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We introduce the Gaussian process (GP) modeling module 

developed within the UQLab software framework. The novel 

design of the GP-module aims at providing seamless 

integration of GP modeling into any uncertainty 

quantification workflow, as well as a standalone surrogate 

modeling tool. We first briefly present the key mathematical 

tools on the basis of GP modeling (a.k.a. Kriging), as well as 

the associated theoretical and computational framework. We 

then provide an extensive overview of the available features 

of the software and demonstrate its flexibility and user-

friendliness. Finally, we showcase the usage and the 

performance of the software on several applications 

borrowed from different fields of engineering. These include 

a basic surrogate of a well-known analytical benchmark 

function; a hierarchical Kriging example applied to wind 

turbine aero-servo-elastic simulations and a more complex 

geotechnical example that requires a non-stationary, user-

defined correlation function. The GP-module, like the rest of 

the scientific code that is shipped with UQLab, is open 

source (BSD license). 
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1. Introduction 

Uncertainty quantification (UQ) through computer simulation is an interdisciplinary field that 

has seen rapid growth in the last decades. It aims at i) identifying and quantifying the uncertainty 
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in the input parameters of numerical models of physical systems, and ii) quantitatively assessing 

its effect on the model responses. Such a general formulation comprises some applications, 

including structural reliability [1], sensitivity analysis [2], reliability-based design optimization 

[3] and Bayesian techniques for calibration and validation of computer models [4]. 

Due to the high cost of repeatedly evaluating complex computational models, analyses with 

classical sampling techniques such as Monte Carlo simulation are often intractable. In this 

context, meta-modeling techniques (also known as surrogate modeling) allow one to develop 

fast-to-evaluate surrogate models from a limited collection of runs of the original computational 

model, referred to as the experimental design [5–7]. Popular surrogate modeling techniques 

include Kriging [8], polynomial chaos expansions [9,10] and support vector regression [11]. 

Kriging is a surrogate modeling technique first conceived by Krige [12] in the field of 

geostatistics and later introduced for the design and analysis of computer experiments by Sacks 

et al. [8] and Welch et al. [13]. The potential applications of Kriging in the context of civil and 

mechanical engineering, range from basic uncertainty propagation to reliability and sensitivity 

analysis [14–18]. Beyond approximating the output of a computational model, Kriging 

surrogates also provide local estimates of their accuracy (via the variance of the Kriging 

predictor). This enables adaptive schemes, e.g. in the context of reliability analysis [19,20] or 

surrogate model-based design optimization [21,22]. The local error estimates of a Kriging 

surrogate have also led to improved Bayesian calibration of computer models (see, e.g. Bachoc 

et al. [23]). 

Although in its standard form Kriging is a stochastic interpolation method, certain extensions 

have been proposed for dealing with noisy observations. Such extensions have been of particular 

interest to the machine learning community, and they are commonly referred to as Gaussian 

process regression [24]. 

Some dedicated toolboxes are readily available for calculating Kriging surrogate models. Of 

interest to this review is general purpose software not targeted to specific Kriging applications, 

because they are typically limited to two or three-dimensional problems (see, e.g. gslib [25]). 

Within the R community, one of the most comprehensive and well-established Kriging packages 

is arguably DiceKriging, developed by the DICE consortium [26]. This set of packages provides 

Kriging meta-modeling as part of a framework for adaptive experimental designs and Kriging-

based optimization based on the packages DiceDesign and DiceOptim [27,28]. scikit-learn 

provides a Python-based, machine-learning-oriented implementation of Gaussian processes for 

regression and classification [29]. Alternatively, PyKriging [30] offers a Kriging toolbox in 

python that offers basic functionality with a focus on user-friendliness. Gpy [31] offers a 

Gaussian process framework with a focus on regression and classification problems. Within the 

Matlab programming language, the first Kriging toolbox with widespread use was DACE [32]. 

DACE was later extended to ooDACE [33], an object-oriented Kriging implementation with a 

richer feature set. Small Toolbox for Kriging [34] offers an alternative Kriging implementation 

that is mainly focused on providing a set of functions for Kriging surrogate modeling and design 

of experiments. GPML [35] offers a library of functions that are directed towards Gaussian 

processes for regression and classification in a machine learning context. Finally, recent versions 
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of Matlab (starting from R2015b) provide a rapidly growing Gaussian process library for 

regression and classification. 

Due to the variety of potential applications of Kriging, different toolboxes tend to be focused on 

a specific user niche. There is limited availability of general purpose Kriging toolboxes that 

allow for seamless integration within various UQ workflows ranging from, e.g. basic uncertainty 

propagation to reliability analysis and surrogate-model-based optimization. To this end, the 

Kriging toolbox presented here was developed as a module of the general purpose UQ 

framework, UQLab ([36], www.uqlab.com). Also, although most of the toolboxes above offer a 

significant set of configuration options, the support for fully customizable Kriging is often 

limited or not easily accessible, which can be a drawback in a research environment. Finally, the 

user experience may vary from user-friendly to complex (especially to access the most advanced 

features), often requiring a significant degree of programming knowledge. This might be rather 

inconvenient for applied scientists and practitioners with limited programming knowledge. 

Following these premises, this paper introduces the UQLab Gaussian process modeling tool (GP-

module) focusing on its unique embedding into a complex uncertainty quantification 

environment, its user-friendliness and customisability. 

The paper is structured as follows: in Section 2 a theoretical introduction to Kriging is given to 

highlight its main building blocks. In Section 3 the key-features of the GP-module are presented. 

Finally, a set of application examples is used to showcase in detail the usage of the software in 

Section 4, followed by a summary and a roadmap of the upcoming developments in Section 5. 

2. Kriging theory 

2.1. Kriging basics 

Any metamodeling approach, such as Kriging, aims at approximating the response of a 

computational model given a finite set of observations. In this context, consider a system whose 

behavior is represented by a computational model which maps the M-dimensional input 

parameter space 
x
to the 1-dimensional output space, i.e., :

M
y  

x
x  where 

 1
, ,

M
x x x . 

Kriging is a meta-modeling technique which assumes that the true model response is a 

realization of a Gaussian process described by the following equation [5]: 

2
( ) ( ) ( , )

K
Z  x β f x x  (1) 

Where ( )β f x  is the mean value of the Gaussian process, also called a trend, 
2

  is the Gaussian 

process variance and ( , )Z x is a zero-mean, unit-variance Gaussian process. This process is 

fully characterized by the auto-correlation function between two sample points )( , ;R x x θ . The 

hyperparameters θ  associated with the correlation function ;( )R  θ  are typically unknown and 

need to be estimated from the available observations. 

http://www.uqlab.com/
http://www.uqlab.com/
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Having specified the trend and the correlation function parameters it is possible to obtain an 

arbitrary number of realizations of the so-called prior Gaussian process (see Figure 1 left). In the 

context of metamodelling, the goal is to calculate a prediction ( )
K

x  for a new point x , given 

an experimental design  (1) ( )
, ,

N
 x x  of size N and the corresponding (noise-free) model 

responses  (1) (1) ( ) ( )
( , , () )

N N
y y   x xy . A Kriging metamodel (a.k.a. Kriging predictor) 

provides such predictions based on the properties of the so-called posterior Gaussian process 

conditioned on the available data (see Figure 1 right). The Kriging prediction x corresponds to a 

random variate     ˆ ˆ
ˆ( ) ~ ,

Y Y
Y  x x x . Therefore the approximation of the computational 

model that is obtained is essentially an infinite family of such models. Each of these models is a 

realization (or sample) of the posterior Gaussian process. In practice, the mean response is used 

(see Eq. (6)) as the Kriging surrogate, while its variance (see Eq. (7)) is often interpreted as a 

measure of the local error of the prediction. The equations for calculating the mean and variance 

of a universal Kriging predictor are given next. 

 
Fig. 1. Realisations of a prior (left) and posterior Gaussian process (right). The Gaussian process mean in 

each case is denoted by a black line. 

The Gaussian assumption states that the vector formed by the true model responses, y and the 

prediction, ˆ( )Y x , has a joint Gaussian distribution defined by: 

2

1

ˆ( )
~

( ) 1 ( )
,

( )
N

Y




      
      

      

f x β r xx

Fβ r x Ry
 (2) 

where F is the information matrix of generic terms: 

( )
( ) , 1, , , 1, , ,

i

ij j
F f i N j P    x  (3) 

( )r x  is the vector of cross-correlations between the prediction point x and each one of the 

observations whose terms read: 

( )
( ) , ; ), , .( i=1,

i

i
r R N x x x θ  (4) 
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R  is the correlation matrix given by: 

( ) ( )
, ; ), , .R( i,j=1,

i j

ij
R N x x θ  (5) 

The mean and variance of the Gaussian random variate ˆ( )Y x  (a.k.a. mean and variance of the 

Kriging predictor) can be calculated based on the best linear unbiased predictor properties [5]: 

 1

ˆ ( )( ) ( ) ,
Y




  r xx f x β R y Fβ  (6) 

  
1

2 2 1 1

ˆ ( ) ( )( ) 1 ( ) ( )
Y

 


 
  r x r xx R u x F R F u x  (7) 

where: 

 
1

1 1


 
β F R F F R y  (8) 

is the generalized least-squares estimate of the underlying regression problem and 

1
( ) ( ).( )


 r x xu x F R f  (9) 

Once ˆ ( )
Y

 x  and 2

ˆ ( )
Y

 x are available, confidence bounds on predictions can be derived by 

observing that: 

ˆ

ˆ

( )
ˆ( ) ,

( )

Y

Y

t
Y t






 

 
    

 

x
x

x
 (10) 

Table 1 
Formulas of the most commonly used Kriging trends. 

Trend Formula 

constant (ordinary Kriging) 
0

   

Linear 0

1

M

i i

i

x 


  

quadratic 0

1 1 1

M M M

i i ij i j

i i j

x x x  
  

    

 

Where ( )   denotes the Gaussian cumulative distribution function. Based on Eq. (10) the 

confidence intervals on the predictor can be calculated by: 

1 1

ˆ ˆ ˆ ˆ
ˆ( ) ( ) 1 ( ), ( ) 1 ( )

2 2
Y Y Y Y

a a
Y    

 
    
    

        
x x x x x  (11) 

moreover, can be interpreted as the interval within which the Kriging prediction falls with 

probability 1 a . 
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The equations that were derived for the best linear unbiased Kriging predictor assumed that the 

covariance function 
2

; )(R  θ  is known. In practice, however, the family and other properties of 

the correlation function need to be selected a priori. The hyperparameters  , the regression 

coefficients, and the variance 
2

  need to be estimated based on the available experimental 

design. This involves solving an optimization problem that is further discussed in Section 2.4. 

The resulting best linear unbiased predictors are called empirical in Santner et al. [5] because 

they typically result from the empirical choice of various Kriging parameters that are further 

discussed in Sections 2.2 - 2.4. 

2.2. Trend 

The trend refers to the mean of the Gaussian process, i.e., the ( )β f x  term in Eq. (1). Using a 

non-zero trend is optional, but it is often preferred in practice (see, e.g. Rasmussen and Williams 

[24], Schöbi et al. [37]). Note that the mean of the Kriging predictor in Eq. (6) is not confined to 

be zero when the trend is zero. 

In the literature, it is customary to distinguish between Kriging metamodels depending on the 

type of trend they use [5,24,38]. The most general and flexible formulation is universal Kriging, 

which assumes that the trend is composed of a sum of P arbitrary functions ( )
k

f x , i.e. 

1

( ) ( )
P

k k

k

f


β f x x . (12) 

Some of the most commonly used trends for universal Kriging are given for reference in Table 1. 

Simple Kriging assumes that the trend has a known constant value, i.e. 1P  , 
1
( )f x  and 

1
  is 

known. In Ordinary Kriging, the trend has a constant but unknown value, i.e. 1P  , 
1
( ) 1f x and 

1
  is unknown. 

2.3. Correlation function 

The correlation function (also called kernel in the literature, or covariance function if it includes 

the Gaussian process variance 
2

 ) is a crucial ingredient for a Kriging metamodel since it 

contains the assumptions about the function that is being approximated. An arbitrary function of 

( , )x x  is in general not a valid correlation function. In order to be admissible, it has to be chosen 

in the set of positive definite kernels. However, checking for positive definiteness of a kernel can 

be a challenging task. Therefore it is usually the case in practice to select families of kernels 

known to be positive definite and to estimate their parameters based on the available 

experimental design and model responses (see Section 2.4). A usual assumption is to consider 

kernels that depend only on the quantity h   x x  which are called stationary. A list of 

stationary kernels commonly used in the literature can be found in Table 2. Different correlation 

families result in different levels of smoothness for the associated Gaussian processes, as 

depicted in Figure 2 [24]. 
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In case of multidimensional inputs (M > 1), it is common practice to obtain admissible kernels as 

functions of one-dimensional correlation families like the ones in Table 2. Two standard 

approaches in the literature are the separable correlation type [8]: 

1

,, ; ) ( , )(
M

i i i

i

R R x x 


  x x θ  (13) 

Table 2 
List of available correlation families. 

Name Formula 

Linear ) max ,; 0 1(R
h

h 


 
 
 
 

  

Exponential p( e; ) xR
h

h 


 
 
 
 

  

Matérn 3/2 3 3
); e p( 1 xR

h
h

h


 
  
   
      
   

  

Matérn 5/2 
2

2

5 55
) 1 x; e( p

3
R

h hh
h 

  
   
   
      
   

 

Gaussian (squared exponential) 
2

1

); x( e p
M

i

R
h

h 


 
 
 


 
 
  

   

 

 
Fig. 2. Realisations of Gaussian processes, characterized by various correlation families and the same 

length-scale (θ) value. 

and the ellipsoidal type [24]: 

. (14) 
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Although typically 
M

θ  this is not necessarily true in the general case, since the number of 

components of θ  that corresponds to each input dimension may vary. In the current stage, it is 

assumed however that one element of θ is used per dimension for notational clarity. 

In certain scenarios (e.g., based on prior knowledge), isotropic correlation functions can be used 

for multidimensional inputs. In that case, the same correlation function parameters θ are used for 

each input dimension in Eq. (13), and Eq. (14). 

2.4. Estimating the hyperparameters 

In most practical applications of Kriging surrogate modeling, the hyperparameters θ are 

estimated given an experimental design  and model responses y . Maximum likelihood and 

cross-validation are the most commonly used methods for doing so and further discussed next. 

The maximum likelihood approach aims at finding the set of parameters β , θ , 2
  such that the 

likelihood of the observations  (1) ( )
( , , () )

N
 x xy is maximal. Since y  follows a 

multivariate Gaussian distribution, the likelihood function reads: 

1/2

2 1

2 /2 2

det( ) 1
| , , exp ( ) ( )

(2 ) 2
( )

N
L 

 




   

 
  

R
y β θ y Fβ R y Fβ  . (15) 

For any given value of θ , the maximization of the likelihood w.r.t. β , and 
2

  is a convex 

quadratic programming problem. Consequently, it admits closed form generalized least-squares 

estimates of β  and 
2

  (for proof and more details see, e.g. Santner et al. [5]): 

 
1

1 1
( )


 

 β β F R F F R yθ  , (16) 

   2 2 1
( )

1
  

N
 


   θ y Fβ R y Fβ .  (17) 

The value of the hyperparameters θ is calculated by solving the optimization problem: 

 2
arg min lo )g | ,( ,L  

θ

θ y β θ  (18) 

Based on Eqs (15) - (17) the optimization problem in Eq. (18) can be written as follows: 

   21
arg min log det log(2 )

2 2 2

N N
  

 
 
 θ

θ R  (19) 

The cross-validation method (also known as K-fold cross-validation) is based instead on 

partitioning the whole set of observations  
def

, y  into K mutually exclusive and collectively 

exhaustive subsets  , 1, ,
k

Kk    such that 
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   
2

1

, , 1, , and
K

i j k

k

i j K


        (20) 

The k-th set of cross-validated predictions is obtained by calculating the Kriging predictor using 

all the subsets but the k-th one and evaluating its predictions on that specific k-th fold that was 

left apart. The leave-one-out cross-validation procedure corresponds to the special case that the 

number of classes is equal to the number of observations (K = N). 

In the latter case the objective function is [5,39]: 

    ˆ , ( )

2
( ) ( )

1

arg min
Y i

K

i i

i






 
θ

θ x x  (21) 

Where  ˆ , ( )

( )

Y i

i



x  is the mean Kriging predictor that was calculated using  ( ) ( )

,\
i i

x y

evaluated at a point ( )i
x . Notice that for the case of leave-one-out cross-validation, i is an index, 

but in the general case, i is a vector of indices. Calculating the objective function in Eq. (21) 

requires the calculation of K Kriging surrogates. The computational requirements for performing 

this operation can be significantly reduced as shown in Dubrule [40]. 

The estimate 
2

  is calculated using the following equation [39,41]: 

    
 

2
( ) ( )

ˆ ,( )2 2

2 ( )

1 ˆ ,( )

1
( )

i i
K

Y i

i

i Y i
K


 





 


  

x x
θ

x
  (22) 

where  2 ( )

ˆ ,( )

i

Y i



x  is the variance of a Kriging predictor that was calculated using  ( ) ( )

,\
i i

x y , 

evaluated at a point 
( )i

x . When i is a set of indices, the division and the squared operations in Eq. 

(22) are performed element-wise. 

Numerically solving the optimization problems described in Eq. (19) (maximum likelihood case) 

alternatively, Eq. (21) (cross-validation case) relies on either local (e.g., gradient-based) or global 

(e.g., evolutionary) algorithms. On the one hand, local methods tend to converge faster and 

require fewer objective function evaluations than their global counterparts. On the other hand, 

the existence of flat regions and multiple local minima, especially for larger input dimension, can 

lead gradient methods to poor performance when compared to global methods. It is common 

practice to combine both strategies sequentially to improve global optimization results with a 

final local search (which is also known as hybrid methods). 

It can often be the case in engineering applications that different components of the input 

variable x  take values that differ by orders of magnitude. In such cases, potential numerical 

instabilities can be avoided by scaling , e.g., as follows: 
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( )

( )
, 1, , , 1, ,

Var

i

j ji

j

j

Mu
x

i N j


    
  

  

  (23) 

where ( )i

j
u  (resp. ( )i

j
x ) refer to the i-th sample of the j-th component  (resp. of ) and 

j
    

Var
j

    refer to the empirical mean and variance of the j-th component of . 

3. The UQLab Gaussian process modeling module 

3.1. The UQLab project 

UQLab is a software framework developed by the Chair of Risk, Safety and Uncertainty 

Quantification at ETH Zürich [36]. The goal of this project is to provide an uncertainty 

quantification tool that is accessible also to a non-highly-IT trained scientific audience. Due to 

the broadness of the UQ scope, a correspondingly general theoretical framework is required. The 

theoretical backbone of the UQLab software lies in the global uncertainty framework developed 

by Sudret [42], De Rocquigny et al. [43], sketched in Figure 3a. According to this framework, 

the solution of any UQ problem can generally be decomposed into the following steps: 

 

Step A Define the physical model and the quantities of interest for the analysis. It is 

a deterministic representation of an arbitrarily complex physical model, 

e.g., a finite element model in civil and mechanical engineering. In this 

category also lie metamodels, such as Kriging, since once they are 

calculated, they can be used as surrogates of the underlying “true” model. 

Step B Identify and quantify the sources of uncertainty in the parameters of the 

system that serves as input for Step A. They are represented by a set of 

random variables and their joint probability density function (PDF). 

Step C Propagate the uncertainties identified in Step B through the computational 

model in Step A to characterize the uncertainty in the model response. This 

type of analyses includes moments analysis, full PDF characterization, rare 

events estimation, sensitivity analysis, etc. 

Step C’ Optionally, exploit the by-products of the analysis in Step C to update the 

sources of uncertainty, e.g., by performing model reduction based on 

sensitivity analysis. 
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b The modular structure of the UQLab framework. An arbitrary number of objects (Input, Model, 

Analysis) can be connected at any stage of the UQ problem. 

Fig. 3. An abstract illustration of the UQLab architecture (b) based on the theoretical UQ framework in 

(a) by Sudret [42]. 

These components introduce a clear semantic distinction between the elements involved in any 

UQ problem: model, input, and analysis. This theoretical framework provides the ideal 

foundation for the development of the information flow model in a multi-purpose UQ software. 

At the core of UQLab lies a modular infrastructure that closely follows the semantics previously 

described, graphically represented in Figure 3b. The three steps identified in Figure 3a are 

directly mapped to core modules in Figure 3b: model corresponds to Step A (physical modeling, 

metamodeling), input to Step B (sources of uncertainty) and analysis to Step C (uncertainty 

analysis). Within the UQLab framework, a module refers to some particular functionality, e.g., 

the GP-module provides Kriging surrogate modeling. Each module extends the functionalities of 

one of the core modules. It can be either self-contained or capitalize on other modules for 

extended functionalities. 

The real “actors” of a UQ problem are contained in the objects connected to each of the core 

modules. A typical example of such objects would be an input object that generates samples 

distributed according to arbitrary PDFs, a model object that runs a complex FEM simulation, or 

an analysis object that performs reliability analysis. The platform allows one to define an 

arbitrary number of objects and select the desired ones at various stages of the solution of a 

complex UQ problem. 
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UQLab first became freely available to the academic community on July 2015 as a beta version. 

On April 2017 the version 1.0 of UQLab was released. Starting from version 1.0 all the scientific 

code of the software is open-source (BSD license). By May 2018 around 1300 users have 

already registered and used it. 

3.2. The GP-module 

Kriging is one of the metamodelling modules available in UQLab [44]. Following the semantics 

described in the previous section, it is attached to the model core module. Although other 

modules can use the GP-module itself, e.g., an analysis module performing reliability analysis 

combining Kriging and Monte Carlo Simulation (AK-MCS) [19,45], the focus of this work is on 

the capabilities of the GP-module itself. 

An overview of the available features of the GP-module is given in Table 3. The GP-module 

incorporates the four ingredients identified in Section 2.1: 

 Trends: Universal Kriging trends are fully supported, including simple, ordinary, or 

polynomial of arbitrary degree. Also, custom basis functions f(x) or a completely custom 

trend function may be specified 

 Correlation functions: Standard correlation families from the literature are readily available 

as well as the possibility of creating user-defined ones. For multi-dimensional inputs, 

ellipsoidal and separable correlation functions can be used, also allowed for isotropic ones. 

Fully user-specified correlation functions are also supported 

 Estimation methods: Maximum likelihood (Eq. (19)) and cross-validation (Eq. (21)) 

methods can be used for estimating the hyper-parameters 

 Optimisation methods: Matlab’s built-in local and global optimization methods are offered, 

namely BFGS and genetic algorithm as well as a genetic algorithm with BFGS refinement 

(hybrid). 

In addition, various scaling operations are allowed for avoiding numerical instabilities during the 

hyperparameters estimation. Such operations may vary from simple zero-mean scaling to more 

advanced ones such as iso-probabilistic transformations by interfacing with other UQLab 

modules. 

Following the general design principle of UQLab concerning user-friendliness, all the possible 

configuration options have default values pre-assigned to allow basic usage of the module with 

very few lines of code (see Section 4.1). A Matlab structure variable is used to specify a Kriging 

configuration, called KOptions in the following sections. 

To showcase the minimal working code for obtaining a Kriging surrogate, a simple application is 

considered. The experimental design consists of 8 random samples in the [0,15] interval, and it is 

contained in the variable XED. The “true” model is ( ) sin( )x x x  , and the corresponding model 

responses are stored in the variable YED. The minimal code required for obtaining a Kriging 

surrogate, given XED and YED is the following: 

KOptions.Type = ’Metamodel’; 

KOptions.MetaType = ’Kriging’; 
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KOptions.ExpDesign.X = XED;  

KOptions.ExpDesign.Y = YED;  

myKriging = uq_createModel(KOptions); 

 

The first line clarifies the type of UQLab object that is being requested. Following the general 

UQ Framework in Figure 3a a model object of type ’Metamodel’ is created. The next line 

specifies the type of metamodel, followed by the manual specification of the experimental 

design. Finally, the UQLab command uq_createModel is used in order to create a model object 

using the configuration options in KOptions. 

The resulting Kriging metamodel object myKriging contains all the required information to 

compute the mean and variance of the Kriging predictor on new test points (X). This can be done 

using the following command: 

[meanY, varY] = uq_evalModel(myKriging, X); 

where meanY corresponds to the mean and varY to the variance of the Kriging predictor on the 

test points (see Eqs. (6), (7)). 

Once the metamodel is created, a report of the main properties of the Kriging surrogate model 

can be printed on screen by:  

uq_print(myKriging); 

 

%-------------- Kriging metamodel --------------% 

Object Name: Model 1 Input Dimension: 1 

Experimental Design 

Sampling: User 

X size: [8x1] 

Y size: 

Trend 

[8x1] 

Type: ordinary 

Degree: 0 

Gaussian Process 

 
Fig. 4. The output of uq_display of a Kriging model object having a one-dimensional input. 
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Table 3 
List of features of the UQLab GP-module. The default values for each property is in bold. 

Feature Specification Value Description 

Trend  Simple A constant term specified by the user (simple 

Kriging) 

  Ordinary A constant term estimated using Eq. (8) (ordinary 

Kriging) 

  Polynomial basis The trend in Eq. (12) consists of polynomial basis 

function fk of arbitrary degree 

  Custom basis The trend in Eq. (12) consists of arbitrary functions fk 

  Custom trend Custom trend function that computes F directly 

Correlation Types Separable As described in Eq. (13). Both isotropic and 

anisotropic variants are supported. 

  Ellipsoidal As described in Eq. (14). Both isotropic and 

anisotropic variants are supported. 

  Custom Custom correlation function that computes R  directly 

 Families Commonly used All the correlation families reported in Table 2 are 

available 

  Custom A custom correlation family can be specified 

Estimation  ML Maximum-likelihood estimation (see Eq. (19)) 

  CV K-fold Cross-Validation method (see Eq. (21)). 

Any K value is supported 

Optimisation  BFGS Gradient-based optimization method 

(BroydenFletcher-Goldfarb-Shanno algorithm). Matlab 

built-in 

  GA Global optimization method (genetic algorithm). 

Matlab built-in 

  HGA Genetic algorithm optimization with BFGS refinement 

 

Corr. Type:   ellipsoidal(anisotropic)  

Corr. family:   matern-5_2     

sigma^2:    4.787983e+01 

Estimation method:  Cross-Validation 

 

Hyperparameters 

 theta:    [ 0.00100 ] 

 Optim. method:  Hybrid Genetic Algorithm 

 

Leave-one-out error:  4.3698313e-01 

%-----------------------------------------------% 
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It can be observed that the default values for the trend, correlation function, estimation, and 

optimization method have been assigned (see Table 3). A visual representation of the metamodel 

can be obtained by: 

uq_display(myKriging); 

Note that the uq_display command can only be used for quickly visualizing Kriging 

surrogates when the inputs are one- or two-dimensional. The figure produced by uq_display 

is shown in Figure 4. 

4. Application examples 

4.1. Basic example 

The goal of this introductory example is to calculate a Kriging surrogate of a well-known 

surrogate modeling benchmark, the Branin-Hoo function. This function has been traditionally 

used as a benchmark for global optimization methods (see, e.g. Jones et al. [46]). A slightly 

modified version is considered this work, that was first proposed as a surrogate modeling 

benchmark by Forrester et al. [7] due to its representative shape concerning engineering 

applications. It is an analytical function given by: 

     
2

2 2 2

2 1 1 1
( ) cos ,1a xbx sx c sr xtx      x . (24) 

Some standard values of the parameters are used, namely a = 1, b = 5.1 (4π2), c = 5/π, r = 6, s = 

10 and t = 1/(8π). The function is evaluated on the square x1 ∈ [−5,10], x2 ∈ [0,15]. 

By taking advantage of the input and model modules of UQLab, the experimental design and 

model responses that will be used for calculating the surrogate can be generated with minimal 

effort. First, the probabilistic input model and the true model are defined as follows: 

% Start the UQLab framework  

uqlab; 

% Specify the probabilistic input model IOptions.Marginals(1).Type = 

’Uniform’; 

IOptions.Marginals(1).Parameters = [-5, 10]; 

IOptions.Marginals(2).Type = ’Uniform’; IOptions.Marginals(2).Parameters 

= [0, 15];  

myInput = uq_createInput(IOptions); 

% Specify the computational model 

MOptions.mString = [’(X(:,2) - .1/(2*pi)^2*X(:,1).^2 + 5/pi*X(:,1) … 

- 6).^2’ + 10*(1-1/(8*pi))*cos(X(:,1)) + 10’];  

myModel = uq_createModel(MOptions); 
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Fig. 5. From left to right: the Branin-Hoo function (true model) followed by the mean and standard 

deviation of the Kriging predictor. Red dots illustrate the experimental design. 

Note that the model object of the Branin-Hoo function can be equally coded in a Matlab m-file 

or written as a string (which is a useful feature for simple demo functions only). 

Next, the experimental design XED is generated along with the corresponding true model 

responses YED. The Latin Hypercube Sampling (LHS) method is used to obtain a space-filling 

experimental design of 15 samples [47]: 

% Draw 15 samples using Latin Hypercube Sampling 

XED = uq_getSample(15, ’LHS’); 

% Calculate the corresponding model responses YED = uq_evalModel(myModel, 

XED); 

A Kriging surrogate model using the XED, YED variables can be created as follows: 

KOptions.Type = ’Metamodel’; 

KOptions.MetaType = ’Kriging’; 

KOptions.ExpDesign.Sampling = ’user’; 

KOptions.ExpDesign.X = XED;  

KOptions.ExpDesign.Y = YED;  

myKriging = uq_createModel(KOptions); 

All the required ingredients for obtaining a Kriging surrogate are assigned default values unless 

specified by the user (see Section 3.2). The surrogate that is obtained can be visually inspected 

by issuing the command: 

uq_display(myKriging); 

The result of the uq_display command is shown in Figure 5. The Kriging surrogate myKriging 

can be used like any other model (e.g., myModel) to calculate its response given a new sample of 

the input X using the uq_evalModel function. For example, the mean predictor, meanY, of 100 
samples generated by Monte Carlo sampling can be computed as follows: 

X = uq_getSample(100); 

meanY = uq_evalModel(myKriging, X); 

More information can be extracted from the Kriging predictor using a slightly different syntax. 

The following code: 

[meanY, varY, covY] = uq_evalModel(myKriging, X); 
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allows to retrieve the 100 × 1 Kriging mean meanY, the 100 × 1 Kriging variance varY and the 

100 × 100 full covariance matrix of the surrogate model responses covY. 

 

Fig. 6. Comparison of true model output (from high fidelity simulations) versus various Kriging 

surrogates on a validation set of size 150. 

4.2. Hierarchical kriging 

To further illustrate the flexibility that can be achieved with the use of arbitrary trend functions, a 

hierarchical Kriging application is showcased. Hierarchical Kriging [48] is one Kriging 

extension aiming to fuse information from experimental designs related to different physical 

models of different fidelity. This is achieved by first calculating a Kriging surrogate using the 

low-fidelity observations and then using it as the trend of the high-fidelity surrogate. This 

approach can be extended to more fidelity levels in a similar fashion. A set of observations and 

model responses is used that originates from aero-servo-elastic simulations of a wind-turbine as 

presented in Abdallah et al. [49]. Given a set of input parameters related to the wind flow, the 

output of interest is the maximal bending moment at the blade root of a wind turbine. 

Two types of simulators are available for estimating the maximal bending moment given the 

wind conditions. A low-fidelity simulator can generate estimates of the output with minimal 

computation time at the cost of lower accuracy. On the other hand, a high-fidelity simulator can 

more accurately predict the maximal bending moment at a significantly higher computational 

cost. In this example a total of 300 low-fidelity and 15 high-fidelity simulations are available. 

First, a Kriging surrogate is computed on the low-fidelity dataset that is contained in variables 

XED_LF, YED_LF as follows: 

% Create the low-fidelity surrogate 

KOptions_LF.Type = ’Metamodel’; 

KOptions_LF.MetaType = ’Kriging’; 

KOptions_LF.ExpDesign.X = XED_LF; 

KOptions_LF.ExpDesign.Y = YED_LF;  

KOptions_LF.Corr.Family = ’Matern-3_2’;  

myKriging_LF = uq_createModel(KOptions_LF); 

Using the same configuration options, another Kriging surrogate is computed using the high-

fidelity dataset (XED_HF and YED_HF): 

% Create the high-fidelity surrogate 

KOptions_HF.Type = ’Metamodel’; 
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KOptions_HF.MetaType = ’Kriging’; 

KOptions_HF.ExpDesign.X = XED_HF; 

KOptions_HF.ExpDesign.Y = YED_HF;  

KOptions_HF.Corr.Family = ’Matern-3_2’;  

myKriging_HF = uq_createModel(KOptions_HF); 

 

Now a hierarchical Kriging surrogate is computed which is trained on the high-fidelity dataset 

but uses the low-fidelity Kriging surrogate (i.e., its mean predictor) as a trend: 

% Create the hierarchical Kriging surrogate 

KOptions_Hier.Type = ’Metamodel’; 

KOptions_Hier.MetaType = ’Kriging’; 

KOptions_Hier.ExpDesign.X = XED_HF; 

KOptions_Hier.ExpDesign.Y = YED_HF; 

KOptions_Hier.Corr.Family = ’Matern-3_2’; 

KOptions_Hier.Trend.Type = ’custom’; 

KOptions_Hier.Trend.CustomF = @(x) uq_evalModel(myKriging_LF, x); 

KOptions_Hier.Scaling = false;  

myKriging_Hier = uq_createModel(KOptions_Hier); 

 

The option KOptions_Hier.Scaling refers to the scaling of the input space before computing 

the surrogate model. In case of hierarchical Kriging scaling should be disabled because the low-

fidelity surrogate is calculated on the original data and needs to be used “as is”. 

The performance of the different surrogate models is tested on a separate validation set of 150 

high-fidelity simulations that is contained in the variables XVAL_HF and YVAL_HF. The output 

mean Kriging predictor on the validation set is calculated as follows: 

meanY_LF = uq_evalModel(myKriging_LF, XVAL_HF);  

meanY_HF = uq_evalModel(myKriging_HF, XVAL_HF);  

meanY_Hier = uq_evalModel(myKriging_Hier, XVAL_HF); 

 

where meanY_LF, meanY_HF and meanY_Hier correspond to the low-fidelity, high-fidelity and 

hierarchical Kriging predictors respectively. 

In Figure 6 a comparison of the true model output YVAL_HF versus the mean Kriging predictors is 

made. In each case the Root Mean Square Error (RMSE) is reported for quantifying the 

predictive performance of the surrogate: 

 
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( ) ( )

ˆ
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1
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E Y

Y
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

    (25) 

where Y denotes the true model outputs (in this case YVAL_HF), 
Ŷ

 the Kriging predictor mean (in 

this case variables meanY_LF, meanY_HF and meanY_Hier for each surrogate, respectively) and N 
the number of samples in the validation set. 

In this example, by taking advantage of the low-cost, low-fidelity observations, the hierarchical 

Kriging predictor achieves a 68% decrease of the RMSE on the validation set compared to the 

Kriging model that was solely based on the high-fidelity measurements. Moreover, by inspecting 



 Ch. Lataniotis et al./ Journal of Soft Computing in Civil Engineering 2-3 (2018) 91-116 109 

the mean responses of each Kriging predictor in Figure 6, it is clear that the hierarchical Kriging 

surrogate significantly reduces the prediction bias compared to the low- and high-fidelity ones 

taken as standalone. As demonstrated by this application, building a hierarchical Kriging 

surrogate model requires minimal effort thanks to the customisability of the GP-module. 

4.3. Kriging with custom correlation function 

This example illustrates how the correlation function customization capabilities of the GP-

module can be used to apply Kriging in a non-standard setting. 

Consider the discontinuous subsurface model given in Figure 7, which may represent the 

distribution of some soil property (e.g., porosity) in the presence of a fault. The true model 

consists of two realizations of two distinct random processes on the two regions A1 and A2 at the 

left and right of the fault, respectively: 

 
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2 2 2
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where  1 2
,x xx  represents the spatial coordinates in the 2D domain, Z1 (resp. Z2) are 

realizations of a Gaussian process characterized by a correlation function with length 

scales  1 11 12
, θ   (resp.  2 21 22

, θ ). 

 

A Kriging surrogate model will be calculated using the following correlation 

function: 

 

   

   

1 1 1

2 2 2

, ; ,

, ; , ; ,

othe w

,

,

, r ise0

R

R

A A

A AR

   

    









x x θ x x

x x θ x x θ x x   (27) 

 
Fig. 7. Graphical visualization of the subsurface model. The unknowns (length scales of each random 

field and the fault angle) are denoted by red color. 
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Where  1 2
, , aθ θ θ . There is a smooth dependence on 

1 2
,x x  within each region, but no 

correlation between points that belong to different regions. The boundary between the two 

regions is fully defined by the crack angle, α, which is unknown and the fault location that is 

assumed to be known (   1 2
0.6, ,1x x  ). The goal here is to use Kriging to interpolate the 

measurements taken at borehole locations A, B, and C and estimate the five unknown parameters 

 1 2
, , aθ θ θ . The correlation function of each region is the same, both in the true model and the 

Kriging surrogate, i.e., it is assumed to be known. In particular, the correlation function is 

separable Matérn 3/2 (see Eq. (13) and Table 2). The maximum-likelihood method is selected 

for estimating θ . Due to the complexity of the underlying optimization problem a hybrid genetic 

algorithm with relatively large population size and a maximum number of generations is 

selected. 

A Matlab implementation of the correlation function in Eq. (27) is given in Appendix A. This 

Matlab function is called my_eval_R in the following code snippet. 

 
Figure 8: From left to right: The true permeability of the soil, followed by the mean and standard 

deviation of the Kriging predictor. Red dots illustrate the experimental design. 

The Kriging surrogate is created next, based on a limited set of observations contained in the 

variables BoreholeLocations and BoreValues, which contain the locations of the 

measurements along the boreholes and the value of the desired property, respectively. 

KOptions.Type = ’Metamodel’; 

KOptions.MetaType = ’Kriging’; 

KOptions.ExpDesign.X = BoreholeLocations; 

KOptions.ExpDesign.Y = BoreValues; 

KOptions.Corr.Handle = @my_eval_R; 

% Add upper and lower bounds on the optimization variables 

BoundsL = [0.3 0.1 0.3 0.1 pi/6] ; 

BoundsU = [0.9 0.5 0.9 0.5 5*pi/6] ; 

 

KOptions.Optim.Bounds =[BoundsL ;BoundsU]; 

KOptions.Optim.Method = ’HGA’; 

KOptions.Optim.HGA.nPop = 60; 

KOptions.Optim.MaxIter = 50; 

KOptions.EstimMethod = ’ML’;  

KOptions.Scaling = False;  

myKriging = uq_createModel(KOptions); 
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Once the Kriging metamodel has been computed, the mean and standard deviation of the Kriging 

predictor can be quickly visualized for 1D and 2D models using the uq_display command, 

which produces a plot similar to Figure 8, except in a smaller domain determined by the range of 

the points in the experimental design. A comparison between the true and the estimated values, θ

is given in Table 4. As expected, the accuracy of the hyperparameters estimation is low due to the 

limited dispersion of the experimental design. The error of the length scale estimates along the x1 

direction is consistently larger due to the lack of samples along that direction. From a coding 

perspective, although the correlation function that is used is relatively complex, it is 

straightforward to use in a Kriging surrogate once coded as a Matlab function (by setting the 

KOptions.Corr.Handle value appropriately). Moreover, custom correlation functions are 

allowed to have an arbitrary number of hyperparameters. The only requirement is that the 

optimisation bounds (or initial value, depending on the optimisation method that is used) must 

have the same length as the number of the hyperparameters. 

Table 4 

Listing of the true and estimated correlation function parameters, θ , for the Kriging surrogate of the 

subsurface model. 

 

 

5. Summary and outlook 

In this paper, the GP-module of the UQLab software framework was presented. This UQLab 

module enables practitioners from various disciplines to get started with Kriging metamodelling 

with minimal effort as was illustrated in the introductory application in Section 4.1. However, it 

is also possible to access more advanced customization, e.g., for research purposes. This was 

showcased in Section 4.2 where a hierarchical Kriging metamodel was developed and in Section 

4.3 where a relatively complex, non-stationary correlation function was used to solve a 

geostatistical inverse problem. The GP-module is freely available to the academic community 

since the first beta release of UQLab in July 2015. 

The current version of the GP-module only allows for computing Kriging models on noisy data 

by explicitly providing the noise level via the nugget effect. The general case where the noise 

level is unknown and needs to be estimated (a.k.a. Gaussian process regression) is currently 

under development and will be addressed in an upcoming release. In addition, the current version 

of the GP-module relies on additional Matlab toolboxes for performing the hyperparameter 

optimization. This may be a limiting factor for some users. 

In addition to the modules currently exploiting its functionality (Polynomial Chaos-Kriging and 

Reliability analysis [45,50]), new UQLab modules that interface with the GP-module are 

 θ 11 θ 12 θ 21 θ 22 α 

 0 . 0 600 . 250 0 . 900 0 . 350 1 . 309 
 0 . 310 0 . 271 0 . 310 0 . 374 1 . 342 

 48 . 8 3 . 65 2 . 6 6 . 2 9 . 5 
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currently under active development. The upcoming random fields module will offer several 

random field types (conditional and unconditional) together with advanced sampling 

methodologies and will be interfaced with the GP-module to offer trajectory resampling 

capabilities. Similarly, the upcoming Reliability-Based Design Optimisation (RBDO) module 

uses the surrogate modeling capabilities of the GP-module for solving RBDO problems as 

described in Moustapha et al. [22]. 

Appendix A. Kriging with custom correlation function: implementation 

details 

This section aims to provide some additional implementation details on the application example 

in Section 4.3, in terms of the Matlab code involved. The correlation function described in Eq. 

(27) can be translated to the following Matlab function:  

function R = my_eval_R( x1,x2,theta,parameters ) 

xc = 0.6; % the x-location of the crack on the surface  

yc = 1 ;  % the y-location of the crack on the surface 

length_scales_1 = theta(1:2);  

length_scales_2 = theta(3:4);  

crack_angle = theta(5) ; 

% find the angles of each sample of x1  

angles_x1 = acos( (xc - x1(:,1))./sqrt((x1(:,1) - xc).^2 + ... 

(x1(:,2) - yc).^2 ) ); 

% find the indices of x1 that belong to first region  

idx_x1_1 = angles_x1 <= crack_angle; 

% find the indices of x1 that belong to second region  

idx_x1_2 = ~idx_x1_1; 

% find the angles of each sample of x2  

angles_x2 = acos( (xc - x2(:,1))./sqrt((x2(:,1) - xc).^2 + ... 

(x2(:,2) - yc).^2 ) ); 

% find the indices of x2 that belong to first region  

idx_x2_1 = angles_x2 <= crack_angle; 

% find the indices of x2 that belong to second region  

idx_x2_2 = ~idx_x2_1; 

% set-up various correlation function options so that we can re-use the 

% build-in UQLab function for evaluating R in each region 

CorrOptions.Type = ’separable’; 

CorrOptions.Family = ’Matern-3_2’; 

CorrOptions.Isotropic = false; 

CorrOptions.Nugget = 1e-2; 

% initialize R matrix 

R = zeros(size(x1,1), size(x2,1)); 

% Compute the R values in region 1 

R(idx_x1_1,idx_x2_1) = uq_Kriging_eval_R( x1(idx_x1_1,:), 

x2(idx_x2_1,:),... 

length_scales_1, CorrOptions); 

% Compute the R values in region 2 

R(idx_x1_2,idx_x2_2) = uq_Kriging_eval_R( x1(idx_x1_2,:), 

x2(idx_x2_2,:),...  

length_scales_2, CorrOptions);  

end 
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The provided code, although vectorized, is optimized for readability and not performance. To 

that end, the internal function of the GP-module uq_Kriging_eval_R is used for calculating the 

correlation function value in each of the regions. 
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