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Liquefaction occurs when saturated, non-cohesive soil loses 

strength. This phenomenon occurs as the water pressure in the 

pores rises and the effective stress drops because of dynamic 

loading. Liquefaction potential is a ratio for the factor of safety 

used to figure out if the soil can be liquefied, and liquefaction-

induced settlements happen when the ground loses its ability to 

support construction due to liquefaction. Traditionally, empirical 

and semi-empirical methods have been used to predict 

liquefaction potential and settlements that are based on historical 

data. In this study, MATLAB's Fuzzy Tool Adaptive Neuro-Fuzzy 

Inference System (ANFIS) (sub-clustering) was used to predict 

liquefaction potential and liquefaction-induced settlements. Using 

Cone Penetration Test (CPT) data, two ANFIS models were made: 

one to predict liquefaction potential (LP-ANFIS) and the other to 

predict liquefaction-induced settlements (LIS-ANFIS). The RMSE 

correlation for the LP-ANFIS model (input parameters: Depth, 

Cone penetration, Sleeve Resistance, and Effective stress; output 

parameters: Liquefaction Potential) and the LIS-ANFIS model 

(input parameters: Depth, Cone penetration, Sleeve Resistance, 

and Effective stress; output parameters: Settlements) was 

0.0140764 and 0.00393882 respectively. The Coefficient of 

Determination (R2) for both the models was 0.9892 and 0.9997 

respectively. Using the ANFIS 3D-Surface Diagrams were plotted 

to show the correlation between the CPT test parameters, the 

liquefaction potential, and the liquefaction-induced settlements. 

The ANFIS model results displayed that the considered soft 

computing techniques have good capabilities to determine 

liquefaction potential and liquefaction-induced settlements using 

CPT data. 
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1. Introduction 

In many parts of the world, a serious threat during earthquakes occurs as a result of the 

liquefaction of granular soil in a saturated and loose state. Due to liquefaction, ground 

deformations occur, which caused severe damage to the lifeline of designed structures during 

earthquakes. The most common types of deformation are lateral spread and ground settlement, 

which has caused by liquefaction [1]. Geotechnical earthquake engineering has been 

disadvantageous to the challenge of liquefaction potential and liquefaction-induced settlements 

that are associated with several phenomena, including loss of re-edification of the ground due to 

the liquefied soil escape (sand boils), bearing capacity failures, soil-structure interaction 

ratcheting, lateral spreading under zero volume change, and liquefied soil. Under liquefaction, 

loose granular soil is compacted and densified, resulting in horizontal settlements of surficial soil 

layers due to vertical deformation induced by liquefaction [2]. 

In numerical analysis, earthquake-induced liquefaction can be understood as a 1-D phenomenon 

in which an increase in pore pressure is caused due to earthquake-induced cyclic shear and 

compressive forces in the free field, thereby reducing the stability of the soil. When water flow is 

used to dissipate the excess pore pressure (u), it results in the resolidification of the soil due to 

the vertical settlements of the ground surface after liquefaction. In situations where liquefaction 

might result in significant damage, the complexity of analyzing and obtaining high-quality 

samples of loose sandy soil can limit the use of samples. An analytical method, numerical 

method, field testing, and laboratory testing are a variety of methods that are used for the 

liquefaction potential and the liquefaction-induced ground settlements calculation, including the 

combination of the two methods. Semi-empirical techniques based on field test data for 

estimating liquefaction potential and liquefaction-induced settlements are most appropriate for 

prediction and for providing preliminary estimates for higher-risk projects and low-to medium-

risk projects [3]. 

Soils are complex and ambiguous in general, resulting in incoherent composition, inaccuracies in 

soil sampling, boring, characterization, field testing, laboratory testing, and uncertainty [4]. 

Artificial intelligence (AI) outperforms traditional approaches in terms of prediction capability, 

resulting in AI's simplicity of use in modeling and the complex behavior of most geotechnical 

materials and phenomena. The capacity of AI to handle several outputs, as opposed to a 

regression model that can only manage one, is its primary advantage over regression modeling. 

Another significant benefit is that they do not rely on basic assumptions like linear behavior, 

making them perfect for modeling materials with a wide range of properties and complexity, 

such as soils and rocks. Because neural networks are strong generalizers, capable of 

approximating universal functions, being resistant to noisy or missing data, and accommodating 

numerous nonlinear variables, they can describe complicated mechanical phenomena [5]. 

Researchers found the neuro-fuzzy technique suited for liquefaction potential assessment, and 

the models exhibited high agreement with current findings and prediction abilities. Rahman et al. 

[6] employed a neuro-fuzzy network to predict liquefaction potential. Kayadelen et al. [7] 

compare GEP and ANFIS findings for liquefaction potential and find significant agreement with 
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the results. Ramakrishnan et al. [8] employed ANN to assess liquefaction probability using 2001 

Bhuj earthquake data, Gujarat, India. Xue et al. [9] created an ANFIS model for anticipating 

liquefaction potential, and the results were promising. Kumar et al. [10] designed a neural 

network model for liquefaction potential using SPT data. Karkh et al. [11] utilized SPT-N data 

from coastal areas of Allahabad (India) to create a neuro-fuzzy model for the prediction of 

liquefaction potential. Sharafi et al. [12] created a backpropagation neural network approach to 

predict CRR. Kumar et al. [13] employed ANFIS and ANN to estimate liquefaction potential and 

concluded additional datasets for training, testing, and validation might enhance confidence and 

reliability. All of the models' correlation coefficients are within acceptable bounds, 

demonstrating that neuro-fuzzy models may make reliable predictions. 

For the prediction of liquefaction potential and liquefaction-induced settlements empirical and 

semi-empirical methods have been used that are based on historical data. These methods follow 

non-linear relations between parameters which are determined in the field by using CPT, SPT, 

CPTu, and SCPTu test methods. CPT test is a widely acceptable and reliable field test in the 

geotechnical field. Few studies are available on the analysis or prediction of liquefaction-induced 

settlements using ANFIS model analysis. The objective of the study is to develop an ANFIS 

model for the determination of liquefaction potential and liquefaction-induced settlements using 

CPT test data by using only basic parameters which were obtained by field test and determining 

the correlation between these parameters and liquefaction potential and liquefaction-induced 

settlements because ANFIS models also follow the non-linear analysis. 

2. Research significance 

Many factors are taken into account while calculating liquefaction potential and liquefaction-

induced settlements, as well as multiple difficult analytical and numerical processes. In most 

circumstances, however, getting such characteristics in the field is not feasible since part of the 

essential data may not be accessible. Therefore, it is necessary to develop a simple prediction 

model that can be easily collected from a database of field observations and depends only on a 

few factors. Consequently, to predict liquefaction potential and liquefaction-induced settlements, 

this research aims to offer a tool that can be used for the prediction that may occur after an 

earthquake occurs. 

3. Computation of liquefaction potential and liquefaction-induced 

settlements 

For determining Liquefaction-Induced Settlements first Liquefaction potential is needed to 

calculate which is determined by using Idriss and Boulanger [14] method and for determining 

Liquefaction-Induced Settlements a new probabilistic approach was used which was developed 

by Juang et al. [7]. 
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3.1. Computation of liquefaction potential using idriss and boulanger method 

For determining the liquefaction potential of soil Idriss and Boulanger [14] developed a semi-

empirical method using Youd et al. [15] determined equation of cyclic resistance ratio (CRR). 

The steps used for the calculation of liquefaction-induced settlements are as follows 

• The cyclic stress ratio (CSR) calculation. 

• The soil's cyclic resistance ratio (CRR) calculation. 

• The Liquefaction Potential calculation. 

• The Liquefaction-Induced Settlements calculation. 

3.1.1. Using CPT data calculation of cyclic stress ratio (CSR) 

Using the maximum vertical stress cyclic stress ratio (CSR) is determined by using Eq. (1) 

CSRMσν
′ = 0.65(

σv

σν
′ )(

amax

g
)rd (1) 

Where σv= total vertical stress; CSRMσν
′ = cyclic stress ratio for specific earthquake magnitude 

and in-situ vertical effective stress; g = gravitational acceleration; σν
′  = effective vertical stress; 

rd= stress reduction coefficient amax = peak horizontal ground acceleration. 

Using the following equations the average value of the stress reduction coefficient rd can be 

estimated: 

 rd = 1.0 − 0.00765Z  (Z ≤ 9.15m) (2) 

 rd = 1.174 − 0.0267Z  (9.15m < Z ≤ 23m) (3) 

rd = 0.744 − 0.008Z  (23m < Z ≤ 30m) (4) 

rd = 0.50Z     (Z > 30m) (5) 

3.1.2. Using CPT data calculation of cyclic resistance ratio (CRR) 

Depending on the normalized cone resistance the CRR 7.5 is then calculated using the following 

equations [15]. 

If      𝑄𝑐𝑡𝑁 < 50 

CRR7⋅5 = 0.833[
QctN

1000
] + 0.05 (6) 

If      50 < 𝑄𝑐𝑡𝑁 < 160 

CRR7⋅5 = 93[
QctN

1000
]3 + 0.08 (7) 

Where 𝐶𝑅𝑅7⋅5 = cyclic resistance ratio for an equivalent magnitude of 7.5 events; 𝑄𝑐𝑡𝑁= 

normalized sand penetration resistance. 

The CPT tip resistance (𝑞𝑐1𝑁) is normalized as follows 
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𝑄𝑐𝑡𝑁=(
𝑃𝑎

𝜎𝜈
′)𝑛(

𝑞𝑡

𝑃𝑎
) (8) 

Where 𝑞𝑡 = cone tip resistance; Pa = atmospheric pressure; 𝑛 = stress exponent 

For the stress exponent, 𝑛 Robertson [1] provides a function as shown in Eq. (9) 

n = 0.381(𝐼c) + 0.05 (
σν

′

Pa
) − 0.15    ≤ 1.0 (9) 

Where 𝐼𝑐= Soil behavior index 

𝐼c = [(3.47 − log(QctN))2 + (log(F)  + 1.22)2]0.5 (10) 

𝐹 = normalized friction ratio; 𝑄𝑐𝑡𝑁 = normalized cone tip resistance and 𝐹 is determined as 

follows: 

F =
fs

(qt)
× 100% (11) 

Where fs = sleeve friction; 𝑞𝑡= cone tip resistance; 

3.1.3. The Liquefaction Potential 

Using CPT results the factor of safety against liquefaction is calculated and is performed using 

the fines content correlations [16] by using Eq. (12) as 

FS = (
CRR7⋅5 

CSR
) × MSF × Kσ × Kα (12) 

Where FS = factor of safety against liquefaction; 𝐶𝑆𝑅 = cyclic stress ratio for a given magnitude; 

𝐾𝜎 = overburden correction factor; 𝐶𝑅𝑅7⋅5 = cyclic resistance ratio for an equivalent magnitude 

of 7.5 events; 𝑀𝑆𝐹 = magnitude scaling factor; 𝐾𝛼 = correction factor for sloping ground, 

assumed to be equal to one for level ground. 

The magnitude scaling factor, MSF, can be calculated in a variety of methods, according to the 

relative density and overburden stress are used to calculate the overburden correction factor, 𝐾𝜎, 

which can be calculated by using Eq. (13) 

Kσ = (
σν

′

Pa
)

f−1

 (13) 

Where 𝑓 = empirical exponent; depends on relative density. 

3.2. Computation of liquefaction-induced settlements using Juang et al. [17] 

probabilistic method 

3.2.1. Volumetric strain 

According to Juang et al. [17], the settlement amount is usually listed as a range due to the 

nature of case histories, to estimate the possibility of exceeding a specified settlement amount 

[17]. A probabilistic method was developed by Juang et al. [17] to address this problem based on 
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Ishihara and Yoshimine et al. [18] method. To develop the proposed method, Liquefaction 

Potential, liquefaction probability, and maximum likelihood concepts were utilized. 

To define the relationships between volumetric strains, εv, QctN and FS Juang et al. [17] used 

Ishihara and Yoshimine's formulae with the following equations 

𝜀𝑣 =  0               𝑓𝑜𝑟              (𝐹𝑆 ≥  2) (14) 

𝜀𝑣=   Min    
𝑎0+𝑎1 ln(QctN)

1

(2−𝐹𝑆)
−[𝑎2+𝑎3 ln(QctN)]

  𝑓𝑜𝑟 (2 −
1

[𝑎2+𝑎3 ln(QctN)]
< 𝐹𝑆 < 2) (15) 

𝜀𝑣 =   𝑏0 + 𝑏1 ln(QctN) + 𝑏2 ln(QctN)2    𝑓𝑜𝑟  (𝐹𝑆 ≤ 2 −
1

[𝑎2+𝑎3 ln(QctN)]
) (16) 

3.2.2. Liquefaction-induced settlements 

Juang et al. [17] proposed an equation for the determination of total liquefaction-induced 

settlements as shown in Eq. (17) 

𝑆𝑝 = 𝑀𝛴𝑖=1
𝑟  𝜀𝑣𝛥𝑧𝑖 (17) 

Where 𝜀𝑣 volumetric strain for the i
th

 layer, 𝛥𝑧𝑖 is the i
th

 layer’s thickness, M represents a modal 

bias correction factor and N is the number of layers. The calculation process is demonstrated by 

the flow chart as shown in Fig. 1. 

 
Fig. 1. Flowchart of Calculating process for Total Liquefaction-Induced Settlements. 
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4. Dataset 

Cone penetration tests (CPT) were conducted by Premstaller Geotechnik ZT GmbH [19] across 

Germany and Austria, and the findings are included in this dataset. These cone penetration tests 

were conducted using core drilling as part of the processing procedure, and they were placed 

within a maximum depth of 50 m based on grain size distribution from the in-situ testing, 

allowing in-situ data to be interpreted. It also offers a structure for merging in-situ measurements 

(qc, fs). As shown in Table 1 and Table 2 datasets were used for modeling of the liquefaction 

potential (LP-ANFIS) model and liquefaction-induced settlements (LIS-ANFIS) model 

respectively, and according to depth the variation of parameters determined by using the CPT 

test are shown in Fig. 1. 

Table 1 

Dataset Used for Modelling for LP-ANFIS model. 

S.N. 
Depth (m) 

 

Cone resistance 

qc (kPa) 

Sleeve Resistance 

fs (kPa) 

Effective stress 

𝝈𝝂
′  (kPa) 

Liquefaction 

Potential 

1.  15.28 2600 38 140.42 0.036131 

2.  14.44 1450 29 132.7 0.021774 

3.  3.72 3650 14 34.19 0.353585 

4.  16.36 4000 40 150.35 0.06383 

5.  15.26 2550 38 140.24 0.035564 

6.  5.26 3300 9 48.34 0.390718 

7.  10.48 2700 33 96.31 0.055554 

8.  3.68 3550 11 33.82 0.430503 

9.  11.14 2550 27 102.38 0.059889 

10.  10.1 3350 27 92.82 0.092406 

11.  14.36 1300 28 131.97 0.019375 

12.  9.74 3850 23 89.51 0.136071 

13.  0.48 4550 48 4.41 0.418725 

14.  14.2 1250 27 130.5 0.01926 

15.  9.34 5100 8 85.83 0.625867 

16.  10.96 2800 24 100.72 0.077037 

17.  17.68 2600 36 162.48 0.035537 

18.  8 3500 8 73.52 0.229479 

19.  13 1400 25 119.47 0.025526 

20.  16.98 2750 36 156.05 0.03865 

21.  - - - - - 

955. 4.12 3450 4 37.86 1.027124 
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Table 2 

Dataset Used for Modelling for LIS-ANFIS MODEL. 

S.N. 
Depth (m) Cone resistance 

qc (kPa) 

Sleeve 

Resistance 

fs (KPa) 

Effective 

stress 𝝈𝝂
′  

(KPa) 

Liquefaction 

Potential 

Liquefaction

-Induced 

Settlements 

(mm) 

1.  15.28 2600 38 140.42 0.036131 0.66466311 

2.  14.44 1450 29 132.7 0.021774 1.06321442 

3.  3.72 3650 14 34.19 0.353585 0.14358409 

4.  16.36 4000 40 150.35 0.06383 0.43598614 

5.  15.26 2550 38 140.24 0.035564 0.67551647 

6.  5.26 3300 9 48.34 0.390718 0.1680113 

7.  10.48 2700 33 96.31 0.055554 0.5052231 

8.  3.68 3550 11 33.82 0.430503 0.13243897 

9.  11.14 2550 27 102.38 0.059889 0.52661216 

10.  10.1 3350 27 92.82 0.092406 0.37114475 

11.  14.36 1300 28 131.97 0.019375 1.16404509 

12.  9.74 3850 23 89.51 0.136071 0.29223309 

13.  0.48 4550 48 4.41 0.418725 0.04669002 

14.  14.2 1250 27 130.5 0.01926 1.18917452 

15.  9.34 5100 8 85.83 0.625867 0.11027778 

16.  10.96 2800 24 100.72 0.077037 0.45782537 

17.  17.68 2600 36 162.48 0.035537 0.70520842 

18.  8 3500 8 73.52 0.229479 0.24064562 

19.  13 1400 25 119.47 0.025526 1.00823765 

20.  16.98 2750 36 156.05 0.03865 0.65391614 

21.  - - - - - - 

955. 4.12 3450 4 37.86 1.027124 0.07164265 
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Fig. 2. The graph between Depth and Various Parameters measured by the CPT test. 

4.1. Preprocessing of dataset for model development 

Datasets are used in AI-based computing and statistical regression models. Thus, data 

preparation difficulties must be considered for more accurate models. Normalization methods 

may be used to scale data, an accurate model depends on correlations between independent input 

variables, outputs variables, data scales, and variable distributions. Data normalization adjusts 

numbers on disparate scales to a single scale and it speeds up machine learning algorithm 

training when input data ranges are vast. Normalizing or standardizing contributes to avoiding 

local optima or unaltered outcomes and by standardizing features, data variations can be reduced 

[20]. Feature scaling methods were used for the normalization of data, this strategy limits the 

dataset's values to arbitrary values 𝑎 and 𝑏. The formula for normalization of raw data to range 

of [𝑎, 𝑏] shown in Eq. 18. 

𝑋𝑛 = 𝑎 + (𝑎 − 𝑏)
𝑋𝑚ⅈ𝑛−𝑋

𝑋𝑚𝑎𝑥−𝑋𝑚ⅈ𝑛
 (18) 

0

2

4

6

8

10

12

14

16

18

20

0 5000 10000

D
ep

th
 (

m
) 

Cone penetration (kPa) 

 
0

2

4

6

8

10

12

14

16

18

20

1 2 3

D
ep

th
 (

m
) 

Soil Behaviour Index 

0

2

4

6

8

10

12

14

16

18

20

0 1 2

D
ep

th
 (

m
) 

Liquefaction Potential 

0

2

4

6

8

10

12

14

16

18

20

0 50 100

D
ep

th
 (

m
) 

Sleeve Resistance (kPa) 

0

2

4

6

8

10

12

14

16

18

20

0.1 0.6 1.1

D
ep

th
 (

m
) 

Settlement (mm) 

0

2

4

6

8

10

12

14

16

18

20

0.45 0.65 0.85

D
ep

th
 (

m
) 

CRR/CSR 



128 H.K. Jangir et al./ Journal of Soft Computing in Civil Engineering 6-3 (2022) 119-139 

Where 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛, and 𝑋𝑛 are the maximum, minimum, and normalized values of the variable, 

and 𝑎 = 0.05 and 𝑏 = 0.95 are considered in Eq. (18). 

5. Overview of the ANFIS 

5.1. ANFIS’s fundamental concept 

An adaptive neuro-fuzzy inference system (ANFIS) was developed based on the Takagi-Sugeno 

fuzzy inference system, which is another type of artificial neural network. This method was 

created in the early 1990s and it combines fuzzy logic and neural network advantages in one 

framework. ANFIS was designed to be a multipurpose estimator, and machine learning is used to 

help ANFIS for approximate nonlinear functions through fuzzy IF-THEN rules. The best 

parameters produced using a genetic algorithm can be used to make ANFIS more efficient and 

optimum [21]. 

5.2. ANFIS architecture as a mathematical representation 

ANFIS uses a hybrid learning approach to build input-output maps that combine neural networks 

and fuzzy rule knowledge. ANFIS builds input-output mappings as it follows adaptable neural 

networks by specified input-output data pairings and If-Then rules for neural networks, using x1 

and x2 as inputs, y as output, Ai and An
2 

as input membership functions, and wi and wn
2
 as rule 

firing strengths, as shown in Fig. 3. To execute the fuzzy inference procedure, ANFIS employs 

five network layers [22]. 

 
Fig. 3. The ANFIS structure [23]. 

ANFIS comprises five interconnected layers: input, base, intermediate, result, and output. There 

are membership functions associated with each node. The structure of the data is determined by 

input data, membership function degree, input and output membership rules, and functions. In 

addition to having strong training, construction, and classification capabilities ANFIS utilizes 

neural network learning methods and fuzzy logic. By changing membership function degree, the 

allowable error change depending on parameters so during training output values get closer to 

real values. Its learning mechanism uses an error propagation approach to minimize the root 

mean square error (RMSE) between the network output and real output value. Since this system 

employs 0 and 1-degree Sugeno fuzzy models, its output membership function comprises only 

constant and linear functions. Using a trial and error process determination of the best 

membership function and degree of membership can be done as ANFIS is a membership 

functions network. The network performance is assessed using test data, if test data assessment 
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criteria are not approved, the degree of membership function can raise, after network training and 

testing are repeated. Finally, the top network is chosen among the best networks for distinct 

membership functions [24]. 

5.3. Sub-clustering 

Sub-clustering combines unsupervised data by assessing space potential features. It may be used 

to estimate the number of clusters and cluster centers for a given dataset when there is no clear 

concept. Data points are evaluated as cluster centers by subtractive clustering based on the 

density surrounding them. Data points that are close to the cluster center lose potential because 

of being chosen as the initial cluster center. A cluster center is then determined, and then those 

data points surrounding it are removed. Cluster radius is a cluster's effect in several data 

dimensions, this influence radius determines the cluster count. A narrower radius leads to smaller 

data clusters, which results in more rules. Choosing the right influence radius for data clustering 

is crucial [25]. 

6. Modelling process of ANFIS 

6.1. LP-ANFIS model 

The dataset used to train the LP-ANFIS model is provided in Error! Reference source not 

found., and the input parameter from the dataset was separated into two parts: testing data (30%) 

and training data (70%). The sub-clustering parameters were (i) reject ratio = 0.15, (ii) 

acceptability ratio = 0.5, (iii) squash factor = 1.25, and (iv) range of influence = 0.01. The 

parameters of the ANFIS model are as follows: number of nonlinear parameters = 360; total 

number of parameters = 585; number of training data pairs = 677; number of nodes = 457; 

number of checking data pairs = 0; number of fuzzy rules = 45 and number of linear parameters 

= 225 as shown in Fig. 4 and structure of the five-layer network for LP-ANFIS is presented in 

Fig. 5 (a)-(b) which uses the testing and training subsets of the dataset the model was trained 

(RMSE = 0.0140764). By plotting a scatter plot graph between the liquefaction potential 

calculated results and LP-ANFIS model training dataset results, the obtained R
2 

value is 0.9953, 

which is in good agreement as shown in Fig. 6. 

 
Fig. 4. LP-ANFIS model Training set parameter. 
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(a) 

 
(b) 

Fig. 5. LP-ANFIS model structure. 
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Fig. 6. Scatter Plot Graph between Liquefaction Potential of Calculated results and LP-ANFIS model 

training dataset results. 

6.1.1. Validation of LP-ANFIS model 

For validation of the results of the LP-ANFIS model training, the RMSE for the testing dataset 

attained was 0.026302 and by plotting a scatter plot graph between the liquefaction potential 

calculated results and LP-ANFIS model testing dataset results, the obtained R
2
 value is 0.9804, 

which is in good agreement as shown in Fig. 7. 

 
Fig. 7. Scatter Plot Graph between Liquefaction Potential calculated results and LP-ANFIS model testing 

dataset results. 
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6.2. LIS-ANFIS model 

The dataset used to train the LIS-ANFIS model is provided inTable 2, and the input parameter 

dataset was separated into two parts: testing data (30%) and training data (70%). The sub-

clustering parameters were (i) reject ratio = 0.15, (ii) acceptability ratio = 0.5, (iii) squash factor 

= 1.25, and (iv) range of influence = 0.01. The parameters of the ANFIS model are as follows: 

number of nonlinear parameters = 410; total number of parameters = 656; number of training 

data pairs = 667; number of nodes = 500; number of checking data pairs = 0; number of fuzzy 

rules = 41 and number of linear parameters = 246 as shown in Fig. 8. The structure of five-layers 

LIS-ANFIS model is illustrated in Fig. 9 (a)-(b) which is achieved using the testing and training 

subsets of the dataset the model was trained (RMSE was 0.00393882). By plotting a scatter plot 

graph between the liquefaction-induced settlements of calculated results and LIS-ANFIS model 

training dataset results, the obtained R
2 

value is 0.9998, which is in good agreement as shown in 

Fig. 10. 

 
Fig. 8. LIS-ANFIS model Training set parameter. 

6.2.1. LIS-ANFIS model validation 

For validation of the results of the LIS-ANFIS model training, the RMSE for the testing dataset 

obtained was 0.0052768 and by plotting a scatter plot graph between the liquefaction-induced 

settlements calculated results and LIS-ANFIS model training dataset results, the obtained R
2
 

value is 0.9996, which is in good agreement as shown in Fig. 11. 
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(a) 

 
(b) 

Fig. 9. LIS-ANFIS model structure. 
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Fig. 10. Scatter Plot Graph between Liquefaction-induces settlements calculated results and LIS-ANFIS 

model training dataset results. 

 
Fig. 11. Scatter Plot Graph between Liquefaction-induced settlements calculated results and LIS-ANFIS 

model testing dataset results 

7. Results and discussion 

7.1. ANFIS rule viewer 

The ANFIS model can be visually employed using the rule viewer window, as shown in Fig. 12 

and Fig. 13, the Rule Viewer displays fuzzy system inference. These are popular if-else rules that 

connect variables. This panel allows the user to graphically alter inputs using sliders to obtain the 

required outputs immediately. The commands were typed into the command field on the bottom 

left side of the display. Using this alteration in input values, observation of each fuzzy rule's 

output, the aggregated fuzzy set, and the defuzzified result can be done to examine the inference 

y = 0.9997x + 9E-05 

R² = 0.9998 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
al

cu
la

te
d

 R
es

u
lt

s 

LIS-ANFIS Model Training Dataset Results 

 

y = 0.9996x + 7E-05 

R² = 0.9996 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

C
al

cu
la

te
d

 R
es

u
lt

s 

LIS-ANFIS Model Testing Dataset Results 

 



 H.K. Jangir et al./ Journal of Soft Computing in Civil Engineering 6-3 (2022) 119-139 135 

process, which defines the fuzzy inference system input variables, output variables, membership 

functions, and fuzzy rules. 

 
Fig. 12. LP-ANFIS model Rule viewer. 

 
Fig. 13. LIS-ANFIS model Rule viewer. 

7.2. ANFIS 3D-surface diagrams 

The surface diagrams for "Sleeve resistance/Cone Penetration and Liquefaction Potential," and 

"Cone resistance/Effective Stress and Liquefaction Potential" are demonstrated in Fig. 14(a)-(b), 

and “Sleeve resistance/Cone Penetration and Liquefaction-Induced Settlements” and "Depth/ 

Liquefaction Potential and Liquefaction-Induced Settlements" are demonstrated in Fig. 15(a)-(b). 

These graphs represent the correlation between various factors that affect liquefaction potential 

and liquefaction-induced settlements. 
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(a)                                                                                  (b) 

Fig. 14. 3D-Surface Diagram from LP-ANFIS model between Liquefaction Potential and (a) Sleeve 

Resistance, Cone Penetration (b) Effective Stress, Cone Penetration. 

 
(a)                                                                               (b) 

Fig. 15. 3D-Surface Diagram from LIS-ANFIS model between Post Liquefaction Settlements and (a) 

Sleeve Resistance, Cone Penetration (b) Liquefaction Potential, Depth. 

7.3. Comparison of calculated results and ANFIS results 

The output of the ANFIS model was saved in a variable named result using the following 

command: 

resultoutput = evalfis(input,result); 

After producing output results from the LP-ANFIS model and LIS-ANFIS model, the coefficient 

of determination (R
2
) between computed results and the entire data set results used for the 

ANFIS model was analyzed. Fig. 16 shows that the R
2 

value for the LP-ANFIS model between 
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calculated results and results obtained from the complete dataset using the ANFIS model is 

0.9892. Fig. 17 shows that the R
2 

value for the LIS-ANFIS model between calculated results and 

results obtained from the complete dataset using the ANFIS model is 0.9997. 

 

Fig. 16. Scatter Plot Graph between Liquefaction Potential calculated results and LP-ANFIS model 

results. 

 

Fig. 17. Scatter plot graph between the liquefaction-induced settlements calculated results and LIS-

ANFIS model results. 

8. Conclusion 

This research emphasizes the use of ANFIS to construct models for liquefaction potential and 

liquefaction-induced settlements. Because soil varies in composition and includes a vast number 

of components that impact liquefaction potential and settlements, estimating liquefaction 

potential and settlements in geotechnical engineering is a complex process. Fuzzy logic deals 

with the inaccuracy of system parameters, whereas neural networks deal with the underlying 

system's complexity and nonlinearity. The ANFIS models, which are presented in this work, are 
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easier to use and produce more accurate results in determining liquefaction potential than 

traditional empirical methodologies. 

The following are the results from the investigation: 

The LP-ANFIS model training error is 0.01400764 and the validation error is 0.026302, 

respectively, while the LIS-ANFIS model training error is 0.00393882 and the validation error is 

0.0052768, and it can be concluded that the findings are in excellent agreement with the original 

results. The ANFIS model results were verified in Excel using a scatter plot graph between 

complete dataset results and calculated results of both models, with R
2 

values of 0.9892 and 

0.9997, respectively, which are within acceptable limits. 

Overall, the findings indicate that the soft computing methodologies used in this study are quite 

promising for the cases studied. Artificial intelligence is used to investigate and analyze the 

complex relationship between soil liquefaction potential, liquefaction-induced settlements caused 

by liquefaction, and effective liquefaction parameters, which shows a very good ability to 

understand that correlation in very different ways. 

The fundamental drawback of ANFIS modeling is that it cannot provide explicit models or 

equations for hand calculation. Models of this type rely on database variables to formulate, and 

their formulation is determined by the data, information, and soil strata used for calibration. 

Improved prediction over a wider range, additional variables, or soil types would be possible by 

retraining the model. 
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