
Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

How to cite this article: Lataniotis C, Marelli S, Sudret B. The gaussian process modeling module in UQLab. J Soft Comput Civ

Eng 2018;2(3):91–116. https://doi.org/10.22115/scce.2018.129323.1062.

2588-2872/ © 2018 The Authors. Published by Pouyan Press.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at SCCE

Journal of Soft Computing in Civil Engineering

Journal homepage: www.jsoftcivil.com

The Gaussian Process Modeling Module in UQLab

C. Lataniotis
1*

, S. Marelli
2
, B. Sudret

2

1. Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich,

Switzerland

2. ETH Zurich, Stefano-Franscini-Platz 5, 8093 Zurich, Switzerland

Corresponding author: latanioc@ethz.ch

 https://doi.org/10.22115/SCCE.2018.129323.1062

ARTICLE INFO

ABSTRACT

Article history:

Received: 04 May 2018

Revised: 20 June 2018

Accepted: 20 June 2018

We introduce the Gaussian process (GP) modeling module

developed within the UQLab software framework. The novel

design of the GP-module aims at providing seamless

integration of GP modeling into any uncertainty

quantification workflow, as well as a standalone surrogate

modeling tool. We first briefly present the key mathematical

tools on the basis of GP modeling (a.k.a. Kriging), as well as

the associated theoretical and computational framework. We

then provide an extensive overview of the available features

of the software and demonstrate its flexibility and user-

friendliness. Finally, we showcase the usage and the

performance of the software on several applications

borrowed from different fields of engineering. These include

a basic surrogate of a well-known analytical benchmark

function; a hierarchical Kriging example applied to wind

turbine aero-servo-elastic simulations and a more complex

geotechnical example that requires a non-stationary, user-

defined correlation function. The GP-module, like the rest of

the scientific code that is shipped with UQLab, is open

source (BSD license).

Keywords:

UQLab;

Gaussian process modeling;

Kriging;

Matlab;

Uncertainty Quantification.

1. Introduction

Uncertainty quantification (UQ) through computer simulation is an interdisciplinary field that

has seen rapid growth in the last decades. It aims at i) identifying and quantifying the uncertainty

https://doi.org/10.22115/SCCE.2018.129323.1062
https://doi.org/10.22115/scce.2018.129323.1062
http://creativecommons.org/licenses/by/4.0/
http://www.jsoftcivil.com/
mailto:latanioc@ethz.ch
https://doi.org/10.22115/SCCE.2018.129323.1062
https://orcid.org/0000-0002-2888-4050

92 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

in the input parameters of numerical models of physical systems, and ii) quantitatively assessing

its effect on the model responses. Such a general formulation comprises some applications,

including structural reliability [1], sensitivity analysis [2], reliability-based design optimization

[3] and Bayesian techniques for calibration and validation of computer models [4].

Due to the high cost of repeatedly evaluating complex computational models, analyses with

classical sampling techniques such as Monte Carlo simulation are often intractable. In this

context, meta-modeling techniques (also known as surrogate modeling) allow one to develop

fast-to-evaluate surrogate models from a limited collection of runs of the original computational

model, referred to as the experimental design [5–7]. Popular surrogate modeling techniques

include Kriging [8], polynomial chaos expansions [9,10] and support vector regression [11].

Kriging is a surrogate modeling technique first conceived by Krige [12] in the field of

geostatistics and later introduced for the design and analysis of computer experiments by Sacks

et al. [8] and Welch et al. [13]. The potential applications of Kriging in the context of civil and

mechanical engineering, range from basic uncertainty propagation to reliability and sensitivity

analysis [14–18]. Beyond approximating the output of a computational model, Kriging

surrogates also provide local estimates of their accuracy (via the variance of the Kriging

predictor). This enables adaptive schemes, e.g. in the context of reliability analysis [19,20] or

surrogate model-based design optimization [21,22]. The local error estimates of a Kriging

surrogate have also led to improved Bayesian calibration of computer models (see, e.g. Bachoc

et al. [23]).

Although in its standard form Kriging is a stochastic interpolation method, certain extensions

have been proposed for dealing with noisy observations. Such extensions have been of particular

interest to the machine learning community, and they are commonly referred to as Gaussian

process regression [24].

Some dedicated toolboxes are readily available for calculating Kriging surrogate models. Of

interest to this review is general purpose software not targeted to specific Kriging applications,

because they are typically limited to two or three-dimensional problems (see, e.g. gslib [25]).

Within the R community, one of the most comprehensive and well-established Kriging packages

is arguably DiceKriging, developed by the DICE consortium [26]. This set of packages provides

Kriging meta-modeling as part of a framework for adaptive experimental designs and Kriging-

based optimization based on the packages DiceDesign and DiceOptim [27,28]. scikit-learn

provides a Python-based, machine-learning-oriented implementation of Gaussian processes for

regression and classification [29]. Alternatively, PyKriging [30] offers a Kriging toolbox in

python that offers basic functionality with a focus on user-friendliness. Gpy [31] offers a

Gaussian process framework with a focus on regression and classification problems. Within the

Matlab programming language, the first Kriging toolbox with widespread use was DACE [32].

DACE was later extended to ooDACE [33], an object-oriented Kriging implementation with a

richer feature set. Small Toolbox for Kriging [34] offers an alternative Kriging implementation

that is mainly focused on providing a set of functions for Kriging surrogate modeling and design

of experiments. GPML [35] offers a library of functions that are directed towards Gaussian

processes for regression and classification in a machine learning context. Finally, recent versions

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 93

of Matlab (starting from R2015b) provide a rapidly growing Gaussian process library for

regression and classification.

Due to the variety of potential applications of Kriging, different toolboxes tend to be focused on

a specific user niche. There is limited availability of general purpose Kriging toolboxes that

allow for seamless integration within various UQ workflows ranging from, e.g. basic uncertainty

propagation to reliability analysis and surrogate-model-based optimization. To this end, the

Kriging toolbox presented here was developed as a module of the general purpose UQ

framework, UQLab ([36], www.uqlab.com). Also, although most of the toolboxes above offer a

significant set of configuration options, the support for fully customizable Kriging is often

limited or not easily accessible, which can be a drawback in a research environment. Finally, the

user experience may vary from user-friendly to complex (especially to access the most advanced

features), often requiring a significant degree of programming knowledge. This might be rather

inconvenient for applied scientists and practitioners with limited programming knowledge.

Following these premises, this paper introduces the UQLab Gaussian process modeling tool (GP-

module) focusing on its unique embedding into a complex uncertainty quantification

environment, its user-friendliness and customisability.

The paper is structured as follows: in Section 2 a theoretical introduction to Kriging is given to

highlight its main building blocks. In Section 3 the key-features of the GP-module are presented.

Finally, a set of application examples is used to showcase in detail the usage of the software in

Section 4, followed by a summary and a roadmap of the upcoming developments in Section 5.

2. Kriging theory

2.1. Kriging basics

Any metamodeling approach, such as Kriging, aims at approximating the response of a

computational model given a finite set of observations. In this context, consider a system whose

behavior is represented by a computational model which maps the M-dimensional input

parameter space
x
to the 1-dimensional output space, i.e., :

M
y  

x
x where

 1
, ,

M
x x x .

Kriging is a meta-modeling technique which assumes that the true model response is a

realization of a Gaussian process described by the following equation [5]:

2
() () (,)

K
Z  x β f x x (1)

Where ()β f x is the mean value of the Gaussian process, also called a trend,
2

 is the Gaussian

process variance and (,)Z x is a zero-mean, unit-variance Gaussian process. This process is

fully characterized by the auto-correlation function between two sample points)(, ;R x x θ . The

hyperparameters θ associated with the correlation function ;()R  θ are typically unknown and

need to be estimated from the available observations.

http://www.uqlab.com/
http://www.uqlab.com/

94 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

Having specified the trend and the correlation function parameters it is possible to obtain an

arbitrary number of realizations of the so-called prior Gaussian process (see Figure 1 left). In the

context of metamodelling, the goal is to calculate a prediction ()
K

x for a new point x , given

an experimental design  (1) ()
, ,

N
 x x of size N and the corresponding (noise-free) model

responses  (1) (1) () ()
(, , ())

N N
y y   x xy . A Kriging metamodel (a.k.a. Kriging predictor)

provides such predictions based on the properties of the so-called posterior Gaussian process

conditioned on the available data (see Figure 1 right). The Kriging prediction x corresponds to a

random variate     ˆ ˆ
ˆ() ~ ,

Y Y
Y  x x x . Therefore the approximation of the computational

model that is obtained is essentially an infinite family of such models. Each of these models is a

realization (or sample) of the posterior Gaussian process. In practice, the mean response is used

(see Eq. (6)) as the Kriging surrogate, while its variance (see Eq. (7)) is often interpreted as a

measure of the local error of the prediction. The equations for calculating the mean and variance

of a universal Kriging predictor are given next.

Fig. 1. Realisations of a prior (left) and posterior Gaussian process (right). The Gaussian process mean in

each case is denoted by a black line.

The Gaussian assumption states that the vector formed by the true model responses, y and the

prediction, ˆ()Y x , has a joint Gaussian distribution defined by:

2

1

ˆ()
~

() 1 ()
,

()
N

Y




      
      

      

f x β r xx

Fβ r x Ry
 (2)

where F is the information matrix of generic terms:

()
() , 1, , , 1, , ,

i

ij j
F f i N j P    x (3)

()r x is the vector of cross-correlations between the prediction point x and each one of the

observations whose terms read:

()
() , ;), , .(i=1,

i

i
r R N x x x θ (4)

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 95

R is the correlation matrix given by:

() ()
, ;), , .R(i,j=1,

i j

ij
R N x x θ (5)

The mean and variance of the Gaussian random variate ˆ()Y x (a.k.a. mean and variance of the

Kriging predictor) can be calculated based on the best linear unbiased predictor properties [5]:

 1

ˆ ()() () ,
Y




  r xx f x β R y Fβ (6)

  
1

2 2 1 1

ˆ () ()() 1 () ()
Y

 


 
  r x r xx R u x F R F u x (7)

where:

 
1

1 1


 
β F R F F R y (8)

is the generalized least-squares estimate of the underlying regression problem and

1
() ().()


 r x xu x F R f (9)

Once ˆ ()
Y

 x and 2

ˆ ()
Y

 x are available, confidence bounds on predictions can be derived by

observing that:

ˆ

ˆ

()
ˆ() ,

()

Y

Y

t
Y t






 

 
    

 

x
x

x
 (10)

Table 1
Formulas of the most commonly used Kriging trends.

Trend Formula

constant (ordinary Kriging)
0



Linear 0

1

M

i i

i

x 




quadratic 0

1 1 1

M M M

i i ij i j

i i j

x x x  
  

  

Where ()  denotes the Gaussian cumulative distribution function. Based on Eq. (10) the

confidence intervals on the predictor can be calculated by:

1 1

ˆ ˆ ˆ ˆ
ˆ() () 1 (), () 1 ()

2 2
Y Y Y Y

a a
Y    

 
    
    

        
x x x x x (11)

moreover, can be interpreted as the interval within which the Kriging prediction falls with

probability 1 a .

96 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

The equations that were derived for the best linear unbiased Kriging predictor assumed that the

covariance function
2

;)(R  θ is known. In practice, however, the family and other properties of

the correlation function need to be selected a priori. The hyperparameters  , the regression

coefficients, and the variance
2

 need to be estimated based on the available experimental

design. This involves solving an optimization problem that is further discussed in Section 2.4.

The resulting best linear unbiased predictors are called empirical in Santner et al. [5] because

they typically result from the empirical choice of various Kriging parameters that are further

discussed in Sections 2.2 - 2.4.

2.2. Trend

The trend refers to the mean of the Gaussian process, i.e., the ()β f x term in Eq. (1). Using a

non-zero trend is optional, but it is often preferred in practice (see, e.g. Rasmussen and Williams

[24], Schöbi et al. [37]). Note that the mean of the Kriging predictor in Eq. (6) is not confined to

be zero when the trend is zero.

In the literature, it is customary to distinguish between Kriging metamodels depending on the

type of trend they use [5,24,38]. The most general and flexible formulation is universal Kriging,

which assumes that the trend is composed of a sum of P arbitrary functions ()
k

f x , i.e.

1

() ()
P

k k

k

f


β f x x . (12)

Some of the most commonly used trends for universal Kriging are given for reference in Table 1.

Simple Kriging assumes that the trend has a known constant value, i.e. 1P  ,
1
()f x and

1
 is

known. In Ordinary Kriging, the trend has a constant but unknown value, i.e. 1P  ,
1
() 1f x and

1
 is unknown.

2.3. Correlation function

The correlation function (also called kernel in the literature, or covariance function if it includes

the Gaussian process variance
2

) is a crucial ingredient for a Kriging metamodel since it

contains the assumptions about the function that is being approximated. An arbitrary function of

(,)x x is in general not a valid correlation function. In order to be admissible, it has to be chosen

in the set of positive definite kernels. However, checking for positive definiteness of a kernel can

be a challenging task. Therefore it is usually the case in practice to select families of kernels

known to be positive definite and to estimate their parameters based on the available

experimental design and model responses (see Section 2.4). A usual assumption is to consider

kernels that depend only on the quantity h   x x which are called stationary. A list of

stationary kernels commonly used in the literature can be found in Table 2. Different correlation

families result in different levels of smoothness for the associated Gaussian processes, as

depicted in Figure 2 [24].

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 97

In case of multidimensional inputs (M > 1), it is common practice to obtain admissible kernels as

functions of one-dimensional correlation families like the ones in Table 2. Two standard

approaches in the literature are the separable correlation type [8]:

1

,, ;) (,)(
M

i i i

i

R R x x 


  x x θ (13)

Table 2
List of available correlation families.

Name Formula

Linear) max ,; 0 1(R
h

h 


 
 
 
 

Exponential p(e;) xR
h

h 


 
 
 
 

Matérn 3/2 3 3
); e p(1 xR

h
h

h


 
  
   
      
   

Matérn 5/2
2

2

5 55
) 1 x; e(p

3
R

h hh
h 

  
   
   
      
   

Gaussian (squared exponential)
2

1

); x(e p
M

i

R
h

h 


 
 
 


 
 
  



Fig. 2. Realisations of Gaussian processes, characterized by various correlation families and the same

length-scale (θ) value.

and the ellipsoidal type [24]:

. (14)

0 5 10 15

-20

-10

0

10

20

30 Linear
Matern 3/2
Matern 5/2
Gaussian
Observations

98 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

Although typically
M

θ this is not necessarily true in the general case, since the number of

components of θ that corresponds to each input dimension may vary. In the current stage, it is

assumed however that one element of θ is used per dimension for notational clarity.

In certain scenarios (e.g., based on prior knowledge), isotropic correlation functions can be used

for multidimensional inputs. In that case, the same correlation function parameters θ are used for

each input dimension in Eq. (13), and Eq. (14).

2.4. Estimating the hyperparameters

In most practical applications of Kriging surrogate modeling, the hyperparameters θ are

estimated given an experimental design and model responses y . Maximum likelihood and

cross-validation are the most commonly used methods for doing so and further discussed next.

The maximum likelihood approach aims at finding the set of parameters β , θ , 2
 such that the

likelihood of the observations  (1) ()
(, , ())

N
 x xy is maximal. Since y follows a

multivariate Gaussian distribution, the likelihood function reads:

1/2

2 1

2 /2 2

det() 1
| , , exp () ()

(2) 2
()

N
L 

 




   

 
  

R
y β θ y Fβ R y Fβ . (15)

For any given value of θ , the maximization of the likelihood w.r.t. β , and
2

 is a convex

quadratic programming problem. Consequently, it admits closed form generalized least-squares

estimates of β and
2

 (for proof and more details see, e.g. Santner et al. [5]):

 
1

1 1
()


 

 β β F R F F R yθ , (16)

   2 2 1
()

1

N
 


   θ y Fβ R y Fβ . (17)

The value of the hyperparameters θ is calculated by solving the optimization problem:

 2
arg min lo)g | ,(,L  

θ

θ y β θ (18)

Based on Eqs (15) - (17) the optimization problem in Eq. (18) can be written as follows:

   21
arg min log det log(2)

2 2 2

N N
  

 
 
 θ

θ R (19)

The cross-validation method (also known as K-fold cross-validation) is based instead on

partitioning the whole set of observations  
def

, y into K mutually exclusive and collectively

exhaustive subsets  , 1, ,
k

Kk   such that

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 99

   
2

1

, , 1, , and
K

i j k

k

i j K


      (20)

The k-th set of cross-validated predictions is obtained by calculating the Kriging predictor using

all the subsets but the k-th one and evaluating its predictions on that specific k-th fold that was

left apart. The leave-one-out cross-validation procedure corresponds to the special case that the

number of classes is equal to the number of observations (K = N).

In the latter case the objective function is [5,39]:

    ˆ , ()

2
() ()

1

arg min
Y i

K

i i

i






 
θ

θ x x (21)

Where  ˆ , ()

()

Y i

i



x is the mean Kriging predictor that was calculated using  () ()

,\
i i

x y

evaluated at a point ()i
x . Notice that for the case of leave-one-out cross-validation, i is an index,

but in the general case, i is a vector of indices. Calculating the objective function in Eq. (21)

requires the calculation of K Kriging surrogates. The computational requirements for performing

this operation can be significantly reduced as shown in Dubrule [40].

The estimate
2

 is calculated using the following equation [39,41]:

    
 

2
() ()

ˆ ,()2 2

2 ()

1 ˆ ,()

1
()

i i
K

Y i

i

i Y i
K


 





 


  

x x
θ

x
 (22)

where  2 ()

ˆ ,()

i

Y i



x is the variance of a Kriging predictor that was calculated using  () ()

,\
i i

x y ,

evaluated at a point
()i

x . When i is a set of indices, the division and the squared operations in Eq.

(22) are performed element-wise.

Numerically solving the optimization problems described in Eq. (19) (maximum likelihood case)

alternatively, Eq. (21) (cross-validation case) relies on either local (e.g., gradient-based) or global

(e.g., evolutionary) algorithms. On the one hand, local methods tend to converge faster and

require fewer objective function evaluations than their global counterparts. On the other hand,

the existence of flat regions and multiple local minima, especially for larger input dimension, can

lead gradient methods to poor performance when compared to global methods. It is common

practice to combine both strategies sequentially to improve global optimization results with a

final local search (which is also known as hybrid methods).

It can often be the case in engineering applications that different components of the input

variable x take values that differ by orders of magnitude. In such cases, potential numerical

instabilities can be avoided by scaling , e.g., as follows:

100 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

()

()
, 1, , , 1, ,

Var

i

j ji

j

j

Mu
x

i N j


    
  

  

 (23)

where ()i

j
u (resp. ()i

j
x) refer to the i-th sample of the j-th component (resp. of) and

j
  

Var
j

   refer to the empirical mean and variance of the j-th component of .

3. The UQLab Gaussian process modeling module

3.1. The UQLab project

UQLab is a software framework developed by the Chair of Risk, Safety and Uncertainty

Quantification at ETH Zürich [36]. The goal of this project is to provide an uncertainty

quantification tool that is accessible also to a non-highly-IT trained scientific audience. Due to

the broadness of the UQ scope, a correspondingly general theoretical framework is required. The

theoretical backbone of the UQLab software lies in the global uncertainty framework developed

by Sudret [42], De Rocquigny et al. [43], sketched in Figure 3a. According to this framework,

the solution of any UQ problem can generally be decomposed into the following steps:

Step A Define the physical model and the quantities of interest for the analysis. It is

a deterministic representation of an arbitrarily complex physical model,

e.g., a finite element model in civil and mechanical engineering. In this

category also lie metamodels, such as Kriging, since once they are

calculated, they can be used as surrogates of the underlying “true” model.

Step B Identify and quantify the sources of uncertainty in the parameters of the

system that serves as input for Step A. They are represented by a set of

random variables and their joint probability density function (PDF).

Step C Propagate the uncertainties identified in Step B through the computational

model in Step A to characterize the uncertainty in the model response. This

type of analyses includes moments analysis, full PDF characterization, rare

events estimation, sensitivity analysis, etc.

Step C’ Optionally, exploit the by-products of the analysis in Step C to update the

sources of uncertainty, e.g., by performing model reduction based on

sensitivity analysis.

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 101

b The modular structure of the UQLab framework. An arbitrary number of objects (Input, Model,

Analysis) can be connected at any stage of the UQ problem.

Fig. 3. An abstract illustration of the UQLab architecture (b) based on the theoretical UQ framework in

(a) by Sudret [42].

These components introduce a clear semantic distinction between the elements involved in any

UQ problem: model, input, and analysis. This theoretical framework provides the ideal

foundation for the development of the information flow model in a multi-purpose UQ software.

At the core of UQLab lies a modular infrastructure that closely follows the semantics previously

described, graphically represented in Figure 3b. The three steps identified in Figure 3a are

directly mapped to core modules in Figure 3b: model corresponds to Step A (physical modeling,

metamodeling), input to Step B (sources of uncertainty) and analysis to Step C (uncertainty

analysis). Within the UQLab framework, a module refers to some particular functionality, e.g.,

the GP-module provides Kriging surrogate modeling. Each module extends the functionalities of

one of the core modules. It can be either self-contained or capitalize on other modules for

extended functionalities.

The real “actors” of a UQ problem are contained in the objects connected to each of the core

modules. A typical example of such objects would be an input object that generates samples

distributed according to arbitrary PDFs, a model object that runs a complex FEM simulation, or

an analysis object that performs reliability analysis. The platform allows one to define an

arbitrary number of objects and select the desired ones at various stages of the solution of a

complex UQ problem.

102 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

UQLab first became freely available to the academic community on July 2015 as a beta version.

On April 2017 the version 1.0 of UQLab was released. Starting from version 1.0 all the scientific

code of the software is open-source (BSD license). By May 2018 around 1300 users have

already registered and used it.

3.2. The GP-module

Kriging is one of the metamodelling modules available in UQLab [44]. Following the semantics

described in the previous section, it is attached to the model core module. Although other

modules can use the GP-module itself, e.g., an analysis module performing reliability analysis

combining Kriging and Monte Carlo Simulation (AK-MCS) [19,45], the focus of this work is on

the capabilities of the GP-module itself.

An overview of the available features of the GP-module is given in Table 3. The GP-module

incorporates the four ingredients identified in Section 2.1:

 Trends: Universal Kriging trends are fully supported, including simple, ordinary, or

polynomial of arbitrary degree. Also, custom basis functions f(x) or a completely custom

trend function may be specified

 Correlation functions: Standard correlation families from the literature are readily available

as well as the possibility of creating user-defined ones. For multi-dimensional inputs,

ellipsoidal and separable correlation functions can be used, also allowed for isotropic ones.

Fully user-specified correlation functions are also supported

 Estimation methods: Maximum likelihood (Eq. (19)) and cross-validation (Eq. (21))

methods can be used for estimating the hyper-parameters

 Optimisation methods: Matlab’s built-in local and global optimization methods are offered,

namely BFGS and genetic algorithm as well as a genetic algorithm with BFGS refinement

(hybrid).

In addition, various scaling operations are allowed for avoiding numerical instabilities during the

hyperparameters estimation. Such operations may vary from simple zero-mean scaling to more

advanced ones such as iso-probabilistic transformations by interfacing with other UQLab

modules.

Following the general design principle of UQLab concerning user-friendliness, all the possible

configuration options have default values pre-assigned to allow basic usage of the module with

very few lines of code (see Section 4.1). A Matlab structure variable is used to specify a Kriging

configuration, called KOptions in the following sections.

To showcase the minimal working code for obtaining a Kriging surrogate, a simple application is

considered. The experimental design consists of 8 random samples in the [0,15] interval, and it is

contained in the variable XED. The “true” model is () sin()x x x , and the corresponding model

responses are stored in the variable YED. The minimal code required for obtaining a Kriging

surrogate, given XED and YED is the following:

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 103

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

The first line clarifies the type of UQLab object that is being requested. Following the general

UQ Framework in Figure 3a a model object of type ’Metamodel’ is created. The next line

specifies the type of metamodel, followed by the manual specification of the experimental

design. Finally, the UQLab command uq_createModel is used in order to create a model object

using the configuration options in KOptions.

The resulting Kriging metamodel object myKriging contains all the required information to

compute the mean and variance of the Kriging predictor on new test points (X). This can be done

using the following command:

[meanY, varY] = uq_evalModel(myKriging, X);

where meanY corresponds to the mean and varY to the variance of the Kriging predictor on the

test points (see Eqs. (6), (7)).

Once the metamodel is created, a report of the main properties of the Kriging surrogate model

can be printed on screen by:

uq_print(myKriging);

%-------------- Kriging metamodel --------------%

Object Name: Model 1 Input Dimension: 1

Experimental Design

Sampling: User

X size: [8x1]

Y size:

Trend

[8x1]

Type: ordinary

Degree: 0

Gaussian Process

Fig. 4. The output of uq_display of a Kriging model object having a one-dimensional input.

104 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

Table 3
List of features of the UQLab GP-module. The default values for each property is in bold.

Feature Specification Value Description

Trend Simple A constant term specified by the user (simple

Kriging)

 Ordinary A constant term estimated using Eq. (8) (ordinary

Kriging)

 Polynomial basis The trend in Eq. (12) consists of polynomial basis

function fk of arbitrary degree

 Custom basis The trend in Eq. (12) consists of arbitrary functions fk

 Custom trend Custom trend function that computes F directly

Correlation Types Separable As described in Eq. (13). Both isotropic and

anisotropic variants are supported.

 Ellipsoidal As described in Eq. (14). Both isotropic and

anisotropic variants are supported.

 Custom Custom correlation function that computes R directly

 Families Commonly used All the correlation families reported in Table 2 are

available

 Custom A custom correlation family can be specified

Estimation ML Maximum-likelihood estimation (see Eq. (19))

 CV K-fold Cross-Validation method (see Eq. (21)).

Any K value is supported

Optimisation BFGS Gradient-based optimization method

(BroydenFletcher-Goldfarb-Shanno algorithm). Matlab

built-in

 GA Global optimization method (genetic algorithm).

Matlab built-in

 HGA Genetic algorithm optimization with BFGS refinement

Corr. Type: ellipsoidal(anisotropic)

Corr. family: matern-5_2

sigma^2: 4.787983e+01

Estimation method: Cross-Validation

Hyperparameters

 theta: [0.00100]

 Optim. method: Hybrid Genetic Algorithm

Leave-one-out error: 4.3698313e-01

%---%

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 105

It can be observed that the default values for the trend, correlation function, estimation, and

optimization method have been assigned (see Table 3). A visual representation of the metamodel

can be obtained by:

uq_display(myKriging);

Note that the uq_display command can only be used for quickly visualizing Kriging

surrogates when the inputs are one- or two-dimensional. The figure produced by uq_display

is shown in Figure 4.

4. Application examples

4.1. Basic example

The goal of this introductory example is to calculate a Kriging surrogate of a well-known

surrogate modeling benchmark, the Branin-Hoo function. This function has been traditionally

used as a benchmark for global optimization methods (see, e.g. Jones et al. [46]). A slightly

modified version is considered this work, that was first proposed as a surrogate modeling

benchmark by Forrester et al. [7] due to its representative shape concerning engineering

applications. It is an analytical function given by:

     
2

2 2 2

2 1 1 1
() cos ,1a xbx sx c sr xtx      x . (24)

Some standard values of the parameters are used, namely a = 1, b = 5.1 (4π2), c = 5/π, r = 6, s =

10 and t = 1/(8π). The function is evaluated on the square x1 ∈ [−5,10], x2 ∈ [0,15].

By taking advantage of the input and model modules of UQLab, the experimental design and

model responses that will be used for calculating the surrogate can be generated with minimal

effort. First, the probabilistic input model and the true model are defined as follows:

% Start the UQLab framework

uqlab;

% Specify the probabilistic input model IOptions.Marginals(1).Type =

’Uniform’;

IOptions.Marginals(1).Parameters = [-5, 10];

IOptions.Marginals(2).Type = ’Uniform’; IOptions.Marginals(2).Parameters

= [0, 15];

myInput = uq_createInput(IOptions);

% Specify the computational model

MOptions.mString = [’(X(:,2) - .1/(2*pi)^2*X(:,1).^2 + 5/pi*X(:,1) …

- 6).^2’ + 10*(1-1/(8*pi))*cos(X(:,1)) + 10’];

myModel = uq_createModel(MOptions);

106 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

Fig. 5. From left to right: the Branin-Hoo function (true model) followed by the mean and standard

deviation of the Kriging predictor. Red dots illustrate the experimental design.

Note that the model object of the Branin-Hoo function can be equally coded in a Matlab m-file

or written as a string (which is a useful feature for simple demo functions only).

Next, the experimental design XED is generated along with the corresponding true model

responses YED. The Latin Hypercube Sampling (LHS) method is used to obtain a space-filling

experimental design of 15 samples [47]:

% Draw 15 samples using Latin Hypercube Sampling

XED = uq_getSample(15, ’LHS’);

% Calculate the corresponding model responses YED = uq_evalModel(myModel,

XED);

A Kriging surrogate model using the XED, YED variables can be created as follows:

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.Sampling = ’user’;

KOptions.ExpDesign.X = XED;

KOptions.ExpDesign.Y = YED;

myKriging = uq_createModel(KOptions);

All the required ingredients for obtaining a Kriging surrogate are assigned default values unless

specified by the user (see Section 3.2). The surrogate that is obtained can be visually inspected

by issuing the command:

uq_display(myKriging);

The result of the uq_display command is shown in Figure 5. The Kriging surrogate myKriging

can be used like any other model (e.g., myModel) to calculate its response given a new sample of

the input X using the uq_evalModel function. For example, the mean predictor, meanY, of 100
samples generated by Monte Carlo sampling can be computed as follows:

X = uq_getSample(100);

meanY = uq_evalModel(myKriging, X);

More information can be extracted from the Kriging predictor using a slightly different syntax.

The following code:

[meanY, varY, covY] = uq_evalModel(myKriging, X);

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 107

allows to retrieve the 100 × 1 Kriging mean meanY, the 100 × 1 Kriging variance varY and the

100 × 100 full covariance matrix of the surrogate model responses covY.

Fig. 6. Comparison of true model output (from high fidelity simulations) versus various Kriging

surrogates on a validation set of size 150.

4.2. Hierarchical kriging

To further illustrate the flexibility that can be achieved with the use of arbitrary trend functions, a

hierarchical Kriging application is showcased. Hierarchical Kriging [48] is one Kriging

extension aiming to fuse information from experimental designs related to different physical

models of different fidelity. This is achieved by first calculating a Kriging surrogate using the

low-fidelity observations and then using it as the trend of the high-fidelity surrogate. This

approach can be extended to more fidelity levels in a similar fashion. A set of observations and

model responses is used that originates from aero-servo-elastic simulations of a wind-turbine as

presented in Abdallah et al. [49]. Given a set of input parameters related to the wind flow, the

output of interest is the maximal bending moment at the blade root of a wind turbine.

Two types of simulators are available for estimating the maximal bending moment given the

wind conditions. A low-fidelity simulator can generate estimates of the output with minimal

computation time at the cost of lower accuracy. On the other hand, a high-fidelity simulator can

more accurately predict the maximal bending moment at a significantly higher computational

cost. In this example a total of 300 low-fidelity and 15 high-fidelity simulations are available.

First, a Kriging surrogate is computed on the low-fidelity dataset that is contained in variables

XED_LF, YED_LF as follows:

% Create the low-fidelity surrogate

KOptions_LF.Type = ’Metamodel’;

KOptions_LF.MetaType = ’Kriging’;

KOptions_LF.ExpDesign.X = XED_LF;

KOptions_LF.ExpDesign.Y = YED_LF;

KOptions_LF.Corr.Family = ’Matern-3_2’;

myKriging_LF = uq_createModel(KOptions_LF);

Using the same configuration options, another Kriging surrogate is computed using the high-

fidelity dataset (XED_HF and YED_HF):

% Create the high-fidelity surrogate

KOptions_HF.Type = ’Metamodel’;

108 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

KOptions_HF.MetaType = ’Kriging’;

KOptions_HF.ExpDesign.X = XED_HF;

KOptions_HF.ExpDesign.Y = YED_HF;

KOptions_HF.Corr.Family = ’Matern-3_2’;

myKriging_HF = uq_createModel(KOptions_HF);

Now a hierarchical Kriging surrogate is computed which is trained on the high-fidelity dataset

but uses the low-fidelity Kriging surrogate (i.e., its mean predictor) as a trend:

% Create the hierarchical Kriging surrogate

KOptions_Hier.Type = ’Metamodel’;

KOptions_Hier.MetaType = ’Kriging’;

KOptions_Hier.ExpDesign.X = XED_HF;

KOptions_Hier.ExpDesign.Y = YED_HF;

KOptions_Hier.Corr.Family = ’Matern-3_2’;

KOptions_Hier.Trend.Type = ’custom’;

KOptions_Hier.Trend.CustomF = @(x) uq_evalModel(myKriging_LF, x);

KOptions_Hier.Scaling = false;

myKriging_Hier = uq_createModel(KOptions_Hier);

The option KOptions_Hier.Scaling refers to the scaling of the input space before computing

the surrogate model. In case of hierarchical Kriging scaling should be disabled because the low-

fidelity surrogate is calculated on the original data and needs to be used “as is”.

The performance of the different surrogate models is tested on a separate validation set of 150

high-fidelity simulations that is contained in the variables XVAL_HF and YVAL_HF. The output

mean Kriging predictor on the validation set is calculated as follows:

meanY_LF = uq_evalModel(myKriging_LF, XVAL_HF);

meanY_HF = uq_evalModel(myKriging_HF, XVAL_HF);

meanY_Hier = uq_evalModel(myKriging_Hier, XVAL_HF);

where meanY_LF, meanY_HF and meanY_Hier correspond to the low-fidelity, high-fidelity and

hierarchical Kriging predictors respectively.

In Figure 6 a comparison of the true model output YVAL_HF versus the mean Kriging predictors is

made. In each case the Root Mean Square Error (RMSE) is reported for quantifying the

predictive performance of the surrogate:

 
 

2
() ()

ˆ

1

1

Var

N

i i

RMSE Y

iN
E Y

Y




  (25)

where Y denotes the true model outputs (in this case YVAL_HF),
Ŷ

 the Kriging predictor mean (in

this case variables meanY_LF, meanY_HF and meanY_Hier for each surrogate, respectively) and N
the number of samples in the validation set.

In this example, by taking advantage of the low-cost, low-fidelity observations, the hierarchical

Kriging predictor achieves a 68% decrease of the RMSE on the validation set compared to the

Kriging model that was solely based on the high-fidelity measurements. Moreover, by inspecting

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 109

the mean responses of each Kriging predictor in Figure 6, it is clear that the hierarchical Kriging

surrogate significantly reduces the prediction bias compared to the low- and high-fidelity ones

taken as standalone. As demonstrated by this application, building a hierarchical Kriging

surrogate model requires minimal effort thanks to the customisability of the GP-module.

4.3. Kriging with custom correlation function

This example illustrates how the correlation function customization capabilities of the GP-

module can be used to apply Kriging in a non-standard setting.

Consider the discontinuous subsurface model given in Figure 7, which may represent the

distribution of some soil property (e.g., porosity) in the presence of a fault. The true model

consists of two realizations of two distinct random processes on the two regions A1 and A2 at the

left and right of the fault, respectively:

 

 
1 1 1

2 2 2

, ()
()

, ()

,

,

Z R A

Z R A










x θ x
x

x θ x
 (26)

where  1 2
,x xx represents the spatial coordinates in the 2D domain, Z1 (resp. Z2) are

realizations of a Gaussian process characterized by a correlation function with length

scales  1 11 12
, θ (resp.  2 21 22

, θ).

A Kriging surrogate model will be calculated using the following correlation

function:

 

   

   

1 1 1

2 2 2

, ; ,

, ; , ; ,

othe w

,

,

, r ise0

R

R

A A

A AR

   

    









x x θ x x

x x θ x x θ x x (27)

Fig. 7. Graphical visualization of the subsurface model. The unknowns (length scales of each random

field and the fault angle) are denoted by red color.

110 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

Where  1 2
, , aθ θ θ . There is a smooth dependence on

1 2
,x x within each region, but no

correlation between points that belong to different regions. The boundary between the two

regions is fully defined by the crack angle, α, which is unknown and the fault location that is

assumed to be known (   1 2
0.6, ,1x x ). The goal here is to use Kriging to interpolate the

measurements taken at borehole locations A, B, and C and estimate the five unknown parameters

 1 2
, , aθ θ θ . The correlation function of each region is the same, both in the true model and the

Kriging surrogate, i.e., it is assumed to be known. In particular, the correlation function is

separable Matérn 3/2 (see Eq. (13) and Table 2). The maximum-likelihood method is selected

for estimating θ . Due to the complexity of the underlying optimization problem a hybrid genetic

algorithm with relatively large population size and a maximum number of generations is

selected.

A Matlab implementation of the correlation function in Eq. (27) is given in Appendix A. This

Matlab function is called my_eval_R in the following code snippet.

Figure 8: From left to right: The true permeability of the soil, followed by the mean and standard

deviation of the Kriging predictor. Red dots illustrate the experimental design.

The Kriging surrogate is created next, based on a limited set of observations contained in the

variables BoreholeLocations and BoreValues, which contain the locations of the

measurements along the boreholes and the value of the desired property, respectively.

KOptions.Type = ’Metamodel’;

KOptions.MetaType = ’Kriging’;

KOptions.ExpDesign.X = BoreholeLocations;

KOptions.ExpDesign.Y = BoreValues;

KOptions.Corr.Handle = @my_eval_R;

% Add upper and lower bounds on the optimization variables

BoundsL = [0.3 0.1 0.3 0.1 pi/6] ;

BoundsU = [0.9 0.5 0.9 0.5 5*pi/6] ;

KOptions.Optim.Bounds =[BoundsL ;BoundsU];

KOptions.Optim.Method = ’HGA’;

KOptions.Optim.HGA.nPop = 60;

KOptions.Optim.MaxIter = 50;

KOptions.EstimMethod = ’ML’;

KOptions.Scaling = False;

myKriging = uq_createModel(KOptions);

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 111

Once the Kriging metamodel has been computed, the mean and standard deviation of the Kriging

predictor can be quickly visualized for 1D and 2D models using the uq_display command,

which produces a plot similar to Figure 8, except in a smaller domain determined by the range of

the points in the experimental design. A comparison between the true and the estimated values, θ

is given in Table 4. As expected, the accuracy of the hyperparameters estimation is low due to the

limited dispersion of the experimental design. The error of the length scale estimates along the x1

direction is consistently larger due to the lack of samples along that direction. From a coding

perspective, although the correlation function that is used is relatively complex, it is

straightforward to use in a Kriging surrogate once coded as a Matlab function (by setting the

KOptions.Corr.Handle value appropriately). Moreover, custom correlation functions are

allowed to have an arbitrary number of hyperparameters. The only requirement is that the

optimisation bounds (or initial value, depending on the optimisation method that is used) must

have the same length as the number of the hyperparameters.

Table 4

Listing of the true and estimated correlation function parameters, θ , for the Kriging surrogate of the

subsurface model.

5. Summary and outlook

In this paper, the GP-module of the UQLab software framework was presented. This UQLab

module enables practitioners from various disciplines to get started with Kriging metamodelling

with minimal effort as was illustrated in the introductory application in Section 4.1. However, it

is also possible to access more advanced customization, e.g., for research purposes. This was

showcased in Section 4.2 where a hierarchical Kriging metamodel was developed and in Section

4.3 where a relatively complex, non-stationary correlation function was used to solve a

geostatistical inverse problem. The GP-module is freely available to the academic community

since the first beta release of UQLab in July 2015.

The current version of the GP-module only allows for computing Kriging models on noisy data

by explicitly providing the noise level via the nugget effect. The general case where the noise

level is unknown and needs to be estimated (a.k.a. Gaussian process regression) is currently

under development and will be addressed in an upcoming release. In addition, the current version

of the GP-module relies on additional Matlab toolboxes for performing the hyperparameter

optimization. This may be a limiting factor for some users.

In addition to the modules currently exploiting its functionality (Polynomial Chaos-Kriging and

Reliability analysis [45,50]), new UQLab modules that interface with the GP-module are

 θ 11 θ 12 θ 21 θ 22 α

 0 . 0 600 . 250 0 . 900 0 . 350 1 . 309
 0 . 310 0 . 271 0 . 310 0 . 374 1 . 342

 48 . 8 3 . 65 2 . 6 6 . 2 9 . 5

112 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

currently under active development. The upcoming random fields module will offer several

random field types (conditional and unconditional) together with advanced sampling

methodologies and will be interfaced with the GP-module to offer trajectory resampling

capabilities. Similarly, the upcoming Reliability-Based Design Optimisation (RBDO) module

uses the surrogate modeling capabilities of the GP-module for solving RBDO problems as

described in Moustapha et al. [22].

Appendix A. Kriging with custom correlation function: implementation

details

This section aims to provide some additional implementation details on the application example

in Section 4.3, in terms of the Matlab code involved. The correlation function described in Eq.

(27) can be translated to the following Matlab function:

function R = my_eval_R(x1,x2,theta,parameters)

xc = 0.6; % the x-location of the crack on the surface

yc = 1 ; % the y-location of the crack on the surface

length_scales_1 = theta(1:2);

length_scales_2 = theta(3:4);

crack_angle = theta(5) ;

% find the angles of each sample of x1

angles_x1 = acos((xc - x1(:,1))./sqrt((x1(:,1) - xc).^2 + ...

(x1(:,2) - yc).^2));

% find the indices of x1 that belong to first region

idx_x1_1 = angles_x1 <= crack_angle;

% find the indices of x1 that belong to second region

idx_x1_2 = ~idx_x1_1;

% find the angles of each sample of x2

angles_x2 = acos((xc - x2(:,1))./sqrt((x2(:,1) - xc).^2 + ...

(x2(:,2) - yc).^2));

% find the indices of x2 that belong to first region

idx_x2_1 = angles_x2 <= crack_angle;

% find the indices of x2 that belong to second region

idx_x2_2 = ~idx_x2_1;

% set-up various correlation function options so that we can re-use the

% build-in UQLab function for evaluating R in each region

CorrOptions.Type = ’separable’;

CorrOptions.Family = ’Matern-3_2’;

CorrOptions.Isotropic = false;

CorrOptions.Nugget = 1e-2;

% initialize R matrix

R = zeros(size(x1,1), size(x2,1));

% Compute the R values in region 1

R(idx_x1_1,idx_x2_1) = uq_Kriging_eval_R(x1(idx_x1_1,:),

x2(idx_x2_1,:),...

length_scales_1, CorrOptions);

% Compute the R values in region 2

R(idx_x1_2,idx_x2_2) = uq_Kriging_eval_R(x1(idx_x1_2,:),

x2(idx_x2_2,:),...

length_scales_2, CorrOptions);

end

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 113

The provided code, although vectorized, is optimized for readability and not performance. To

that end, the internal function of the GP-module uq_Kriging_eval_R is used for calculating the

correlation function value in each of the regions.

Acknowledgments

The authors would like to thank Dr. Imad Abdallah for providing the wind-turbine simulations

dataset for the application example presented in Section 4.2.

References

[1] Lemaire M, Chateauneuf A, Mitteau J-C. Structural Reliability. London, UK: ISTE; 2009.

doi:10.1002/9780470611708.

[2] Saltelli A, Chan K, Scott EM. Sensitivity Analysis. J. Wiley & Sons; 2000.

[3] Tsompanakis Y, Lagaros ND, Papadrakakis M. Structural Design Optimization Considering

Uncertainties. CRC Press; 2008.

[4] Dashti M, Stuart AM. The Bayesian Approach to Inverse Problems. Handb. Uncertain. Quantif.,

Cham: Springer International Publishing; 2017, p. 311–428. doi:10.1007/978-3-319-12385-1_7.

[5] Santner TJ, Williams BJ, Notz WI. The Design and Analysis of Computer Experiments. New York,

NY: Springer New York; 2003. doi:10.1007/978-1-4757-3799-8.

[6] Fang K-T, Li R, Sudjianto A. Design and Modeling for Computer Experiments. Chapman and

Hall/CRC; 2005. doi:10.1201/9781420034899.

[7] Forrester AIJ, Sbester A, Keane AJ. Engineering Design via Surrogate Modelling. Chichester, UK:

John Wiley & Sons, Ltd; 2008. doi:10.1002/9780470770801.

[8] Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and analysis of computer experiments. Stat Sci

1989;4:409–23.

[9] Ghanem RG, Spanos PD. Stochastic Finite Elements: A Spectral Approach. New York, NY:

Springer New York; 1991. doi:10.1007/978-1-4612-3094-6.

[10] Xiu D, Karniadakis GE. The Wiener--Askey Polynomial Chaos for Stochastic Differential

Equations. SIAM J Sci Comput 2002;24:619–44. doi:10.1137/S1064827501387826.

[11] Vapnik VN. The Nature of Statistical Learning Theory. New York, NY: Springer New York; 2000.

doi:10.1007/978-1-4757-3264-1.

[12] Krige DG. A statistical approach to some basic mine valuation problems on the Witwatersrand. J

South African Inst Min Metall 1951;52:119–39.

[13] Welch WJ, Buck RJ, Sacks J, Wynn HP, Mitchell TJ, Morris MD. Screening, Predicting, and

Computer Experiments. Technometrics 1992;34:15–25. doi:10.1080/00401706.1992.10485229.

114 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

[14] Marrel A, Iooss B, Van Dorpe F, Volkova E. An efficient methodology for modeling complex

computer codes with Gaussian processes. Comput Stat Data Anal 2008;52:4731–44.

doi:10.1016/j.csda.2008.03.026.

[15] Gaspar B, Teixeira AP, Soares CG. Assessment of the efficiency of Kriging surrogate models for

structural reliability analysis. Probabilistic Eng Mech 2014;37:24–34.

doi:10.1016/j.probengmech.2014.03.011.

[16] Iooss B, Lemaître P. A Review on Global Sensitivity Analysis Methods, 2015, p. 101–22.

doi:10.1007/978-1-4899-7547-8_5.

[17] Gratiet L Le, Marelli S, Sudret B. Metamodel-Based Sensitivity Analysis: Polynomial Chaos

Expansions and Gaussian Processes. Handb. Uncertain. Quantif., Cham: Springer International

Publishing; 2015, p. 1–37. doi:10.1007/978-3-319-11259-6_38-1.

[18] Moustapha M, Bourinet J-M, Guillaume B, Sudret B. Comparative Study of Kriging and Support

Vector Regression for Structural Engineering Applications. ASCE-ASME J Risk Uncertain Eng

Syst Part A Civ Eng 2018;4:04018005. doi:10.1061/AJRUA6.0000950.

[19] Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining

Kriging and Monte Carlo Simulation. Struct Saf 2011;33:145–54.

doi:10.1016/j.strusafe.2011.01.002.

[20] Dubourg V, Sudret B. Meta-model-based importance sampling for reliability sensitivity analysis.

Struct Saf 2014;49:27–36. doi:10.1016/j.strusafe.2013.08.010.

[21] Simpson TW, Mauery TM, Korte JJ, Mistree F. Kriging Models for Global Approximation in

Simulation-Based Multidisciplinary Design Optimization. AIAA J 2001;39:2233–41.

doi:10.2514/2.1234.

[22] Moustapha M, Sudret B, Bourinet J-M, Guillaume B. Quantile-based optimization under

uncertainties using adaptive Kriging surrogate models. Struct Multidiscip Optim 2016;54:1403–21.

doi:10.1007/s00158-016-1504-4.

[23] Bachoc F, Bois G, Garnier J, Martinez J-M. Calibration and Improved Prediction of Computer

Models by Universal Kriging. Nucl Sci Eng 2014;176:81–97. doi:10.13182/NSE12-55.

[24] Rasmussen CE, Williams CK. Gaussian processes for machine learning (adaptive computation and

machine learning) Cambridge, Cambridge, MA, USA: MIT Press 2005.

[25] Deutsch C V, Journel AG. GSLIB: Geostatistical SoftwareLibrary and User’s Guide. New York,

US: Oxford University Press; 1992.

[26] Roustant O, Ginsbourger D, Deville Y. Dicekriging, Diceoptim: Two R packages for the analysis

of computer experiments by kriging-based metamodelling and optimization. J Stat Softw

2012;51:1–55.

[27] Dupuy D, Helbert C, Franco J. DiceDesign and DiceEval: Two R packages for design and analysis

of computer experiments. J Stat Softw 2015;65:1–38.

[28] Picheny V, Ginsbourger D, Roustant O. DiceOptim: Kriging-Based Optimization for Computer

Experiments. R package version 0.8-1 2016.

 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 115

[29] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn:

Machine learning in Python. J Mach Learn Res 2011;12:2825–30.

[30] Paulson C, Ragkousis G. pyKriging: A Python Kriging Toolkit [Data set]. 2015.

[31] GPy: A gaussian process framework in python 2012.

[32] Lophaven SN, Nielsen HB, Sondergaard J. Aspects of the matlab toolbox DACE. Technical report,

Informatics and Mathematical Modelling. 2002.

[33] Couckuyt I, Dhaene T, Demeester P. ooDACE toolbox: a flexible object-oriented Kriging

implementation. J Mach Learn Res 2014;15:3183–6.

[34] Bect J, Vazquez E. STK: a Small (Matlab/Octave) Toolbox for Kriging 2014.

[35] Rasmussen CE, Nickisch H. Gaussian processes for machine learning (GPML) toolbox. J Mach

Learn Res 2010;11:3011–5.

[36] Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in Matlab.

Vulnerability, Uncertainty, Risk (Proc. 2nd Int. Conf. Vulnerability, Risk Anal. Manag.

(ICVRAM2014), Liverpool, United Kingdom), Reston, VA: American Society of Civil Engineers;

2014, p. 2554–63. doi:10.1061/9780784413609.257.

[37] Schöbi R, Sudret B, Wiart J. Polynomial-chaos-based Kriging. Int J Uncertain Quantif 2015;5:171–

93.

[38] Stein ML. Interpolation of Spatial Data. New York, NY: Springer New York; 1999.

doi:10.1007/978-1-4612-1494-6.

[39] Bachoc F. Cross Validation and Maximum Likelihood estimations of hyper-parameters of Gaussian

processes with model misspecification. Comput Stat Data Anal 2013;66:55–69.

doi:10.1016/j.csda.2013.03.016.

[40] Dubrule O. Cross validation of kriging in a unique neighborhood. J Int Assoc Math Geol

1983;15:687–99. doi:10.1007/BF01033232.

[41] Cressie NAC. Statistics for Spatial Data. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 1993.

doi:10.1002/9781119115151.

[42] Sudret B. Uncertainty propagation and sensitivity analysis in mechanical models–Contributions to

structural reliability and stochastic spectral methods. 2007.

[43] De Rocquigny E, Devictor N, Tarantola S. Uncertainty in industrial practice: a guide to quantitative

uncertainty management. John Wiley & Sons; 2008.

[44] Lataniotis C, Marelli S, Sudret B. UQLab user manual–Kriging (Gaussian process modelling).

2017.

[45] Marelli S, Schöbi R, Sudret B. Uqlab user manual - structural reliability. Technical report, Chair of

Risk, Safety and Uncertainty Quantification, ETHZurich. Report UQLab-V0.92-107; 2017.

[46] Jones DR, Schonlau M, Welch WJ. Efficient Global Optimization of Expensive Black-Box

Functions. J Glob Optim 1998;13:455–92. doi:10.1023/A:1008306431147.

116 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116

[47] McKay MD, Beckman RJ, Conover WJ. Comparison of Three Methods for Selecting Values of

Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979;21:239–45.

doi:10.1080/00401706.1979.10489755.

[48] Han Z, Zimmerman R, Görtz S. Alternative Cokriging Method for Variable-Fidelity Surrogate

Modeling. AIAA J 2012;50:1205–10. doi:10.2514/1.J051243.

[49] Abdallah I, Sudret B, Lataniotis C, Sørensen JD, Natarajan A. Fusing simulation results from

multifidelity aero-servo-elastic simulators-Application to extreme loads on wind turbine. Proc. 12th

Int. Conf. Appl. Stat. Probab. Civ. Eng. (ICASP12), Vancouver, Canada, July 12-15, University of

British Columbia; 2015.

[50] Schöbi R, Marelli S, Sudret B. Uqlab user manual–pc-kriging, Technical report, Chair of Risk,

Safety & Uncertainty Quantification, ETH Zurich. Report UQLab-V1. 0109. Technical report,

Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich; 2017.

