Mesoscopic Generation of Random Concrete Structure Using Equivalent Space Method

Document Type : Regular Article


1 Ph.D. Student, Department of Civil Engineering, Qom University, Qom, Iran

2 M.Sc. Graduated, Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Assistant Professor, Department of Civil Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran


Concrete is a composite material with a wide variety of inhomogeneity. The mechanical behavior of concrete depends on the properties of its components. Mesoscopic model which treats concrete as a heterogeneous material consisting of coarse aggregates, mortar matrix with fine aggregates dissolved in it and Interfacial Transition Zone (ITZ) provides an effective approach to study how the properties of concrete components can affect its mechanical behavior. For such a study it is first necessary to generate a random concrete structure that resembles real concrete specimens. In this paper, an efficient simulation method for generating random concrete structure at mesolevel based on Monte Carlo random sampling principle is outlined and compared with two other most frequently used methods. A new method, the ‘equivalent space method’, appears to be more convenient for both low and high volume fraction specimens. In this method with each random selection of a value as the position of an aggregate particle with a definite size, more options for its position will be reached and examined. This leads to more realistic concrete models with less random numbers.


Google Scholar


Main Subjects

[1]     Scrivener KL, Gartner EM. The characterization and quantification of cement and concrete microstructures, Bonding in Cementitious Materials (eds.: Mindess, S. and Shah, S. P). Mater Res Soc Symp Proc 1988:77–85.
[2]     Monteiro PJM, Maso JC, Ollivier JP. The aggregate-mortar interface. Cem Concr Res 1985;15:953–8. doi:10.1016/0008-8846(85)90084-5.
[3]     Zimbelmann R. A contribution to the problem of cement-aggregate bond. Cem Concr Res 1985;15:801–8. doi:10.1016/0008-8846(85)90146-2.
[4]     Struble L. Microstructure and Fracture At the Cement Paste-Aggregate Interface. MRS Proc 1987;114:11. doi:10.1557/PROC-114-11.
[5]     Abdelmoumen S, Bellenger E, Lynge B, Queneudec-t’Kint M. Finite element analysis of elastic property of concrete composites with ITZ. Comput Concr 2010;7:497–510.
[6]     He H, Stroeven P, Stroeven M, Sluys LJ. Influence of particle packing on fracture properties of concrete. Comput Concr 2011;8:677–92. doi:10.12989/cac.2011.8.6.677.
[7]     Shah SP, Swartz SE, Ouyang C. Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John Wiley & Sons, Inc., New York, NY, USA; 1995.
[8]     Mehta PK. Concrete. Structure, properties and materials 1986:76–80.
[9]     Chena S, Yueb ZQ, Kwan AKH. Actual microstructure-based numerical method for mesomechanics of concrete. Comput Concr 2013;12:1–18. doi:10.12989/cac.2013.12.1.001.
[10]    Tu Z, Lu Y. Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation. Struct Eng Mech 2011;37:197–213. doi:10.12989/sem.2011.37.2.197.
[11]    Wittmann FH. Structure of concrete with respect to crack formation. Fracture Mechanics of Concrete. Elsevier Sc Publ 1983:43–7.
[12]    Wittmann FH, Roelfstra PE, Sadouki H. Simulation and analysis of composite structures. Mater Sci Eng 1985;68:239–48. doi:10.1016/0025-5416(85)90413-6.
[13]    Bažant ZP, Tabbara MR, Kazemi MT, Pijaudier‐Cabot G. Random Particle Model for Fracture of Aggregate or Fiber Composites. J Eng Mech 1990;116:1686–705. doi:10.1061/(ASCE)0733-9399(1990)116:8(1686).
[14]    Schlangen E, van Mier JGM. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct 1992;25:534–42. doi:10.1007/BF02472449.
[15]    Wang ZM, Kwan AKH, Chan HC. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh. Comput Struct 1999;70:533–44. doi:10.1016/S0045-7949(98)00177-1.
[16]    De Schutter G, Taerwe L. Random particle model for concrete based on Delaunay triangulation. Mater Struct 1993;26:67–73. doi:10.1007/BF02472853.
[17]    Wriggers P, Moftah SO. Mesoscale models for concrete: Homogenisation and damage behaviour. Finite Elem Anal Des 2006;42:623–36. doi:10.1016/j.finel.2005.11.008.
[18]    Zohdi TI. Computational optimization of the vortex manufacturing of advanced materials. Comput Methods Appl Mech Eng 2001;190:6231–56. doi:10.1016/S0045-7825(01)00219-5.
[19]    Beddow JK, Meloy T. Testing and characterization of powders and fine particles. Heyden, London 1980.
[20]    Walraven JC. Aggregate interlock: a theoretical and experimental analysis 1980.
[21]    Ma H, Xu W, Li Y. Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete. Comput Struct 2016;177:103–13. doi:10.1016/j.compstruc.2016.09.005.
[22]    Wittmann EH, Sadouki H, Steiger T. Experimental And Numerical Study Of Effective Properties Of Composite Materials. Micromechanics Concr Cem Compos Lausanne Press Polytech Univ Rom Lausanne 1993:59–82.