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Agricultural waste materials are increasingly being used as partial 

replacements for cement in concrete. Several experimental studies are 

available to evaluate the mechanical properties of plastic waste 

reinforced concrete but there are limited evaluations on agricultural 

waste material. In this study, an attempt is made to investigate the 

compressive strength of Corn Cob Ash (CCA) concrete at different 

replacement levels by implementing an Artificial Neural Network 

(ANN). As the percentage of CCA increases, workability, density and 

compressive strength decreases, hence the developed ANN model 

consists of 3 input parameters (cement content, CCA content, and 

curing ages) in the input layer, 4 hidden neurons in the hidden layer 

and 3 output parameters (slump, density, and compressive strength) in 

the output layer. Training is done by adopting Levenberg-Marquardt 

back-propagation algorithm by considering 80% of experimental data 

with log-sigmoid activation function for both hidden and output layers. 

The developed model has a high correlation coefficient of 0.999 for 

both the training and testing data sets. It has low MSE and MAPE 

values of 2.2768x10
-5

 and 1.25 for training data respectively and 

3.0463x10
-5

 and 1.37 for testing data respectively. Hence, it is 

concluded that the developed model predicts the output at an average 

rate of 98% accuracy. The predicted 2.5% replaced CCA concrete 

shows the best performance at all curing ages. Therefore, this 

percentage level is considered as an optimum replacement level which 

does not much affect the hardened properties of concrete. 
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1. Introduction 

In recent years many industrially-related byproducts such as silica fume, fly ash and carbon 

nanotubes are being incorporated to enhance the properties of cement paste or concrete [1]. But 

in many countries, large amounts of agricultural waste materials such as bagasse, banana stalks, 

rice husk, bamboo, corncob, etc., are discarded as waste. Their disposal is causing serious 

environmental problems. Therefore, efficient utilization of these agricultural waste materials as a 

partial replacement for concrete is a good approach. Several researchers reported that the CCA 

could be used as a partial replacement in concrete (Fig 1) that exhibited the best pozzolanic 

property at its later ages [2–7]. 

 
Fig. 1. Stepwise procedure for the production of corn cob ash. 

The Extraction process of CCA is shown in Fig 1. The main difficulty in using CCA as a 

substitute for cement in concrete is that it reduces the compressive strength along with the 

reduction of fresh and hardened properties of concrete. Therefore, various research works were 

carried out to determine the mechanical properties of concrete at different percentage 

replacements in order to find out the best optimum results [2–5]. The effect of agricultural waste 

material like corn cob ash (CCA) on the mechanical properties of concrete was studied by Patel 

et al.,[2]. The results of this study indicate that concrete workability decreases as the replacement 

percentage increases and the initial and final setting time also increase with the increase in 

percentage level. It was found that compressive strength is lower at an early age, but increases 

significantly at an older age due to the pozzolanic activity of CCA [5,7]. Therefore, the 

compressive strength of high-performance concrete was investigated by Aliyu et al., [3] by 

replacing CCA at different weight percentages (5%, 10%, 15%, and 20%) of cement in M-50 

grade concrete. The results of this study indicated that there was a decrease in strength at 3 and 7 

days and greater improvement in strength is observed after 28, 56, and 90 days. Moreover, as the 

percentage of replacement increases, a reduction in strength was reported. 

The density of CCA is lower when compared to cement in concrete, therefore the addition of 

CCA into concrete beyond 15% replacement makes concrete lighter [4]. Usually, the concrete 

samples with 10% of CCA replacement provide the best results without much affecting the 

concrete strength properties [5]. Adesanya and Raheem [7] based on their research work stated 
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that 2% and 4% of CCA replacement provide higher strength compared to the control mix at later 

ages. Serbănoiu et all [8] investigated the concrete properties at 2.5% and 5% CCA replacement 

and obtained the best compressive strength values at 2.5% CCA replacement. Therefore, from 

these previous studies on CCA concrete, we can conclude that strength can be predicted at 

various replacement levels, but it is difficult to quantify the smaller variations in strength by 

using some small percentage variations of CCA in approximate fractions. Developing 

experiments that account for such small variations could be difficult. Fortunately, these types of 

problems can be overcome by implementing soft computing techniques in concrete strength 

prediction. 

Usually, concrete strengths are determined by casting and testing specimens under compressive 

load but recent advances in computer software and technologies provide a new way to predict 

concrete strengths based on the constituent materials of concrete. The water-cement ratio, cement 

content, quality and quantity of aggregate materials used, type and amount of admixtures used, 

quality control during the production of concrete and many other factors influence the strength 

development of concrete. Therefore, many researchers implemented advanced software packages 

to determine the concrete strength based on its constituent materials [9–14]. The implementation 

of such techniques saves cost and practical time, and it is also possible to determine the concrete 

properties with lesser effort [15]. The implementation of these types of techniques is collectively 

called soft computing techniques. These are used to make automated processes that partially or 

completely replace human efforts. 

The compressive strength of concrete can also be predicted by soft computing techniques like 

regression analysis [16], Supervised machine learning (SML) techniques, gene expression 

programming [17] and Group Method of Data Handling (GMDH) [18]. The Decision tree and 

Random Forest Machine Learning Techniques are also providing a promising way to determine 

the compressive strength of concrete rather than ANN but the Accuracy and flexibility offered by 

ANN are quite impressive. Few researchers previously implemented the ANN in predicting the 

compressive strength of concrete. An estimation of waste concrete's compressive strength was 

conducted by Heidari et al., [19] using backpropagation neural networks. Charhate et al., [20] 

compared the ANN approach with the Multi linear regression approach in predicting the concrete 

properties. When it comes to slump and compressive strength, ANN performs better and yields 

more accurate predictions than MLR models. Keshavarz et al., [21] are also tried to compare the 

ANN model with the Adaptive Neuro-Fuzzy Inference System (ANFIS) model. The ANN and 

ANFIS models are both successful at predicting concrete compressive strength. Asteris and 

Mokos [12] predicted the compressive strength with a deviation of ± 20% from the developed 

ANN model through MATLAB by utilizing both UPV and rebound hammer experimental results 

and concluded that the ANN approach with log-sigmoid and hyperbolic transfer function is a 

useful tool for the researchers and engineers to interpret the relationship between NDT and 

compressive strength values. Kulkarni et al., [13] have investigated the compressive strength of 

Recycled Aggregate Concrete (RAC) and Fly ash (Class F) embedded concrete using a three-

layered Feed-Forward neural network. The ANN models were developed by using ‘log-sigmoid’ 

and ‘linear’ transfer functions with the help of MATLAB 2016 software. They reported that the 

developed ANN model provides good results in predicting the compressive strength of concrete 

within an acceptable performance. The compressive and flexural strengths of concrete were 

investigated by Solanki and Gangwal [14] by implementing ANN through MATLAB. It was 
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reported that the developed ANN model predicts the strength very close to actual strength values 

with a deviation of 2% error rate. Paulson et al., [22] implemented ANN to predict the 

compressive strength of silica fume concrete. The weight of cement, silica fumes, fine aggregate, 

coarse aggregate and water in kilograms were used as five different input parameters. The 

deviation obtained between experimental and ANN predicted results is less than 1%. Based on 

these low deviations, they concluded that the ANN can be used for further studies without any 

experimental implementations within the acceptable range. 

Deep Convolutional Neural Network (DCNN) models were implemented by Jang et al., [9] to 

investigate the compressive strength of concrete. About 150 to 200 digital microscope images of 

the concrete samples were collected before the compressive strength test and these images were 

used as inputs to determine the compressive strength results through CAFFE version 1.0. Chopra 

et al., [10] performed a comparative analysis of the compressive strength of concrete with and 

without replacement of fly ash as a substitute for cement based on two different techniques such 

as ANN and Genetic Programming (GP). The data required for analysis were collected from the 

experiments conducted at different curing age periods of 28, 56 and 91 days; and also 1442 data 

from the RMC plant for testing the model. The errors involved between actual and experimental 

values are determined by the statistical approach R
2
 and RMSE. The ANN model which was 

trained by the Levenberg Marquardt algorithm provides better results compared to GP for both 

experimental and in-situ data. An Evolutionary Artificial Neural Network (EANN) was 

implemented by Nikoo et al., [11] to determine the strength of concrete. A Neuro Solution ver 

5.0 software was used for the network learning and training processes. The optimized ANN 

model is compared with Multiple Linear Regression (MLR) models to check the accuracy level. 

The predicted compressive strength of concrete from the EANN model is more precise, highly 

flexible and accurate compared to MLR models. Many researchers used ANN and fuzzy models 

of different types for the prediction of compressive strength attributes of cement concrete in the 

field of geopolymers [23–27]. 

In the present study, an attempt is made to develop an ANN model to predict the compressive 

strength attributes of CCA embedded concrete for 2.5%, 7.5% and 12.5% of CCA replacement 

with cement using ANN approach. The density and slump variations are also studied at different 

concrete curing ages. However, the conventional experimental techniques are time-consuming 

and require a lot of manpower. Therefore, there is a need to implement artificial intelligence (AI) 

based modeling approaches to reduce the cost and time [28]. This helps researchers to predict the 

strength variations without much difficulty at small percentage replacements levels of CCA and 

at different curing age periods. 

2. Methods 

2.1. ANN and its mechanism 

Humans are intellectual creatures in this universe, whose nervous system consists of cells called 

neurons and they are interconnected by axons and dendrites. Accordingly, an ANN is defined as 

an assemblage of interconnected simple processing units or nodes similar to the biological 

function of neurons in humans. The performance capability of a neural network depends on the 

connectivity between the neurons and their connected strength, which are often called weights 

and are obtained during the learning process of the training data (Appendix 1). 
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Source: https://images.app.goo.gl/hWEppxiamyHwyNG2A. 

Fig. 2. An ANN which resembles the biological neuron. 

A simple ANN, like a biological neuron, also consists of three important layers which are input, 

hidden and output layers that resemble the functioning of the dendrite, cell body and axons of 

biological neurons respectively (Fig 2). The input layer receives input values and the number of 

input nodes depends on the number of input variables associated with the problem domain or 

experimental data. 

Each input node in the input layer is connected to hidden neurons in the hidden layer through 

scaled weights. The multiplied weights for each input are the neural network’s regression 

coefficients, which are pre-determined numbers stored in the program. The transformation of 

input data takes place within the hidden layer through summation and activation functions that 

resemble the cell body in the biological neuron. The number of hidden layers and hidden neurons 

in the network depends on the amount of input and output variables associated with the problem. 

The inputs are summed using a simple addition function called the summation function and 

passed through a transfer function to meet the required threshold value. The behavior of each 

neuron is determined based on the type of transfer function used in the neural network. The 

output layer gives the response of the ANN network with the input variable. The information 

flows in the forward direction from the input to the output layer through several hidden layers, so 

it is called a Multilayered Feed-Forward neural network. 

 
Fig. 3. An illustrative ANN with sigmoid activation function [22]. 



120 R. Abhishek et al./ Journal of Soft Computing in Civil Engineering 7-2 (2023) 115-137 

A simple ANN is represented in Fig 3. It includes a sigmoidal activation function between the 

input and output layers. Generally, a linear transfer function is used between the hidden layer and 

the output layer. A linear function does not interpret the output values and it returns the same 

value as the output obtained from the summation function. 

Let X1, X2, X3,…,Xn be the given inputs to the network. Before entering the computational layer 

the inputs must be multiplied by appropriate weights W1, W2, W3,….,Wn respectively and a bias 

is also added to it, it is represented in Equation 1. 

𝐼 = 𝑊1𝑋1 +𝑊2𝑋2 +𝑊3𝑋3 +⋯+ 𝑊𝑛𝑋𝑛 +  𝑏𝑖𝑎𝑠⏟                            
𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑖𝑛𝑝𝑢𝑡

 (1) 

In general, 

𝐼 = ∑ 𝑊𝑛𝑋𝑛 + 𝑏𝑗
𝑛
𝑖=1  (2) 

Equation 2 represents the general summation function that computes the sum of weighted inputs 

with their bias values. A bias neuron is also added in the hidden layer, which provides the bias 

variables associated with the network. Where ‘I’ is the output of the summation function and it 

becomes an input to the activation function which is given in Equation 3. 

𝑌 = ∅(∑ 𝑊𝑛𝑋𝑛 + 𝑏𝑗
𝑛
𝑖=1 ) (3) 

i.e., 

𝑌 = ∅(𝐼) (4) 

Where Ø is the transfer function or Activation function that produces the output Y. For any 

system that has input and output values, the above-given relationship (Equation 4) maps the 

outputs. A sigmoid transfer function is a continuous transfer function where the output of the 

function varies between 0 and 1. It is often used to predict the output as a function of the 

probability given in Equation 5. 

∅(𝐼) =  
1

1+𝑒−𝑥
 (5) 

 
Fig. 4. Log-sigmoid transformation function. 

The efficiency of neural network depends on the proper selection of weights and the number of 

hidden neurons in the hidden layers. The presence of more than one hidden layer improves 

prediction accuracy [29]. However, the number of hidden layers should be kept minimum to 

avoid the problem of overfitting and also to minimize time consumption. 
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The main objective of the training process is to minimize the error rate between the target and 

network outputs. The developed ANN model provides an output for any input value, so it must 

be validated to check the efficiency of the model, and how well it can predict the outputs [30]. 

The Validation of the model can be done by using various statistical parameters, some of them 

are: 

Mean Square Error Function (MSE) 

In Regression analysis, errors can be quantified using mean squared errors between predicted 

value xi and observed value yi. MSE is the average of the squared difference between predicted 

and experimental values. The equation required to predict the MSE value is represented in 

equation 6 where n is the total number of data. 

𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑛
𝑖=1  (6) 

A lower MSE value close to zero represents a more efficient model in the prediction process. If it 

is zero, it represents that no error exists between the target and predicted output values. 

Pearson Correlation Coefficient (R
2
) 

The correlation coefficient represents the linear relationship between predicted and target values. 

A better fit can be obtained when R-value is closer to unity. Therefore, a high R
2
 value is 

required during the testing and training process. 

𝑅2 = 1 − (
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖−𝑥̅)
2𝑛

𝑖=1

) (7) 

Equation 7 represents the mathematical representation of the correlation between two data sets, 

where xi, yi and x̅ are the predicted value, target value and mean of predicted value, respectively. 

Mean Absolute Percentage Error (MAPE) 

The amount of errors between target and predicted values is determined in terms of absolute 

percentage error which is shown mathematically in equation 8. The lower the mean percentage 

error the better the prediction efficiency of the network. 

𝑀𝐴𝑃𝐸 = 
1

𝑛
∑ |

𝑥𝑖−𝑦𝑖

𝑥𝑖
|𝑛

𝑖=1  (8) 

Where xi and yi are the actual and predicted values respectively. 

2.2. Experimental data 

In the present study, an ANN model is developed and trained based on experimental data of CCA 

embedded concrete (Table 1) designed, casted and cured as per Beauro of Indian Standards (BIS) 

norms. All the data required for the development of the ANN model are collected from the 

standardized tests conducted on fresh (as per BIS: 1199-1959) and hardened state (as per BIS: 

516-1959) of CCA concrete by using a computerized compression testing machine of 2000 kN 

capacity. Here the compressive strength was measured at 7, 14, 21, 28, 35, 42 and 56 days of 

curing ages. Mix design is carried out for M30 grade concrete and CCA is used as partial 

replacement of cement in different proportions (0, 5, 10 and 15 percent by weight of cement 

which are designated as M1, M2, M3, and M4 respectively). 
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Here, partial replacement of different proportions of cement of different curing ages is carried 

out by CCA; so that water content, W/C ratio, fine and coarse aggregate contents remain constant 

for all the mix ratios. The methodology adopted to use ANN for the prediction of fresh and 

hardened properties of CCA substituted cement concrete is shown in Fig 5. 

The density of CCA is comparatively less than cement and CCA absorbs more amount of water. 

Therefore, concrete density decreases by increasing replacement percentage along with the 

reduction in slump value. Here, cement content and CCA content at different curing ages are 

considered as three different inputs to determine the compressive strength, density and slump as 

three outputs. 

Table 1 

The CCA replaced cement concrete mix design test data for prediction process. 

Concrete 

Mix ID 

CCA 

Replacement 

(%) 

Cement 

Content 

(kg/m
3
) 

CCA 

(kg/m
3
) 

Slump 

(cm) 

Density of 

concrete cube 

(kg/m
3
) 

Age in 

Days 

Compressive 

Strength 

(MPa) 

Remark 

M1-D7 00 426.0 00.0 21.50 2420.88 07 23.40 T 

M1-D14 00 426.0 00.0 21.50 2454.00 14 27.00 T 

M1-D21 00 426.0 00.0 21.50 2487.77 21 30.60 T 

M1-D28 00 426.0 00.0 21.50 2502.00 28 36.00 T 

M1-D35 00 426.0 00.0 21.50 2547.50 35 37.44 Test 

M1-D42 00 426.0 00.0 21.50 2571.25 42 38.88 T 

M1-D56 00 426.0 00.0 21.50 2594.07 56 39.96 T 

M2-D7 05 404.7 21.3 15.25 2461.60 07 21.36 T 

M2-D14 05 404.7 21.3 15.25 2499.40 14 24.63 Test 

M2-D21 05 404.7 21.3 15.25 2530.07 21 27.23 T 

M2-D28 05 404.7 21.3 15.25 2564.70 28 32.04 T 

M2-D32 05 404.7 21.3 15.25 2587.90 35 33.32 Test 

M2-D42 05 404.7 21.3 15.25 2572.12 42 34.60 T 

M2-D56 05 404.7 21.3 15.25 2606.50 56 35.56 T 

M3-D7 10 383.4 42.6 07.00 2368.29 07 19.43 T 

M3-D14 10 383.4 42.6 07.00 2431.11 14 20.12 T 

M3-D21 10 383.4 42.6 07.00 2466.67 21 22.87 T 

M3-D28 10 383.4 42.6 07.00 2495.30 28 26.90 T 

M3-D35 10 383.4 42.6 07.00 2565.60 35 27.97 T 

M3-D42 10 383.4 42.6 07.00 2532.48 42 29.06 Test 

M3-D56 10 383.4 42.6 07.00 2543.70 56 29.85 T 

M4-D7 15 362.1 63.9 05.80 2308.70 07 16.43 T 

M4-D14 15 362.1 63.9 05.80 2357.00 14 17.00 T 

M4-D21 15 362.1 63.9 05.80 3376.29 21 19.24 T 

M4-D28 15 362.1 63.9 05.80 2382.80 28 22.64 Test 

M4-D35 15 362.1 63.9 05.80 2457.77 35 23.54 T 

M4-D42 15 362.1 63.9 05.80 2432.29 42 24.43 T 

M4-D56 15 362.1 63.9 05.80 2487.11 56 25.13 T 

Note: 1. The mix designation ‘M1’, ‘M2’, ‘M3’ and ‘M4’ represents 0, 5, 10 and 15 % CCA replaced concrete 

mix respectively and ‘D’ designation with number suffix represents its corresponding curing age. 

2. T = Training. 
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2.3. Performance of ANN model 

In the present work, the ANN model was developed by using MATLAB R2015a, version 8.5 

software. The software is user-friendly and finds applications in research works, project works, 

and engineering applications as well as science and economics fields. MATLAB was developed 

in early 1970 by Cleve Moler, chairman of computer science at the University of New Mexico 

[31]. MATLAB is an acronym for “matrix laboratory”. It is a programming language for 

technical computing and it creates a numerical computing environment developed by 

MathWorks. Around 4 million people worldwide are using MATLAB software in various fields 

[32]. In the present study MATLAB is used for mathematical computing. It has Predefined 

algorithms that make the analysis much easier so that no more recompilation of programs is 

required. It provides an innovative and interactive way of solving problems. Files and variables 

can be easily tracked within the workspace. Therefore, MATLAB is one of the user-friendly 

software in the field of ANN application. In the present study, several steps were followed to 

develop an efficient ANN model for compressive strength prediction of CCA embedded concrete 

as given in Fig 5 [33]. 

 
Fig. 5. Flowchart for developing an ANN model to predict the compressive strength of corncob ash 

concrete. 
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2.3.1. Selection of data 

The fresh and hardened properties of concrete such as cement content, CCA content and curing 

age are considered as three different inputs to the ANN network. 7, 14, 21, 28, 35, 42 and 56
th

 

day compressive strengths and corresponding slump and cube density values are considered as 

target outputs. Out of 28 available data sets, about 80% of data are selected for training (T – as 

mentioned in Table 1) and 20% of data sets are randomly selected for testing (Test – as 

mentioned in Table 1) i.e., 23 data sets are used for the training process and remaining 5 for 

testing the ANN model. All these data are arranged to fit the ANN matrix size of 3 x 23. It 

consists of three parameters of 23 samples belonging to four different types of concrete mix 

tested at different curing ages. Each column in the matrix represents a separate material property. 

Target values are necessary to train and validate the ANN model. The efficiency of the developed 

model is determined by comparing the actual target values with the predicted values. The 

difference obtained should be minimum in order to endorse that the developed ANN model as an 

efficient model. 

2.3.2. Neural network size and architecture 

ANN is an efficient approach for the estimation process to analyze a large number of data sets at 

a high accuracy rate. In this study, a model with a single hidden layer is used to predict the 

experimental values. The final architecture is characterized as 3-4-3-3. It means, 03 inputs in the 

input layers, 04 hidden neurons in the hidden layer and 03 output neurons in the output layer and 

finally, 03 outputs are predicted by the developed network which are slump, density and 

compressive strength values of CCA concrete at different percentage replacements of CCA. The 

architecture of the ANN model is shown in Fig 6. 

 
Fig. 6. Neural network architecture (3-4-3-3). 

2.4. Training the network 

The training is done by using 80% of experimental data samples. Here, an MSE value of 

2.2768x10
-5

 and a correlation R-value of 0.99932 were obtained for the trained ANN model. 

These final results are obtained after several attempts of the training iteration process performed 

by changing the number of hidden neurons in the hidden layer and changing other network 

parameters such as goal, epochs and learning rate. The performance of the network is determined 

based on the number of errors accumulated in the predicted values. The model that gives the least 

amount of error is considered as the best-trained model. Training is performed for 2000 epochs, 

which means the network can iterate up to 2000 cycles to check the adequacy of the model. 

Currently, the training is stopped at the 184
th

 epoch. Plots for training status and performance are 

shown in Fig 7 and 8 respectively. 
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The best performance obtained at the end of training is shown in Fig 8 which shows the 

variations in MSE values at each epoch. Training is stopped once the lowest MSE value is 

obtained from the network. The low MSE value indicates the robustness of the neuron layer [18]. 

The regression plot of the training data is shown in Fig 9. It shows the best fit of the data at the 

end of the iteration process during training i.e., it represents a linear relationship between the 

target inputs and predicted outputs. 

 
Fig. 7. Illustrative training status of the network. 

 
Fig. 8. Performance plot of the training network. 
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Fig. 9. Regression plot for training data sets. 

2.5. Testing and validation 

Testing and validation are done by utilizing the remaining 20% of experimental data samples 

from Table 1. MSE and correlation R-values were obtained during testing. This indicates that the 

best validation performance is obtained at these values for the given network. 

 
Fig. 10. Regression plot for testing data sets. 

The data sets which were not used during the training process are now used to test the model and 

a good performance is obtained with MSE value of 3.04632 x 10
-5

 and an R-value of 0.99917. 

The R-value indicates the linear relationship between the target values and the network outputs, 

so the training process is repeated until the correlation coefficient R values close to unity. Here, 

the end of the 184
th

 epoch, R values of training, testing and validation reach near to unity, 

therefore, a high correlation is obtained between the target and the predicted outputs. The 

regression plot of the test process is shown in Fig 10. This clearly shows that a strong positive 

linear relationship exists between target and predicted output values. The analysis results are 

finally saved after obtaining satisfactory results from the developed ANN model for future 

analysis. 
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3. Results and discussions 

The compressive strength of concrete coupons is conventionally determined at the age of the 28
th

 

day after curing the specimens. It becomes a difficult task to determine the strengths at different 

ages and practically it is Laborious. Hence the implementation of ANN provides an easy and 

economical way to predict the compressive strength of concrete at different ages in an acceptable 

mathematical way. Therefore, in this work, an attempt has been made to predict the compressive 

strength attributes of CCA embedded concrete for different percentages of CCA replacements, 

tested at different curing ages. Here the variations in slump and densities of CCA embedded 

concrete coupons are also studied. 

3.1 Validation of ANN model 

The obtained results are almost close to the experimental values with a maximum error of 

3.438% accumulated in predicting the slump values, 2.087% error in determining density values 

and a maximum error of 5.054% in predicting compressive strength values. The overall mean 

absolute percentage error (MAPE) for the generated outputs with 4 hidden neurons was 1.256%. 

 
Fig. 11. Error Histogram for training data sets. 

Figure 11 shows the error histogram. The percentage errors are grouped into 20 bins. The error 

bins are nearer to the zero line, therefore, it is clear that the developed model predicts significant 

output values within the range of acceptable errors. Therefore, this model is finalized for testing 

and validation. The experimental results and predicted outputs from the ANN model are given in 

Table 2. 

Table 2 

Comparision of experimental and ANN predicted outputs of test data set. 

Mix ID 
Slump (cm) Density (kg/m

3
) Compressive strength (MPa) 

Exp. ANN % error Exp. ANN % error Exp. ANN % error 

M1-D35 21.50 21.66 0.764 2547.50 2576.81 1.151 37.44 37.42 0.065 

M2-D14 15.25 14.84 2.662 2499.40 2455.81 1.745 24.63 25.01 1.540 

M3-D42 07.00 07.22 3.181 2532.48 2541.82 0.369 29.06 28.79 0.944 

M4-D28 05.80 05.80 0.013 2382.80 2427.32 1.869 22.64 22.73 0.380 

M2-D35 15.25 14.90 2.280 2587.90 2563.87 0.929 33.32 34.21 2.686 

Note:- Exp. = Experimental data 

ANN = Predicted output values from the developed ANN model 
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The absolute percentage errors are also within the acceptable range, so it can be realized that the 

developed model predicts outputs close to the experimental values. The maximum absolute 

percentage error involved in predicting slump value is 3.181%; for density, it is 1.869% and for 

compressive strength, it is 2.686%. The overall MAPE is 1.371%. Therefore, it is decided that 

the developed ANN model predicts the output with an average accuracy rate of 98%. Figures 12, 

13 and 14 show the graphical representation of variations in predicted outputs of the slump, 

density and compressive strength attributes with their corresponding experimental results 

respectively. 

 
Fig. 12. Variations in slump values of experimental and predicted test output. 

 
Fig. 13. Variation in density values of experimental and predicted test output. 
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Fig. 14. Variations in compressive strength values of experimental and predicted test output. 

The developed ANN model is capable of predicting the outputs with the least amount of errors. 

Therefore, this model was finalized to predict the compressive strengths at different desired 

percentages of CCA at different curing ages. Experimental results show strength values for 5%, 

10% and 15% replacement of CCA. Therefore, the strength properties at intermediate 

percentages such as 2.5%, 7.5% and 12.5% CCA replacement were found with the help of 

developed ANN model in order to find out the best optimum percentage replacement of CCA for 

cement in concrete. For our convenience, the mix designations M5, M6 and M7 are considered 

for individual percentage replacements of 2.5, 7.5 and 12.5%, respectively. The strength 

parameters for each replacement of CCA were estimated for 3, 7, 14, 21, 28, 35, 42, 56, 90, 100, 

180, 270 and 365 days. 

Table 4 

Average slump values of predicted outputs. 

Mix CCA % Slump in cm Reduction in slump with respect to mix 1 (%) 

M1 00.0 21.50 00.00 

M5 02.5 19.18 10.77 

M2 05.0 15.25 29.07 

M6 07.5 10.48 51.25 

M3 10.0 07.00 67.44 

M7 12.5 05.69 73.53 

M4 15.0 05.80 73.02 

 

The slump value collected from the experiment results for 0% CCA is 21.5 cm, for 5% CCA 

replacement it is 15.25 cm and for 10 % and 15% CCA replacement it is found to be 7 cm and 

5.8 cm respectively. The developed ANN model provides the slump value for each day when the 

compressive strength is to be determined. These slump values obtained from the ANN model for 

the particular mix are almost similar but slightly vary in fractional digits at different ages, so the 

average of the slump values was considered for further analysis to interpret the results. The 

average slump values for predicted results are tabulated in Table 4. 
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Fig. 15. Slump variation for different CCA replacement predicted by ANN. 

Fig 15 represents the variation in slump values for various percentage replacements of CCA. It 

clearly shows that as the percentage of CCA increases the workability of concrete decreases. It is 

due to the high water absorption characteristics of CCA. The control mix had the highest slump 

value of 21.5 cm. The 12.5 % CCA replaced concrete shows lowest slump value of 5.69 cm. The 

slump value for 2.5% CCA replaced concrete showed the maximum slump that is very close to 

the control mix (0% CCA), Therefore, it is considered as more workable concrete compared to 

other mixes. 

Fig 16 represents the percentage reduction in slump values for each percentage variation of 

CCA. This graph represents that as the percentage of CCA increases there is an increase in in 

percentage reduction of slump compared to the control mix. 

 
Fig. 16. Percentage reduction in slump for different percentage replacement of CCA. 
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There is about 10% reduction in slump for 2.5% replacement of CCA concrete compared to 

control mix (0% CCA) and for 12.5% and 15% replacement, reduction is more than about 70% 

with respect to control mix concrete. The experimental and predicted density for each mix at 

different curing ages are tabulated in Table 5 and Fig. 17 indicates the density values ranging 

from 0% to 15% replacement of CCA. 

Table 5 

Densities of CCA replaced test coupons predicted by ANN at different ages. 

Curing 

Days 

Density(kg/m
3
) at percentage replacement 

control mix 

(0% CCA) 

2.5% 

CCA 

05% 

CCA 

7.5% 

CCA 

10% 

CCA 

12.5% 

CCA 

15% 

CCA 

03 2377.96 2391.25 2396.07 2394.09 2391.73 2393.30 2315.76 

07 2420.88 2419.56 2461.60 2416.38 2368.29 2410.80 2308.70 

14 2454.00 2458.51 2499.40 2447.06 2431.11 2434.88 2357.00 

21 2487.77 2495.87 2530.07 2478.08 2466.67 2460.82 2376.29 

28 2502.00 2552.93 2564.70 2530.75 2495.30 2509.98 2382.80 

35 2547.50 2573.76 2587.90 2548.62 2565.60 2525.53 2457.77 

42 2571.25 2584.39 2572.12 2557.01 2532.48 2532.11 2432.29 

56 2594.07 2597.17 2606.50 2567.05 2543.70 2539.90 2487.11 

90 2615.33 2607.99 2594.35 2575.67 2558.23 2546.53 2470.68 

100 2616.46 2609.02 2595.30 2576.53 2558.97 2547.17 2472.82 

180 2618.41 2610.99 2597.35 2578.52 2560.64 2548.51 2485.47 

270 2618.68 2611.48 2598.14 2579.44 2561.36 2548.99 2496.60 

365 2618.90 2611.95 2598.93 2580.38 

 

 

 

 

2562.12 2549.47 2506.19 

 

 
Fig. 17. Variation in densities of different % CCA replaced concrete cubes at different curing ages 

predicted by ANN. 
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The experimental and predicted compressive strengths for each mix at different curing ages are 

tabulated in Table 6. The compressive strength for 0%, 2.5%, 7.5% and 12.5% for 3-day curing 

age periods are 20.38, 21.17, 18.62 and 16.37 MPa respectively. It was recorded as 23.40, 23.38, 

22.59 and 19.23 MPa for corresponding percentage variation of CCA for 7 days curing age 

period. While for 28 days, it is 36.00, 34.65, 29.54 and 25.08 MPa respectively. Whereas for 90 

days concrete achieved strength of 40.55, 39.25, 33.41 and 28.12 MPa for each percentage 

variation of CCA respectively. 

Table 6 

Predicted compressive strength at various percentage replacements of CCA. 

Curing 

days 

Compressive strength (MPa) 

control mix 

(0% CCA) 

2.5% 

CCA 

05% 

CCA 

7.5% 

CCA 

10% 

CCA 

12.5% 

CCA 

15% 

CCA 

03  20.83 21.17 20.33 18.62 17.09 16.37 14.97 

07  23.40 23.38 21.36 20.24 19.43 17.54 16.43 

14  27.00 26.56 24.63 22.59 20.12 19.23 17.00 

21 30.60 29.73 27.23 25.08 22.87 21.16 19.24 

28  36.00 34.65 32.04 29.54 26.90 25.08 22.64 

35  37.44 36.42 33.32 31.07 27.97 26.37 23.54 

42  38.88 37.30 34.60 31.79 29.06 26.91 24.43 

56  39.96 38.36 35.56 32.65 29.85 27.56 25.13 

90  40.55 39.25 36.82 33.41 30.21 28.12 25.60 

100  40.64 39.34 36.91 33.49 30.28 28.18 25.68 

180  40.81 39.54 37.14 33.74 30.48 28.32 26.02 

270  40.85 39.62 37.28 33.90 30.61 28.40 26.29 

365  40.89 39.70 37.42 34.08 30.74 28.47 26.52 

 

 
Fig. 18. Predicted compressive strength variations at different curing ages. 
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The compressive strength of 2.5% and 5% CCA replacement showed very appreciable results 

and is very close to the control mix, so this replacement level can be used for desired suitable 

application without much loss in the concrete strength. Fig 18 graphically represents the 

reduction in compressive strength for different mixes. It clearly shows that as the percentage of 

CCA increases, the compressive strength reduces as compared to the control mix. 

Table 7 
Percentage reduction in compressive strength compared to control mix. 

Curing 
2.5% CCA 05% CCA 7.5% CCA 10% CCA 12.5% CCA 15% CCA 

age (days) 

03  1.64 02.41 10.61 17.96 21.42 28.14 

07  0.09 08.72 13.51 16.97 25.05 29.79 

14  1.63 08.78 16.34 25.49 28.78 37.04 

21  2.85 11.02 18.04 25.27 30.85 37.13 

28  3.75 11.00 17.95 25.28 30.34 37.12 

35  2.73 11.01 17.02 25.30 29.57 37.13 

42  4.07 11.01 18.24 25.26 30.79 37.17 

56  4.01 11.02 18.30 25.31 31.04 37.12 

90  3.21 09.20 17.61 25.50 30.66 36.87 

100  3.20 09.18 17.60 25.50 30.66 36.82 

180  3.12 09.00 17.33 25.32 30.61 36.25 

270  3.02 08.74 17.02 25.07 30.48 35.65 

365  2.92 08.49 16.66 24.83 30.38 35.15 

 

 

Fig. 19. Reductions in compressive strength with varying curing age periods. 

The percentage reduction in strength with respect to the control mix is tabulated in table 7 and its 

graphical representation is shown in Fig 19. The percentage reduction in strength of 2.5% CCA 
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replacement is less as compared to other different mixes. Hence 2.5% of CCA replacement is 

considered as optimum dosage in terms of strength consideration. 

4. Conclusions 

In the present study, a multilayer feed-forward neural network with 4 numbers of hidden neurons 

is developed based on available 0%, 5%, 10% and 15% CCA replaced cement concrete 

experimental data. Compressive strength attributes for 2.5%, 7.5% and 12.5% CCA replacements 

at 3, 7, 14, 21, 25, 28, 42, 56, 90, 100, 180, 270 and 365 days of curing ages were predicted by 

using the developed ANN model. 

The developed ANN model has a high correlation value of 0.99932 and 0.99917 for the training 

data and testing data, respectively. This indicates a strong linear relationship that exists between 

the target and the predicted outputs. It also showed low MSE values of 2.2768 x 10
-5

 and 3.0463 

x 10
-5

 for the training and testing data set respectively. This represents that the developed model 

is more effective in predicting the desired outputs [34–36]. The maximum absolute percentage 

errors of 5.05 and 3.18 were observed in the training and testing data sets, respectively and 

MAPE values of 1.25 and 1.37 were obtained for the training and testing data sets, respectively. 

Therefore, it can be concluded that the developed model predicts the output with an average 

accuracy of 98%. 

With the application of the developed ANN model, compressive strength results with relatively 

low percentage errors can be expected without conducting any additional experiments in a short 

period. The slump results show that the workability of concrete decreases as the percentage of 

CCA increases [37,38]. Currently, the workability of 2.5% replaced CCA is relatively nearer to 

the control mix without much loss in workability. The densities of coupons with 2.5% and 5% 

replacement of CCA do not show much variation in comparison with the control mix and also 

they are slightly higher than that of the control mix. But as the percentage replacement of CCA 

increases, the density of concrete decreases. For 2.5% and 5% CCA replaced concrete, 

compressive strength reaches its target strength of 30 MPa at its 28 days of curing. But beyond 

12.5% CCA replaced concretes failed to achieve it. Hence 2.5% and 5% CCA replaced concretes 

are suitable for structural applications from the point of strength consideration. 

Compressive strength, slump and density of coupons decrease as the percentage replacement of 

CCA increases. The results specified that 2.5% replacement gives a peak value of compressive 

strength for all curing ages in M30 grade concrete. Therefore, 2.5% is recommended as the 

optimum dosage of CCA (an agricultural waste) replacement for the given concrete mix. For 

predicting the compressive strength of CCA embedded concrete at various replacement levels 

based on available experimental data, ANN is an efficient method; as it saves time, manpower, 

material and costs in carrying out complex and labor-intensive practical experiments. As a result 

of savings in concrete constituents, it helps to reduce CO2 emissions to the environment and 

preserves natural resources. Therefore, adaptation of soft computing techniques like ANN helps 

less experienced engineers to carry out the prediction process without much difficulty along with 

environmental sustainability. 
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Appendix 1 

Input Weight (IW11) and bias (b1) value for first hidden layer. 

𝐼𝑊11 = [

 9.2618 0.1735 −3.141
−11.2837 −1.2438 32.0195
−77.3811 −2.1779 −0.0299
−77.155 25.1598 −0.1634

]

4×3

 

𝑏1 = [

−9.8388
−4.4079
48.1807
16.0323

]

4×1

 

The input weight and bias matrix depends on the number of input variables and the number of 

neurons in the hidden layer. There are three inputs (Cement content, CCA, days) and four hidden 

neurons therefore input weight matrix will be 4x3 matrix and bias will be 4x1 matrix. 

Layer Weight (LW21) and bias (b2) for output layer. 

𝐿𝑊21 = [
 −0.3393    − 0.0012    − 2.0511       1.7725
     −6.213       0.0346    − 0.0555    − 0.5599
−50.2446      0.2862   − 0.9695    − 1.1596

]

3 𝑋 4

 

𝑏2 = [
−0.542
−0.4244
0.3029

]

3 𝑋 1

 

The second layer weights and bias matrix depends on the number of hidden neurons in that layer 

and the number of inputs from the previous layer. Therefore, in the present study four inputs 

from first layer to second layer and it consist of three hidden neurons therefore the weight and 

bias matrix of the second layer becomes 3x4 and 3x1 matrix respectively. By using these weight 

and bias matrices, it is possible to develop an Excel program to predict the ANN outputs by 

adopting approaches described in section 2.1 (equation 1 to 5). 

References 

[1] Karakouzian M, Farhangi V, Farani MR, Joshaghani A, Zadehmohamad M, Ahmadzadeh M. 

Mechanical characteristics of cement paste in the presence of carbon nanotubes and silica oxide 

nanoparticles: An experimental study. Materials (Basel) 2021;14. 

https://doi.org/10.3390/ma14061347. 

[2] Patel M, Rathod J, Bhatt P, Chaudhari D, Pathan N, Naik S. Experimental Study of Corn Cob Ash 

Concrete. Int J Innov Res Technol 2020;6:110–2. 

[3] Aliyu S, Mohammed A, Matawal DS, Duna S. Response Surfaces for Compressive Strength of 

High Performance Concrete with Corn Cob Ash. Int J Eng Technol Creat Innov 2019;2:1–22. 

[4] Assefa S, Dessalegn M. Production of Lightweight Concrete Using Corncob Ash as Replacement 

of Cement in Concrete. Am J Civ Eng 2019;7:17. https://doi.org/10.11648/j.ajce.20190701.13. 



136 R. Abhishek et al./ Journal of Soft Computing in Civil Engineering 7-2 (2023) 115-137 

[5] Pranav H Desai. Evaluation of corn cob ash as partial replacement of cement in concrete. Int Res J 

Eng Technol 2018;5:724–8. 

[6] AKILA S, A M, D M, G N, S R. Evaluation of corn cob ash as partial replacement of cement in 

concrete. Int J Adv Res TRENDS Eng Technol 2018;12:226–33. 

[7] Adesanya DA, Raheem AA. A study of the workability and compressive strength characteristics of 

corn cob ash blended cement concrete. Constr Build Mater 2009;23:311–7. 

https://doi.org/10.1016/j.conbuildmat.2007.12.004. 

[8] Șerbănoiu AA, Grădinaru CM, Muntean R, Cimpoeșu N, Șerbănoiu BV. Corn Cob Ash versus 

Sunflower Stalk Ash, Two Sustainable Raw Materials in an Analysis of Their Effects on the 

Concrete Properties. Materials (Basel) 2022;15:868. https://doi.org/10.3390/ma15030868. 

[9] Jang Y, Ahn Y, Kim HY. Estimating Compressive Strength of Concrete Using Deep Convolutional 

Neural Networks with Digital Microscope Images. J Comput Civ Eng 2019;33:1–11. 

https://doi.org/10.1061/(asce)cp.1943-5487.0000837. 

[10] Chopra P, Sharma RK, Kumar M. Prediction of Compressive Strength of Concrete Using Artificial 

Neural Network and Genetic Programming. Adv Mater Sci Eng 2016;2016:1–10. 

https://doi.org/10.1155/2016/7648467. 

[11] Nikoo M, Moghadam FT, Sadowski A. Prediction of concrete compressive strength by 

evolutionary artificial neural networks. Adv Mater Sci Eng 2015;2015. 

https://doi.org/10.1155/2015/849126. 

[12] Asteris PG, Mokos VG. Concrete compressive strength using artificial neural networks. Neural 

Comput Appl 2020;32:11807–26. https://doi.org/10.1007/s00521-019-04663-2. 

[13] Kulkarni P, Londhe SN, Dixit PR. A comparative study of concrete strength prediction using 

artificial neural network, multigene programming and model tree. Chall J Struct Mech 2019;5:42. 

https://doi.org/10.20528/cjsmec.2019.02.002. 

[14] Solanki S, Gangwal S. Prediction of compressive strength of high-volume fly ash concrete using 

artificial neural network. Int J Sci Res Eng Trends 2019;5. 

[15] Dabiri H, Farhangi V, Moradi MJ, Zadehmohamad M, Karakouzian M. Applications of Decision 

Tree and Random Forest as Tree-Based Machine Learning Techniques for Analyzing the Ultimate 

Strain of Spliced and Non-Spliced Reinforcement Bars. Appl Sci 2022;12. 

https://doi.org/10.3390/app12104851. 

[16] Tam VWY, Butera A, Le KN, Silva LCFD, Evangelista ACJ. A prediction model for compressive 

strength of CO2 concrete using regression analysis and artificial neural networks. Constr Build 

Mater 2022;324:126689. https://doi.org/10.1016/J.CONBUILDMAT.2022.126689. 

[17] Zou Y, Zheng C, Alzahrani AM, Ahmad W, Ahmad A, Mohamed AM, et al. Evaluation of 

Artificial Intelligence Methods to Estimate the Compressive Strength of Geopolymers. MdpiCom 

2022;8. https://doi.org/10.3390/gels8050271. 

[18] Naderpour H, Sharei M, Fakharian P, Heravi MA. Shear Strength Prediction of Reinforced 

Concrete Shear Wall Using ANN, GMDH-NN and GEP. J Soft Comput Civ Eng 2022;6:66–87. 

https://doi.org/10.22115/scce.2022.283486.1308. 

[19] Heidari A, Hashempour M, Tavakoli D. Using of Backpropagation Neural Network in Estimating 

of Compressive Strength of Waste Concrete . J Soft Comput Civ Eng 2017;1:54–64. 

[20] Charhate S, Subhedar M, Adsul N. Prediction of Concrete Properties Using Multiple Linear 

Regression and Artificial Neural Network. J Soft Comput Civ Eng 2018;2:27–38. 

https://doi.org/10.22115/SCCE.2018.112140.1041. 

[21] Keshavarz Z, Torkian H. Application of ANN and ANFIS Models in Determining Compressive 

Strength of Concrete ARTICLE INFO ABSTRACT. J Soft Comput Civ Eng 2018;2:62–70. 

[22] Paulson AJ, Prabhavathy RA, Rekh S, Brindha E. Application of neural network for prediction of 

compressive strength of silica fume concrete. Int J Civ Eng Technol 2019;10:1859–67. 



 R. Abhishek et al./ Journal of Soft Computing in Civil Engineering 7-2 (2023) 115-137 137 

[23] Kostić S, Vasović D. Prediction model for compressive strength of basic concrete mixture using 

artificial neural networks. Neural Comput Appl 2015;26:1005–24. https://doi.org/10.1007/s00521-

014-1763-1. 

[24] Tayfur G, Erdem TK, Kırca Ö. Strength Prediction of High-Strength Concrete by Fuzzy Logic and 

Artificial Neural Networks. J Mater Civ Eng 2014;26:4014079. 

[25] Nazari A, Hajiallahyari H, Rahimi A, Khanmohammadi H, Amini M. Prediction compressive 

strength of Portland cement-based geopolymers by artificial neural networks. Neural Comput Appl 

2019;31:733–41. https://doi.org/10.1007/s00521-012-1082-3. 

[26] Lande MP. Application of Artificial Neural Networks in Prediction of Compressive Strength of 

Concrete by Using Ultrasonic Pulse Velocities. IOSR J Mech Civ Eng 2012;3:34–42. 

https://doi.org/10.9790/1684-0313442. 

[27] Abdollahzadeh A, Masoudnia R, Aghababaei S. Predict strength of rubberized concrete using 

atrificial neural network. WSEAS Trans Comput 2011;10:31–40. 

[28] Pandey S, Kumar V, Kumar P. Application and Analysis of Machine Learning Algorithms for 

Design of Concrete Mix with Plasticizer and without Plasticizer. J Soft Comput Civ Eng 

2021;5:19–37. https://doi.org/10.22115/scce.2021.248779.1257. 

[29] Yusuf A, Abdullahi M, Sadiku S, Aguwa JI, Alhaji B, Folorunso TA. Modelling slump of concrete 

containing natural coarse aggregate from bida environs using artificial neural network. J Soft 

Comput Civ Eng 2021;5:19–38. https://doi.org/10.22115/SCCE.2021.268839.1272. 

[30] Shahmansouri AA, Yazdani M, Hosseini M, Akbarzadeh Bengar H, Farrokh Ghatte H. The 

prediction analysis of compressive strength and electrical resistivity of environmentally friendly 

concrete incorporating natural zeolite using artificial neural network. Constr Build Mater 

2022;317:125876. https://doi.org/10.1016/j.conbuildmat.2021.125876. 

[31] Moler C. The Origins of MATLAB - MATLAB & Simulink n.d. 

[32] mathworks. The Mathworks Company Overview 2020. 

[33] Keerthi Gowda BS, Easwara Prasad GL, Velmurugan R. Prediction of Mechanical Strength 

Attributes of Coir/Sisal Polyester Natural Composites by ANN. J Soft Comput Civ Eng 2020;4:79–

105. https://doi.org/10.22115/scce.2020.226219.1200. 

[34] Behnood A, Golafshani EM. Predicting the compressive strength of silica fume concrete using 

hybrid artificial neural network with multi-objective grey wolves. J Clean Prod 2018;202:54–64. 

https://doi.org/10.1016/j.jclepro.2018.08.065. 

[35] Shahmansouri AA, Yazdani M, Ghanbari S, Akbarzadeh Bengar H, Jafari A, Farrokh Ghatte H. 

Artificial neural network model to predict the compressive strength of eco-friendly geopolymer 

concrete incorporating silica fume and natural zeolite. J Clean Prod 2021;279:123697. 

https://doi.org/10.1016/j.jclepro.2020.123697. 

[36] Naderpour H, Mirrashid M. Estimating the compressive strength of eco-friendly concrete 

incorporating recycled coarse aggregate using neuro-fuzzy approach. J Clean Prod 

2020;265:121886. https://doi.org/10.1016/j.jclepro.2020.121886. 

[37] Mo KH, Alengaram UJ, Jumaat MZ, Yap SP, Lee SC. Green concrete partially comprised of 

farming waste residues: A review. J Clean Prod 2016;117:122–38. 

https://doi.org/10.1016/j.jclepro.2016.01.022. 

[38] Memon SA, Khan MK. Ash blended cement composites: Eco-friendly and sustainable option for 

utilization of corncob ash. J Clean Prod 2018;175:442–55. 

https://doi.org/10.1016/j.jclepro.2017.12.050. 

 


	Prediction of Compressive Strength of Corncob Ash Concrete for Environmental Sustainability Using an Artificial Neural Network: A Soft Computing Techniques
	1. Introduction
	2. Methods
	2.1. ANN and its mechanism
	2.2. Experimental data
	2.3. Performance of ANN model
	2.3.1. Selection of data
	2.3.2. Neural network size and architecture

	2.4. Training the network
	2.5. Testing and validation

	3. Results and discussions
	4. Conclusions
	Appendix 1
	References

