:10.1007/s40891-016-0051-9.
[30]    Mohamad ET, Jahed Armaghani D, Momeni E, Alavi Nezhad Khalil Abad SV. Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bull Eng Geol Environ 2015;74:745–57. doi:10.1007/s10064-014-0638-0.
[31]    Dutta RK, Rani R, Rao TG. Prediction of ultimate bearing capacity of skirted footing resting on sand using artificial neural networks. J Soft Comput Civ Eng 2018;2:34–46.
[32]    Dutta RK, Singh A, Rao TG. Prediction of Free Swell Index for the Expansive Soil Using Artificial Neural Networks. J Soft Comput Civ Eng 2019;3:47–62.
[33]    Shahin MA, Jaksa MB, Maier HR. Artificial neural network applications in geotechnical engineering. Aust Geomech 2001;36:49–62.
[34]    Sahu R, Patra CR, Sivakugan N, Das BM. Use of ANN and Neuro Fuzzy Model to Predict Bearing Capacity Factor of Strip Footing Resting on Reinforced Sand and Subjected to Inclined Loading. Int J Geosynth Gr Eng 2017;3:29. doi:10.1007/s40891-017-0102-x.
[35]    ASTM D. Standard test method for unconfined compressive strength of cohesive soil. ASTM Stand D 2006;2166.
[36]    Basheer I., Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 2000;43:3–31. doi:10.1016/S0167-7012(00)00201-3.
[37]    Kartam N, Flood I, Garrett JH. Artificial neural networks for civil engineers: fundamentals and applications, American Society of Civil Engineers; 1997.
[38]    Kumar V, Kumar A. Predicting the Settlement of Raft Resting on Sand Reinforced with Planar and Geocell Using Generalized Regression Neural Networks (GRNN) and Back Propagated Neural Networks (BPNN). Int J Geosynth Gr Eng 2018;4:30. doi:10.1007/s40891-018-0148-4.
[39]    Sunayana, Kalawapudi K, Dube O, Sharma R. Use of neural networks and spatial interpolation to predict groundwater quality. Environ Dev Sustain 2020;22:2801–16. doi:10.1007/s10668-019-00319-2.
[40]    Garson DG. Interpreting neural network connection weights 1991;6:47–51.