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In this contemporary technology epoch, material utilization is 

crucial concerning saving energy demand. One of the thinking 

points of the interest domain is weight reduction. The highest 

strength to weight ratio criterion of the welded joint has enthralled 

keenness in virtually all areas where heft reduction is 

indispensable. Lightweight materials and their joining processes 

are also a recent point of research demands in the manufacturing 

industries. Friction Stir Welding (FSW) is one of the recent 

advancements for joining materials without adding any third 

material (filler rod) and joining below the melting point of the 

parent material. The process is widely used for joining similar and 

dissimilar metals, especially lightweight non-ferrous materials like 

aluminum, copper, and magnesium alloys. This paper presents 

verdicts of optimum process parameters on attaining enhanced 

mechanical properties of the weld joint. The experiment was 

conducted on a 5 mm 6061 aluminum alloy sheet. Process 

parameters; tool material, rotational speed, traverse speed, and 

axial forces were utilized. Mechanical properties of the weld joint 

are examined employing a tensile test, and the maximum joint 

strength efficiency was reached 94.2%. Supervised Machine 

Learning based Regression algorithms such as Decision Trees, 

Random Forest, and Gradient Boosting algorithms were used. The 

results showed that the Random Forest algorithm yielded the 

highest coefficient of determination value of 0.926, giving the best 

fit compared to other algorithms. Furthermore, this method can be 

extended in large-scale and thick aluminum base materials. 
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1. Introduction 

Before the invention of Friction Stir Welding, a mechanical fastener was the key element for 

joining aluminum and its alloy material in different aircraft structural parts. For instance, the 

Eclipse Aviation industry, to manufacture Eclipse 500 business class aircraft, approximately used 

7,300 rivets per airframe (fuselage). After all this economic loss, Wayne Thomas and his friends 

at The Welding Institute (TWI) of Cambridge, UK, invented Friction Stir Welding in 1991[1,2]. 

FSW is categorized under the solid-state welding process and widely used to join non-ferrous 

materials such as aluminum, magnesium, and copper structures across many industries where a 

high strength to lightweight welds are required [3–7]. Compared to the conventional fusion 

welding process, it consumes lower energy, and no consumable materials such as electrodes and 

shielding gases are used. The application area of FSW is implemented in different industries, 

including aerospace, transportation, railway, shipbuilding, and other manufacturing industries 

due to its benefits such as a higher strength to weight ratio, corrosion resistance, and thermo-

mechanical properties [8,9]. Nowadays, lightweight materials and their joining process are 

required in many manufacturing industries. Among these, magnesium alloy is a lightweight 

material, and its demand is rapidly increasing in the automotive and aerospace industry due to its 

low density and high specific strength. The material is approximately 30% lighter than aluminum 

and four times lighter than steel, with a density of 1.8 g/cm
3 

[10,11]. In addition to this, FSW is a 

suitable joining process for magnesium alloy materials because the weld occurs below the 

melting point of the base metal. Both materials and joining techniques are compatible for 

imparting a sound weld; however, they need appropriate process parameters. The term parameter 

optimization means the challenge to make the “best” verdict within a definite set of possible 

alternatives. Historically, “best” has been defined differently in different fields. In 

manufacturing, where multiobjective thinking arguably originated, the “best” mechanical 

performance behavior referred to a specific application [12]. Optimization methods have become 

more versatile in this cutting-edge technology era, from simple to nature-inspired methods. 

Machine Learning (ML) is a significant aspect of modern research scenarios. It uses algorithms 

and neural network replicas to back computer systems and refine their performance. Machine 

Learning algorithms automatically build a mathematical model using sample data, also known as 

“training data,” to make decisions without being specifically programmed to make those 

decisions. Machine Learning is, in part, based on a model of brain cell interaction. The model 

was created in 1949 by Donald Hebb in a book titled The Organization of Behaviour [13]. In the 

FSW process, past researchers are used to different optimization tools to predict significant 

parameters for 6061 al- alloy materials. Asmare et al. [14] have studied the effect of process 

parameters of aluminum-magnesium alloy (6061-T6) material using the FSW process. 

Parameters are controlled by using the Taguchi-based GRA method. The result revealed that a 

combination of higher rotational and lower traverse speed imparts a higher hardness and tensile 

strength to the weld joint. Moreover, past research indicates that FSW is a suitable welding 

process for getting a higher mechanical property in 6061-T6 material. Sadeesh et al. [15] have 

investigated the impact of welding speed on the microstructure and mechanical properties of 

dissimilar materials of AA2024 and AA6061 aluminum material using the FSW process. They 

obtained defect-free joints at a rotational speed of 710 rpm, welding speed of 28mm/min, and 
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D/d ratio of 3. Moreover, according to the statistical analysis, the tool pin is the most influential 

parameter for attaining an excellent mechanical property. Maneiah et al. [16] are studied the 

mechanical properties of 6061-T6 AA using the FSW process. The parameters are optimized by 

Taguchi L9 orthogonal array method. The result showed that the highest tensile strength was 

recorded at a higher tool rotational speed of 1400 rpm, tilt angle 0o, and 100 mm/min welding 

speed. Recently, an Artificial Intelligence-based approach known as Machine Learning has been 

implemented in various manufacturing sectors, including the Friction Stir Welding Process. A 

supervised Machine Learning classification-based approach was used to predict the mechanical 

properties of Friction Stir Welded Copper joints [17]. Mishra [18] determined the fracture 

location of dissimilar Friction Stir Welded joints using a supervised machine learning 

classification-based approach.  

This work aims to find optimum process parameters of FSW for enhancing the tensile strength of 

the target material using the Machine Learning approach. The results showed that the Support 

Vector Machine (SVM) algorithm resulted in the highest accuracy score of 0.889. Furthermore, 

machine Vision-based algorithms have also been used in the Friction Stir Welding Process to 

determine surface defects and microstructure geometrical features analysis in Friction Stir 

Welded joints [19,20]. 

2. Research significance 

2.1. Materials and setup 

The material used in this investigation has a 5 mm 6061 Al alloy rolled sheet with a butt joint 

configuration. The materials’ chemical composition and mechanical properties are summarized 

in Table 1 and Table 2. Cylindrical, taper, and tri-flute threaded tools with the same shoulder and 

a pin diameter of 15 mm and 4.7 mm, respectively, were used see Fig. 1. The cylindrical tool has 

made from H13 tool steels, the tri-flute tool was made from C40 steel, and the tapered tool has 

made from HSS tool steel materials. Moreover, the tools’ mechanical properties and chemical 

compositions are depicted in Table 3, Table 4, Table 5. Samples are fabricated illustrated in Fig. 

1 using XHS7145 vertical CNC milling machining center as an FSW machine. Tensile test 

samples are prepared according to the ASTM-E8-04 standard demonstrated in Fig. 1. and 

measured triple times using Bairoe computer-controlled electro-hydraulic universal testing 

machine and took an average result. Fig. 1 shows the dog shape samples before and after the 

tensile test. 

Table 1 

AA6061 Chemical Composition. 
Material Mg Si Fe Cr Cu AL 

AA 6061 0.92% 0.6% 0.33% 0.18% 0.25% 97.72% 

Table 2 
AA6061 Mechanical Properties [21]. 

Material Yield strength, (MPa) Tensile strength, (MPa) Hardness, (HR) 

AA 6061 276 310 40 
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Fig. 1. Overall experimental setup of FSW process. 

2.2. Implementation of machine learning algorithms 

The process of implementing the machine learning algorithms is shown in Fig. 2. Firstly, the 

necessary Python libraries such as pandas, NumPy, seaborn, matplotlib, and seaborn are 

imported to the working environment. The dataset was imported to the Jupyter notebook 

environment in the second step and checked for missing values. Thirdly, exploratory data 

analysis is carried out to analyze the dataset to extract the main characteristics features using a 

graphical statistical approach as shown in Fig 3. 

 
Fig. 2. Schematic Representation of the implementation of Machine Learning algorithms. 

 
Fig. 3. Exploratory data analysis on the given dataset. 

Fourthly, feature importance for each input feature is calculated as shown in Fig. 4. It is observed 

that the rotational speed has the highest influence on the nature of ultimate tensile strength 

(UTS), followed by traverse speed and axial force. It is also observed that the tool material does 

not influence the nature of UTS. 



 E. M. Sefene et al./ Journal of Soft Computing in Civil Engineering 6-1 (2022) 127-137 131 

Table 3 
Process parameters and their levels. 

Exp. N
o
 

Tool material 
[Type] 

Rotational 
speed [RPM] 

Welding speed 
[mm/min] 

Axial force 
[KN] 

UTS [MPa] 

1 H13 900 25 2 251 

2 H13 900 25 2 254 

3 H13 900 25 2 257 

4 H13 1200 35 3 264 

5 H13 1200 35 3 260 

6 H13 1200 35 3 268 

7 H13 1500 45 4 284 

8 H13 1500 45 4 284 

9 H13 1500 45 4 281 

10 H13 900 35 4 242 

11 H13 900 35 4 244 

12 H13 900 35 4 241 

13 H13 1200 45 2 264 

14 H13 1200 45 2 264 

15 H13 1200 45 2 260 

16 H13 1500 25 3 288 

17 H13 1500 25 3 288 

18 C40 1500 25 3 286 

19 C40 900 45 3 238 

20 C40 900 45 3 231 

21 C40 900 45 3 236 

22 C40 1200 25 4 271 

23 C40 1200 25 4 268 

24 C40 1200 25 4 273 

25 C40 1500 35 2 281 

26 C40 1500 35 2 278 

27 C40 1500 35 2 280 

28 C40 900 25 2 248 

29 C40 900 25 2 248 

30 C40 900 25 2 245 

31 C40 1200 35 3 258 

32 C40 1200 35 3 257 

33 C40 1200 35 3 254 

34 C40 1500 45 4 281 

35 HSS 1500 45 4 286 

36 HSS 1500 45 4 285 

37 HSS 900 35 4 248 

38 HSS 900 35 4 246 

39 HSS 900 35 4 247 

40 HSS 1200 45 2 266 

41 HSS 1200 45 2 264 

42 HSS 1200 45 2 269 

43 HSS 1500 25 3 291 

44 HSS 1500 25 3 292 

45 HSS 1500 25 3 291 

46 HSS 900 45 3 239 

47 HSS 900 45 3 242 

48 HSS 1200 25 4 276 

49 HSS 1200 25 4 274 

50 HSS 1500 35 2 286 

51 HSS 1500 35 2 285 

52 HSS 1500 35 2 285 
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Fig. 4. Plot of feature importance. 

In the fifth step, splitting the dataset is done in an 80-20 ratio, i.e., 80 percent of the data is used 

for training purposes, and 20 percent of the data is used for testing purposes. The 80-20 ratio 

splitting rule is based on the Pareto Principle, which states that 80% of effects come from 20% of 

causes. In the last step, the value of the metrics features such as Mean Square Error, Mean 

Absolute Error, and coefficient of determination (R
2
) are calculated for measuring the 

performance of the individual Supervised Machine Learning algorithms. 

3. Results and discussion 

3.1. Decision tree algorithm 

Decision Tree is a greed-based non-parametric machine learning algorithm used to predict the 

target variable, i.e., UTS (MPa), utilizing some decision rules in the present study. The Decision 

Tree algorithm builds the model in the tree architecture by splitting the dataset into various 

subsets, resulting in its final form in decision nodes and leaf nodes, as seen in Fig. 5. 

 
Fig. 5. Decision Tree architecture in the present work. 
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Decision Tree architecture is formed by the recursive partitioning methodology, which starts 

from the first parent, i.e., the root node splits into right and left child nodes, and they further split 

themselves as a parent node resulting in other child nodes. Based on the largest Information Gain 

(IG), the dataset is divided into features starting from the root node, and thus this process is 

repeated iteratively. The main objective is to maximize the Information Gain (IG), as shown in 

Equation 1, splitting the nodes at most informative features. 

𝐼𝐺(, 𝑓) = 𝐼(𝐷𝑝) − (
𝑁𝐿𝑒𝑓𝑡

𝑁𝑝
𝐼(𝐷𝐿𝑒𝑓𝑡) +

𝑁𝑅𝑖𝑔ℎ𝑡

𝑁𝑝
𝐼(𝐷𝑅𝑖𝑔ℎ𝑡)) (1) 

Where 𝐷𝑝, , 𝐷𝑅𝑖𝑔ℎ𝑡  are the dataset of the child and parent nodes, 𝑁𝑅𝑖𝑔ℎ𝑡, 𝑁𝐿𝑒𝑓𝑡  are several 

samples in child nodes, 𝑁𝑝  is the total number of samples at the parent node, and 𝐼  is the 

impurity measure. Table 4 shows the performance of the Decision Tree algorithm evaluated by 

the measurement of the metric features. 

Table 4 

Metric features an evaluation of Decision Tree Algorithm. 

Mean Square Error Mean Absolute Error  𝐑𝟐 Value 

19.684 3.569 0.894 

 

3.2. Gradient boosting algorithm 

Gradient Boosting algorithm is an ensemble model that combines the weal learners or weak 

predictive models to predict the continuous value further. This approach can be used for both 

classification and regression purposes. This work is used as a regression algorithm for predicting 

the UTS (MPa). The multiple decision trees of a constant size as weak predictive models are 

summed up to build an additive model. The decision tree-based estimators are fitted to predict 

the negative gradients of samples on the dataset. In gradient boosting algorithm, M stages are 

considered, and some imperfect model 𝐹𝑚 is present at each stage of 𝑚(1 ≤ 𝑚 ≤ 𝑀) of gradient 

boosting. So, a new estimator ℎ𝑚(𝑥) is added to the algorithm for improving the value of 𝐹𝑚 

which is shown in Equation 2. 

𝐹𝑚+1(𝑥) = 𝐹𝑚(𝑥) + ℎ𝑚(𝑥) (2) 

Table 5 shows the performance evaluation of the Gradient Boosting Algorithm. 

Table 5 

Metric features an evaluation of Gradient Boosting Algorithm. 

Mean Square Error Mean Absolute Error   𝐑𝟐  Value 

19.939 3.591 0.893 

 

It is observed that the MSE and MAE obtained from Gradient Boosting Algorithm is higher than 

those of the Decision Tree Algorithm, while the 𝑅2 value is slightly lower than the Decision Tree 

Algorithm. 
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3.3. Random forest algorithm 

Random Forest algorithm is a supervised machine learning algorithm constituted from decision 

trees and can solve regression and classification-based problems. The solution to the complex 

problem is met by ensemble learning in which various classifiers are combined. The predicted 

output is generated by the outcome resulting from the decision trees by taking the mean or 

average output yielded from the individual decision trees, as shown in Fig. 6. It is observed from 

Fig. 6 that the random forest algorithm is composed of various ensemble models represented by 

green and red dots, which further represents different decision trees model. Table 6 shows the 

performance metrics evaluation of the Random Forest Algorithm. 

 
Fig. 6. Architecture of Random Forest algorithm in present work. 

Table 6 

Metric features an evaluation of Random Forest Algorithm. 

Mean Square Error Mean Absolute Error  𝐑𝟐 Value 

19.079 3.717 0.926 

 

It is observed that the Random forest results in the best fit by yielding the highest 𝑅2 value of 

0.926 in comparison to the other two algorithms. It can be concluded that the Random Forest 

algorithm yields the highest level of accuracy in comparison to the decision trees for predicting 

the output, i.e., UTS. It is observed that each implemented ML classification model has 100 % 

accuracy for the classification of the welding efficiency of friction stir welded joints. 
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4. Conclusion 

This paper conducted the test at ambient temperature for similar materials of Friction Stir 

welded. The maximum tensile strength was 292 MPa obtained from a tapered pin profile of the 

HSS tool at a rotational speed of 1500 rpm with a welding speed of 25 mm/min and axial force 

of 3KN. Correspondingly, the minimum tensile strength value of 231 MPa was observed from a 

tri-flute threaded profile of the C40 tool at a rotational speed of 900 rpm with a traverse speed of 

45 mm/min axial force of 3KN. The joint efficiency was reached 94.2 % of the base metal. The 

result shows that the tensile strength increases, the traverse speed of the tool decreases, and the 

rotational speed of the tool increases because the lower welding speed and higher tool rotational 

speed can impart sufficient heat for welding the parent metal. 

In the present work, the experiment has optimized through supervised machine learning 

regression-based algorithms such as Decision Trees, Gradient Boosting Algorithm, and Random 

Forest Algorithm are developed and executed using Python programming to find higher 

mechanical properties of AA6061 joints fabricated through the friction stir welding process. The 

obtained results can be summarized as follows: 

 The highest tensile strength (UTS) of 292 MPa was obtained at a parameter setting of the 

rotational speed of 1500 rpm, welding speed of 25 mm/min, the axial force of 3 KN, with 

a taper threaded tool pin.  

 In the dataset, there were four input features: tool material, rotational speed, traverse 

speed, and axial force. However, the feature importance results showed that the tool 

material does not affect the output feature, i.e., UTS of the FS welded joints, which led to 

the dropping of the tool material input feature.  

 The obtained results showed that the Random Forest algorithm resulted in the highest 

coefficient of determination of 0.926 compared to the other two algorithms, which means 

the predicted results are very close to the experimental results. 

 The future scope of this work is to implement Quantum Machine Learning based 

algorithms and further compare the results obtained from the conventional Machine 

Learning Algorithms. 

Acknowledgments 

The authors would like to acknowledge the School of Research and Graduate Studies, Bahir Dar 

Institute of Technology, for their support. 

Funding 

This research received no external funding. 



136 E. M. Sefene et al./ Journal of Soft Computing in Civil Engineering 6-1 (2022) 127-137 

Conflicts of interest 

The authors declare that they have no competing personal and financial interests. 

Authors contribution statement 

EMS, AAT: Conceptualization; EMS: Data curation; EMS, AM: Formal analysis; EMS, AAT: 

Investigation; EMS, AAT, AM: Methodology; EMS: Project administration; EMS, AM: 

Software; AAT: Supervision; EMS, AAT, AM: Validation; EMS, AAT AM: Visualization; EMS, 

AAT, AM: Roles/Writing – original draft; EMS, AAT, AM: Writing – review & editing. 

References 

[1] Celik S, Cakir R. Effect of Friction Stir Welding Parameters on the Mechanical and Microstructure 

Properties of the Al-Cu Butt Joint. Metals (Basel) 2016;6. https://doi.org/10.3390/met6060133. 

[2] Msomi V, Mabuwa S. Analysis of material positioning towards microstructure of the friction stir 

processed AA1050/AA6082 dissimilar joint. Adv Ind Manuf Eng 2020;1:100002. 

https://doi.org/https://doi.org/10.1016/j.aime.2020.100002. 

[3] Banik A, Saha Roy B, Deb Barma J, Saha SC. An experimental investigation of torque and force 

generation for varying tool tilt angles and their effects on microstructure and mechanical properties: 

Friction stir welding of AA 6061-T6. J Manuf Process 2018;31:395–404. 

https://doi.org/https://doi.org/10.1016/j.jmapro.2017.11.030. 

[4] Chen S, Zhang H, Jiang X, Yuan T, Han Y, Li X. Mechanical properties of electric assisted friction 

stir welded 2219 aluminum alloy. J Manuf Process 2019;44:197–206. 

https://doi.org/https://doi.org/10.1016/j.jmapro.2019.05.049. 

[5] Gangil N, Maheshwari S, Siddiquee AN, Abidi MH, El-Meligy MA, Mohammed JA. Investigation 

on friction stir welding of hybrid composites fabricated on Al–Zn–Mg–Cu alloy through friction 

stir processing. J Mater Res Technol 2019;8:3733–40. 

https://doi.org/https://doi.org/10.1016/j.jmrt.2019.06.033. 

[6] Węglowski MS. Friction stir processing – State of the art. Arch Civ Mech Eng 2018;18:114–29. 

https://doi.org/https://doi.org/10.1016/j.acme.2017.06.002. 

[7] Pedapati SR, Paramaguru D, Awang M, Mohebbi H, Korada S V. Effect of process parameters on 

mechanical properties of AA5052 joints using underwater friction stir welding. J Mech Eng Sci 

2020;14:6259–71. 

[8] Khourshid AM, El-Kassas AM, Sabry I. Integration between artificial neural network and 

responses surfaces methodology for modeling of friction stir welding. Int J Adv Eng Res Sci 

2015;2:67–73. 

[9] Elatharasan G, Kumar VSS. An Experimental Analysis and Optimization of Process Parameter on 

Friction Stir Welding of AA 6061-T6 Aluminum Alloy using RSM. Procedia Eng 2013;64:1227–

34. https://doi.org/https://doi.org/10.1016/j.proeng.2013.09.202. 

[10] Kumar A, Khurana MK, Singh G. Modeling and Optimization of Friction Stir Welding Process 

Parameters for Dissimilar Aluminium Alloys. Mater Today Proc 2018;5:25440–9. 

https://doi.org/https://doi.org/10.1016/j.matpr.2018.10.349. 

[11] Sefene EM, Tsegaw AA. Temperature-based optimization of friction stir welding of AA 6061 

using GRA synchronous with Taguchi method. Int J Adv Manuf Technol 2022;119:1479–90. 

https://doi.org/10.1007/s00170-021-08260-3. 



 E. M. Sefene et al./ Journal of Soft Computing in Civil Engineering 6-1 (2022) 127-137 137 

[12] De Weck OL. Multiobjective optimization: History and promise. Invit. Keynote Pap. GL2-2, Third 

China-Japan-Korea Jt. Symp. Optim. Struct. Mech. Syst. Kanazawa, Japan, vol. 2, 2004, p. 34. 

[13] Fradkov AL. Early history of machine learning. IFAC-PapersOnLine 2020;53:1385–90. 

[14] Asmare A, Al-Sabur R, Messele E. Experimental Investigation of Friction Stir Welding on 6061-

T6 Aluminum Alloy using Taguchi-Based GRA. Metals (Basel) 2020;10:1480. 

https://doi.org/10.3390/met10111480. 

[15] Sadeesh P, Venkatesh Kannan M, Rajkumar V, Avinash P, Arivazhagan N, Devendranath 

Ramkumar K, et al. Studies on Friction Stir Welding of AA 2024 and AA 6061 Dissimilar Metals. 

Procedia Eng 2014;75:145–9. https://doi.org/https://doi.org/10.1016/j.proeng.2013.11.031. 

[16] Maneiah D, Mishra D, Rao KP, Raju KB. Process parameters optimization of friction stir welding 

for optimum tensile strength in Al 6061-T6 alloy butt welded joints. Mater Today Proc 

2020;27:904–8. https://doi.org/https://doi.org/10.1016/j.matpr.2020.01.215. 

[17] Thapliyal S, Mishra A. Machine learning classification-based approach for mechanical properties 

of friction stir welding of copper. Manuf Lett 2021;29:52–5. 

https://doi.org/https://doi.org/10.1016/j.mfglet.2021.05.010. 

[18] Mishra A. Supervised Machine Learning Classification Algorithms for Detection of Fracture 

Location in Dissimilar Friction Stir Welded Joints 2021. 

[19] Hartl R, Praehofer B, Zaeh MF. Prediction of the surface quality of friction stir welds by the 

analysis of process data using Artificial Neural Networks. Proc Inst Mech Eng Part L J Mater Des 

Appl 2020;234:732–51. https://doi.org/10.1177/1464420719899685. 

[20] Hartl R, Bachmann A, Habedank JB, Semm T, Zaeh MF. Process Monitoring in Friction Stir 

Welding Using Convolutional Neural Networks. Metals (Basel) 2021;11. 

https://doi.org/10.3390/met11040535. 

[21] Gomathisankar M, Gangatharan M, Pitchipoo P. A Novel Optimization of Friction Stir Welding 

Process Parameters on Aluminum Alloy 6061-T6. Mater Today Proc 2018;5:14397–404. 

https://doi.org/https://doi.org/10.1016/j.matpr.2018.03.025. 

 


	Process Parameter Optimization of 6061AA Friction Stir Welded Joints Using Supervised Machine Learning Regression-Based Algorithms
	1. Introduction
	2. Research significance
	2.1. Materials and setup
	2.2. Implementation of machine learning algorithms

	3. Results and discussion
	3.1. Decision tree algorithm
	3.2. Gradient boosting algorithm
	3.3. Random forest algorithm

	4. Conclusion
	Acknowledgments
	Funding
	Conflicts of interest
	Authors contribution statement
	References

