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Compression index is an effective assessment of primary 

consolidation settlement of clayey soils, but the process of 

obtaining compression index is time-consuming and laborious. 

Thus, in the present study, we developed two classical tree-based 

techniques: random forest (RF) and extreme gradient boosting 

(XGBoost), to predict the compression index of clayey soils. To 

establish these two models, we collected an available dataset—

including 391 consolidation tests for soils—from previously 

published research. The dataset consists of six physical parameters, 

including the initial void ratio, natural water content, liquid limit, 

plastic index, specific gravity, and soil compression index. The 

first five parameters are the models’ inputs while the compression 

index is the models’ output. We trained both two tree-based models 

using 90% of the entire dataset and used the remaining 10% to 

assess the well-trained models, which is consistent with the 

published research. Several statistical metrics, such as coefficient 

of determination (R
2
), root mean squared error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error 

(MAPE), are the criteria for assessing the models’ performance. 

The results show that the RF model has better accuracy in 

predicting compression index compared with the XGBoost model 

because it outperforms the XGBoost model both on the training 

and testing datasets. The performance of the RF model is R
2
 of 

0.928 and 0.818, RMSE of 0.016 and 0.025, MAPE of 7.046% and 

10.082%, and MAE of 0.012 and 0.020 on the training and testing 

datasets, respectively. The sensitivity analysis reveals that the 

initial void ratio has a significant impact on the compression index 

of clayey soils. 
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1. Introduction 

The compression index of clayey soils is a measure of the soil's ability to compress or 

consolidate under an applied load [1]. It is a crucial property for engineers to consider when 

designing foundations, as it can affect the stability and settlement of the structure. The 

compression index of clayey soils is typically determined by conducting a series of oedometer 

laboratory tests on soil samples [2,3]. These tests involve applying increasing levels of stress to 

the soil and measuring the resulting consolidation or compression. The compression index is then 

calculated based on the amount of compression that occurs under a given stress level [4]. In 

general, clayey soils with a high compression index will be more prone to settlement and 

instability under load, while those with a low compression index will be more stable [5,6]. 

Engineers must consider the compression index of the soil when designing foundations to ensure 

that the structure is stable and will not experience excessive settlement. 

Since conducting oedometer tests is time-consuming, costly, and unwieldy, scholars tried to 

create empirical formulas to predict the compression index [7–10]. However, most empirical 

formulas are based on the on-site environment and thereby their universality is insufficient. The 

empirical formula may not account for variations in soil properties and conditions that can affect 

the compression index. Additionally, empirical models are based on a limited amount of data and 

may not be accurate for all types of clay soils [11–13].  

Encouragingly, with the rapid development of the soft computing technique, many scholars paid 

attention to its computational efficacy and high accuracy. Since the soft computing technique has 

been successfully used in different disciplines of civil engineering [14–21], researchers 

attempted to apply the soft computing technique to establish the relationship between the basic 

soil properties and the compression index [22,23]. Kurnaz et al. developed an artificial neural 

network (ANN) model to predict the compression and recompression index. The model was built 

on a dataset that consists of 246 laboratory oedometer tests, and the model’s inputs (soil 

properties) included the natural water content, liquid limit, plastic index, and specific gravity of 

soil particles [24]. Kordnaeij et al. proposed a group method of data handling (GMDH) type 

neural network to predict the recompression index. The used dataset, compiled from 344 

consolidation tests for soils, included the soil properties such as the liquid limit, initial void ratio, 

specific gravity, natural water content, plastic index, and dry density [25]. Nguyen et al. 

proposed a hybrid ANN model: Biogeography-Based Optimization ANN. They used 188 soil 

samples to build the hybrid ANN model. The input parameters include the depth of samples, 

clay, moisture content, bulk density, dry density, specific gravity, void ratio, porosity, degree of 

saturation, liquid limit, plastic limit, plastic index, and liquid index. The principle component 

analysis (PCA) was used to reduce the dimension of input parameters [26]. Benbouras et al. 

exploited the performance of the multilayer neural network, genetic programming, and multiple 

regression in predicting the compression index. They used 373 oedometer test samples to 

develop the machine learning models. The best prediction model was established based on the 

input variables: wet density, water content, liquid limit, plastic index, void ratio, and fine 

contents [27]. 
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Overall, the above-mentioned researches mainly focus on the ANN or ANN-based models. To 

the best knowledge of the authors, no relevant researches discuss the application prospect of tree-

based models in predicting the compression index of clayey soils. Considering the merits of tree-

based models, for example, they can handle a large number of features and still maintain good 

accuracy, and they are easy to be interpreted and explained because they are based on a set of 

decision trees [28], we propose a hypothesis: the tree-based model could perform well in this 

topic. Based on this, we will develop the models for predicting the compression index using the 

tree-based technique. The developed tree-based models are random forest (RF) and extreme 

gradient boosting (XGBoost). First, we collected a dataset of clayey soils from a published 

article (Ref. [29]) to establish these two tree-based models. Meanwhile, we used the grid search 

algorithm to seek the optimal hyperparameters of the models. By comparing their performance 

using some evaluation metrics, we finally determined the best model for predicting the 

compression index of clayey soils. Our main contribution is: we verified the promising 

application of tree-based models in predicting the compression index. 

The rest of the paper is organized as follows: Section 2 presents the background of the data 

source; Section 3 describes the principle and implementation of the tree-based models; Section 4 

discusses the main results of modeling; Section 5 summarizes the main conclusions. 

2. Materials 

In the present study, we collected a dataset that includes 391 experimental samples from a 

previously published article. The dataset is composed of the experimental results of consolidation 

testes (ASTM D 2435-96) for soils that were sampled at 125 construction sites in the north of 

Iran [29]. It mainly contains the physical properties of clayey soils, such as natural water content 

(ωn), liquid limit (LL), plastic index (PI), initial void ratio (e0), the specific gravity of soil 

particles (Gs), and compression index (Cc). Our goal is to build an effective relationship between 

the compression index and another five physical properties of clayey soils, with the help of the 

tree-based machine learning models. 

Before beginning to develop the tree-based models, we need to do pre-processing on the dataset. 

Since the experimental tests may be subject to human-induced error, outliers could exist in the 

dataset, which will harm the performance of tree-based models. Thus, we use the boxplot method 

to detect the outliers of the dataset—which is a common way in statistics [30]. Boxplot can show 

the visualization of the five-number summary: the extreme lower (Min), the extreme upper 

(Max), the first quartile (Q1), the third quartile (Q3), and the median. Figure 1 shows the data 

distribution of the physical properties of clayey soils. The box extends from Q1 to Q3 of the 

data; the red line and rhombus point represent the median and mean values, respectively; and the 

black circle point denotes the outliers of each variable [31]. Intuitively, the outliers exist in each 

variable and should be removed. After removing the outliers, 349 data samples were available to 

develop the tree-based models. Table 1 presents the statistical indices of each variable in the new 

dataset. We can find that the range of natural water content is between 12.7% and 42.1%; the 

range of liquid limit is between 24% and 62%; the range of the plastic index is between 4% and 



 L. Tsang et al./ Journal of Soft Computing in Civil Engineering 7-3 (2023) 52-67 55 

37%; the range of initial void ratio is between 0.476 and 1.059; the range of specific gravity of 

soil particles is between 2.5 and 2.77; the range of compression index is between 0.05 and 0.385. 

 
Fig. 1. Boxplot of the collected Cc dataset. 

Table 1 

Statistical indices of the cleaned Cc dataset. 
Variables Symbol Unit Min. Max. Mean Std. Dev. 

Natural water content ωn % 12.7 42.1 27.418 5.427 

Liquid limit LL % 24 62 38.883 8.675 

Plastic index PI % 4 37 17.848 7.633 

Initial void ratio e0 - 0.476 1.059 0.739 0.115 

Specific gravity of soil particles Gs - 2.5 2.77 2.64 0.054 

Compression index Cc - 0.05 0.385 0.194 0.059 

 

When conducting the modeling, a common way is to divide the entire dataset into two parts: the 

training dataset and the testing dataset. In this way, it can effectively examine the model’s 

generalization ability and help in avoiding overfitting. Thus, we randomly split the 349 data 

samples into two sets: one is the training dataset (90% of the entire data) which has 314 samples, 

and the other one is the testing dataset (10% of the entire data) which has 35 samples. Such a 

splitting strategy is consistent with the published article [29], and we anticipate verifying 

whether our developed models have a better performance compared with the model in that 

published article. We use the training dataset to establish the tree-based models for predicting the 

compression index and then use the testing dataset the examine the models’ generalization 

ability. To make the random division valid, a key rule that should be obeyed is to keep the 

training and testing datasets have similar statistical properties. Herein, we used the cumulative 
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distribution function to judge whether the training dataset has acceptable statistical similarity 

with the testing dataset. 

A cumulative distribution function can describe the probability distribution of a continuous 

random variable, and it is a non-decreasing function that ranges from 0 to 1 as the value of the 

random variable increases from negative infinity to positive infinity [32]. Figure 2 illustrates the 

cumulative distribution of variables in the training and testing datasets. We find that the 

variables: ωn, e0, Gs, and Cc, in both the training and testing datasets, have similar tendencies and 

shapes. But for variables: LL and PI, they have slight differences because the line’s position of 

the testing dataset is below that of the training dataset. This might be because the training dataset 

involves more instances compared with the testing dataset, which incurs that the variables (LL 

and PI) have lower cumulative probabilities. Additionally, we also observe that the range of each 

variable in the training dataset almost covers that in the testing dataset—according to the x-axis 

in each subplot. This can confirm that the models fitted on the training dataset would show 

promising performance on the testing dataset. From the above analysis, we believe that the 

division of the training and testing dataset is reasonable, and they can be used to conduct the 

modeling accordingly. 

 
Fig. 2. Cumulative distribution of variables in training and testing datasets. 

Furthermore, we present the linear relationship between the compression index and each 

variable—only applied to the training dataset, as shown in Figure 3. Intuitively, the initial void 

ratio (e0) has a relatively strong relationship with the compression index, followed by the natural 

water content (ωn). As for the liquid limit (LL), plastic index (PI), and specific gravity of soil 

particles (Gs), they all show an insignificant relationship with the compression index. From this 

point, we believe that a sophisticated model should be constructed to characterize the intrinsic 
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relationship between these variables and the compression index. The subsequent sections will 

discuss it deeply. 

 
Fig. 3. Relationship between compression index and soil properties. 

3. Methods 

3.1. Random forest (RF) 

RF is a supervised machine learning algorithm that is used for both classification and regression 

tasks [33]. It is an ensemble model that is composed of multiple decision trees, which are trained 

on different samples of the training data and then aggregated to make a final prediction. The key 

idea behind RF is to create a diverse set of decision trees, each of which is trained on a randomly 

selected subset of the training data and a randomly selected subset of the features. This process, 

known as bootstrapping, helps to reduce the variance of the model and make it more robust. 

During the training process, each decision tree in the RF makes a prediction based on the 

features in its training set. The final prediction of the RF is then made by aggregating the 

predictions of all the individual decision trees, for example, by taking the average for regression 

tasks, as shown below: 

 
1

1 K

ii
y T x

K 
   (1) 

where y represents the average of prediction results, K is the number of decision trees, and Ti(x) 

represents the predicted results of a single decision tree. 

One of the main benefits of using a random forest model is that it can handle large amounts of 

data and a high number of features, and it is also resistant to overfitting. Additionally, it is 
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relatively easy to interpret and understand, as the individual decision trees are simple models that 

can be inspected and analyzed. 

RF has two key hyperparameters: the number of trees and the maximum depth, which can highly 

affect its performance [34]. The number of trees denoted how many decision trees are in a forest 

and it dramatically controls the prediction accuracy of the RF model. For another 

hyperparameter: maximum depth, its role is to reduce the RF model’s complexity to avoid 

possible overfitting. In the present study, we aim to seek the optimal values of these two 

hyperparameters and thus construct a high-performance RF model for predicting compression 

index. 

3.2. Extreme gradient boosting (XGBoost) 

Extreme gradient boosting (XGBoost) is a supervised machine learning algorithm that is used for 

both classification and regression tasks [35]. It is an ensemble model that is composed of 

multiple decision trees, which are trained sequentially in a way that allows the model to learn 

and improve from the mistakes made by earlier trees. 

XGBoost is a variant of the gradient boosting algorithm, which is a type of boosting algorithm 

that is based on the concept of boosting weak learners to form a strong learner. Boosting 

algorithms work by iteratively adding weak models to the ensemble and adjusting the weights of 

the training data so that the mistakes made by the previous models are emphasized and corrected 

in the subsequent models [36]. In the XGBoost model, the decision trees are trained using 

gradient descent to minimize the loss function, which measures the difference between the 

predicted values and the true values in the training data. The loss function of the XGBoost model 

is shown below: 

   
1 1

,
n K

obj ki k
X l y y f

 
     (2) 

where Xobj represents the objective function,  1
,

n

i
l y y

  represent the predictive loss between 

the predicted and real values,  
1

K

kk
f


  represents the regularization term that is used to avoid 

overfitting. In general, the technique of minimizing a quadratic function is the way to optimize 

the objective function [37]. 

When constructing the XGBoost model, two key hyperparameters should be considered, that is, 

the number of trees and the learning rate. The number of trees refers to the maximum number of 

gradient-boosted trees. It controls the predictive accuracy of the XGBoost model. In general, if 

its value is too low/high, the model will encounter underfitting/overfitting. The learning rate 

refers to the step size shrinkage in each iteration. It can make the boosting process more 

conservative. In the present study, we aim to seek the optimal values of these two 

hyperparameters and thus construct a high-performance XGBoost model for predicting 

compression index. 
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3.3. Evaluation criteria 

To quantitatively assess the accuracy of the above-mentioned RF and XGBoost models, some 

commonly used regression evaluation metrics are utilized, for example, coefficient of 

determination (R
2
), root mean squared error (RMSE), mean absolute percentage error (MAPE), 

and mean absolute error (MAE). The following equations are used to compute these metrics. 

 
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2

12
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i ii
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where iy  denotes the measured compression index, iy  denotes the predicted compression index, 

y  denotes the average of iy , and N is the number of samples. For the above four metrics, the 

closer the R
2
 to 1, the better the model’s performance; the smaller the RMSE, MAPE, and MAE, 

the better the model’s performance. 

3.4. Study step 

The main step of the research method in the present study are as below: 

As mentioned previously, the entire dataset is divided into two parts: the training dataset 

involving 314 soil samples and the testing dataset involving 35 soil samples. Then, we use the 

training dataset to establish the RF and XGBoost models, respectively. In this process, the grid 

search algorithm is employed to seek the optimal hyperparameters of the RF and XGBoost 

models [38]. The hyperparameters of the RF model are the number of trees and the maximum 

depth, and the hyperparameters of the XGBoost model are the number of trees and the learning 

rate. Meanwhile, a five-fold cross-validation algorithm is used when training the RF and 

XGBoost models, which aims to help the models avoid overfitting. After determining the 

hyperparameters of the RF and XGBoost models, we use the testing dataset to examine their 

generalization ability. Lastly, we also analyze which variable is highly sensitive for predicting the 

compression index of clayey soils. Figure 4 displays the flowchart of the present study. In the 

present study, we used two open-source Python libraries: Scikit-learn [39] and XGBoost [35,36] 

to develop the RF and XGBoost models, respectively. 
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Fig. 4. Flowchart of the study step. 

4. Results 

4.1. Evaluation of model performance 

In this section, we trained the RF and XGBoost on the same training dataset and then determined 

their respective optimal hyperparameters. First, we defined the searching domain of these two 

models, as shown in Table 2. Regarding the RF model, the searching domain of its hyper-

parameters is: the number of trees increases from 50 to 300 with the increment of 10, and the 

maximum depth increases from 1 to 20 with the increment of 1. Regarding the XGBoost model, 

the searching domain of its hyperparameters is: the number of trees increases from 50 to 300 

with the increment of 10, and the learning rate increases from 0.01 to 0.30 with the increment of 

0.01. We then use the mean squared error (MSE) as an evaluation metric to determine the 

optimal hyperparameters of each model. 

Figure 5 illustrates the possible results of hyperparameters of the RF model. We can find that the 

MSE reached a relatively large value when the maximum depth is less than 7. When the 

maximum depth is larger than 7, the value of MSE does not fluctuate strongly. Another point is 

that the maximum depth has a significant influence on the MSE compared with the number of 

trees because the MSE significantly reduced with the increase of the maximum depth. 

Conclusively, according to Figure 5 (b), the optimal hyperparameters of the RF model are: the 

number of trees is 130 and the maximum depth is 10. 

Figure 6 illustrates the possible results of hyperparameters of the XGBoost model. We can find 

that the MSE reached a relatively large value only when the number of trees and learning rate are 

both in small values. For other cases, the MSE does not have obvious changes. According to 
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Figure 6 (b), we determined the optimal hyperparameters of the XGBoost model, that is, the 

number of trees is 60 and the learning rate is 0.14. 

Table 2 

Hyperparameters of the RF and XGBoost models. 
Model Hyperparameter Searching domain Increment 

RF Number of trees [50, 300] 10 

Maximum depth [1, 20] 1 

XGBoost Number of trees [50, 300] 10 

Learning rate [0.01, 0.30] 0.01 

 

 
Fig. 5. Determination of the hyperparameters of the RF model. 

 
Fig. 6. Determination of the hyperparameters of the XGBoost model. 
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After figuring out the values of the hyperparameters of each model, we use the obtained 

hyperparameters to construct the RF and XGBoost models, respectively. Subsequently, we 

examined their performance on both training and testing datasets. At the same time, we also 

compared them with the model (ANN) in the published article [29]. Table 3 shows the 

performance of the RF and XGBoost models on the training and testing datasets. As a result, the 

RF model has the lowest error on both training and testing datasets compared with the XGBoost 

and ANN models. Its performance indices are as follows: R
2
 of 0.928, RMSE of 0.016, MAPE of 

7.046%, and MAE of 0.012 on the training dataset; R
2
 of 0.818, RMSE of 0.025, MAPE of 

10.082%, and MAE of 0.020 on the testing dataset. Additionally, we can also find that both RF 

and XGBoost models outperform the ANN model. Thus, we conclude that the tree-based models 

have a promising prospect of predicting the compression index of clayey soils. 

Figure 7 shows the comparison between the experimental compression index and the predicted 

compression index by the RF model. Intuitively, for the training dataset, almost all the data 

points are concentrated around the black dashed line. This indicates the compression index 

predicted by the RF model approximates the experimental compression index. As for the testing 

dataset, most of the data points are concentrated around the black dashed line, but several data 

points are not. This indicates although the generalization ability of the current RF model is 

acceptable, it still needs further improvement. Overall, the developed RF model shows 

acceptable and effective performance on both the training and testing datasets. 

Table 3 

Comparison of models’ performance. 
Model Training dataset Testing dataset 

R
2
 RMSE MAPE (%) MAE R

2
 RMSE MAPE (%) MAE 

RF 0.928 0.016 7.046 0.012 0.818 0.025 10.082 0.020 

XGB 0.832 0.024 10.933 0.019 0.833 0.026 11.125 0.021 

ANN [29] - 0.035 13.340 0.027 - 0.034 13.170 0.027 

 

 
Fig. 7. Predicted and experimental compression index. 
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4.2. Sensitivity analysis 

From the above analysis, we have successfully obtained the best tree-based model for predicting 

compression index, namely, the RF model. In this section, we will figure out which variable 

shows the highest influence on predicting compression index when using the RF model. The RF 

model has an intrinsic attribute: feature importance, which can measure the importance of each 

feature when constructing a split node in a decision tree. The standard for constructing the split 

node is “squared error” when the prediction is a regression task. Its main principle is to minimize 

the L2 loss using the mean of each split node [40]. In short, the more times the feature is used in 

a split node to minimize the L2 loss, the higher its importance. Based on this, we can obtain the 

importance of each feature (variable), as shown in Figure 8. Intuitively, for the present 

engineering instance, the variable e0, i.e., the initial void ratio, shows the highest impact on 

predicting compression index; the variables Gs and ωn, i.e., the specific gravity of soil particles 

and natural water content, show relatively slight impact on predicting compression index; the 

variables PI and LL, i.e., the plastic index and the liquid index, show negligible impact on 

prediction compression index. As a result, we conclude that the initial void ratio should be a 

significant concern in predicting the compression index. 

 
Fig. 8. Importance of each variable in predicting compression index. 

Further, to identify the specific effect of the initial void ratio (e0) on the compression index, we 

used the Partial Dependence Plots and Individual Conditional Expectation plots to achieve 

visualization and analysis of the interaction between the initial void ratio and the compression 

index. In general, Partial Dependence Plots can show the average (overall) dependence between 

the target response and the input feature of interest [41]. Individual Conditional Expectation plots 

can reflect the individual dependence between the target response and the input feature of 

interest—based on the selected data samples [42]. Figure 9 shows the particular effect of the 

initial void ratio on the compression index. The red dashed line represents the average 

dependence between the initial void ratio and the compression index. Intuitively, the 

compression index increases with the increase of the initial void ratio, especially when the initial 

void ratio is between 0.58 and 0.90. However, when the initial void ratio is between 0.476 and 

0.58 as well as 0.90 and 1.059, the compression index is almost unchanged. As for the individual 

dependence between the initial void ratio and the compression index (all blue lines), most of the 

data samples present a similar trend to the red dashed line—although few of them are fluctuant. 
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In summary, the relationship between the initial void ratio and the compression index is 

approximately positive linear, which is beneficial for us to determine the compression index. 

Some published studies also pointed out that the compression index of clayey soils is highly 

dependent on the initial void ratio. For instance, Tiwari and Ajmera reported a significant linear 

relationship between the compression index and the initial void ratio [43]. Akbarimehe et al. also 

concluded a valid linear correlation between the compression index and the initial void ratio 

through the consolidation tests [44]. Erzin et al. developed an empirical formula based on a 

robust optimization model and found that the compression index is more sensitive to the initial 

void ratio [45]. 

 
Fig. 9. Dependence between the initial void ratio and the compression index. 

5. Conclusion 

In the present study, we proposed two tree-based models (RF and XGBoost) to predict the 

compression index of clayey soils. First, a dataset for soil consolidation tests, collected from a 

previously published work, was utilized to develop the tree-based models. In the tree-based 

models, the input parameters included natural water content (ωn), liquid limit (LL), plastic index 

(PI), initial void ratio (e0), and specific gravity of soil particles (Gs), whereas the compression 

index is the target output. Then, we used a grid search algorithm to seek the optimal 

hyperparameters of the tree-based models. As a result, the optimal hyperparameters of the RF 

model are: number of trees = 130, maximum depth = 10, and the optimal hyperparameters of the 

XGBoost model are: number of trees = 60, learning rate = 0.14. By comparing their performance 

on both the training and testing datasets, we found that the RF model outperformed the XGBoost 

model. The RF model obtained the lower errors when implementing the task of predicting the 

compression index of clayey soils, evidenced by R
2
 of 0.928 and 0.818, RMSE of 0.016 and 

0.025, MAPE of 7.046% and 10.082%, and MAE of 0.012 and 0.020 on the training and testing 

datasets, respectively. This confirms that the RF model can help in reducing the cost of 

implementing laboratory experiments to determine the compression index of clayey soils. 

Furthermore, according to the feature importance of input parameters in the RF model, we found 

that the initial void ratio (e0) has a significant impact on predicting the compression index in the 

present engineering instance. This is beneficial for engineers to understand the compression 

characteristics of clayey soils—we emphasize an approximately positive linear relationship 

between the initial void ratio (e0) and the compression index of clayey soils and we recommend 

the engineers focus on this point when dealing with similar scenarios. 
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