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In the two past decades, ferrocement members have been 

with a wide variety of uses in structural applications because 

of their unique physical properties (high surface-area-to-

volume ratio and possible fabrication in any shape). In this 

study, two models were presented for a predict of the 

moment capacity of ferrocement members, one based on a 

back-propagation multilayer perceptron artificial neural 

network and the other proposing a new equation based on the 

multilayer perceptron network trained. These models with 

five input parameters including volume fraction of wire 

mesh, tensile strength, cube compressive strength of mortar, 

and width and the depth of specimens are presented. The 

results obtained from the two models are compared with 

experimental data and experimental equations such as plastic 

analysis, mechanism, and nonlinear regression approaches. 

Also, these results are compared with the results of the 

equations that researchers have proposed in recent years with 

soft computing methods (ANFIS, GEP, or GMDH). The 

prediction performance of the two models is significantly 

better than the experimental equations. These models are 

comparable to that of models provided with different soft 

computing methods to predict the moment capacity of 

ferrocement members. The result of this research has 

proposed a general equation with less mathematical 

complexity and more explicit. 
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Abbreviations 

𝒉 Overall depth of the section 

𝒃 Width of the beam 

𝒙𝟏 Depth of the neutral axis 

𝒇𝒄𝒖 Cube compressive strength of the matrix 

𝒇𝒄 The ultimate tensile strength of wire mesh 

𝑨𝒔 The cross-sectional area of steel 

𝝂𝒇 Total volume of the fraction 

𝜼𝟎 Global efficiency factor of mesh reinforcement 

𝝈𝒚 Yield tensile strength of wire mesh 

𝒇′𝒄 Cylinder compressive strength of the matrix 

 

1. Introduction 

In the past two decades, ferrocement has been widely used for the design of various structures 

including deep beams, walls, and pools. The ferrocement member consists of hydraulic cement 

mortar and wire mesh, which is a type of thin-shell concrete [1]. These members can be easily 

constructed with widely available materials in any possible shape. Therefore they can be applied 

for increased strength of structural members (increased flexural capacity of stone pillars, 

jacketing or reinforced concrete columns) [2], for improved energy absorption properties [3,4], 

and higher stiffness properties [2]. 

However, the modeling of ferrocement members is quite difficult. Initially, researchers proposed 

empirical equations to estimate the flexural capacity of ferrocement members but with 

limitations and practical applications. Mashrei et al. [5] was using 75 experimental data sets to 

present a model by back-propagation neural networks and adaptive neuro-fuzzy inference system 

(ANFIS) to estimate the moment capacity of ferrocement members. The BPNN model has two 

hidden layers, which have 8 and 4 neurons, respectively. In both models, 61 data are assigned to 

the training set and 14 data to the test set, respectively. In that study, it has been shown that the 

models have better results and more accuracy than the experimental equations. Based on 75 

experimental data, Gandomi et al. [6] presented three models using gene expression 

programming (GEP) to estimate the moment capacity of ferrocement members, which yielded 

better results than the experimental equations. Ibrahim G. Shaaban et al. [7] have investigated the 

flexural behavior of 16 lightweight ferrocement beams with various types of core materials 

(Lightweight Concrete Core (LWC), Autoclaved Aerated lightweight brick Core (AAC), or 

Extruded Foam Core (EFC)) and three different mesh reinforcement. The results of this study 

indicated that the ferrocement beams that have the core of LWC and AAC have the highest 

ductility and can be a viable substitute for conventional beams in structures. Amir Hossein 



 T. Kalman Šipoš, P. Parsa/ Journal of Soft Computing in Civil Engineering 4-1 (2020) 111-126 113 

Madadi et al. [8] have investigated the flexural behavior of 12 ferrocement slab panels 

containing expanded perlite lightweight aggregate with different physical properties such as 

amounts of expanded perlite and number of expanded rib lath layers) used the method of Digital 

image correlation (DIC). Abdussamad ISMAIL [9] presented a model to estimate the moment 

capacity of ferrocement members by using the self-evolving neural network model developed. 

Using 75 data, he has presented two different versions of the self-evolving neural network 

method with the names SEANN-I and SEANN-II, which have R
2
 values for the two models test 

sets %90 and %91, respectively. Naderpour et al. [10] presented a model for the moment 

capacity of ferrocement members estimation using the Group Method of Data Handling 

(GMDH) method and 60 data for the training set and 15 data for the test set. Using that model, 

they have proposed an equation for estimating moment capacity with good accuracy.  

Although in civil engineer, the models proposed by researchers with soft computing methods to 

predict various parameters are a common method [11–17]. But, proposed a general equation 

based on artificial neural networks is the relatively new method, for example, shear resistance 

prediction of concrete beams reinforced by FRP bars [18] and axial strength estimation of non-

compact and slender square CFT columns [19]. In this study, the authors proposed a model using 

artificial neural networks, Backpropagation Multilayer perceptron (MLP) to estimate the moment 

capacity of the ferrocement members. Since artificial neural networks (ANN) look like a black 

box and the complex relationships created by the network between the input variables and the 

output parameter cannot be totally known. Therefore, the authors use the method presented in 

[20], which has derived a general equation based on the trained network to estimate the flexural 

capacity of the ferrocement members. Researchers can use the general equation and directly 

estimate the moment capacity using the five input parameters studied in this paper. 

2. Existing models for predicting the moment capacity 

In this section, models have been investigated and studied that provide a general equation to 

estimate the Mu of ferrocement members. The equations proposed by different researchers for 

estimation of the ferrocement member moment capacity were presented in Eq. (1)-(5) in Table 1, 

respectively. Mansur and Paramasivam [21] proposed an innovative method with the name 

Plastic analysis method based on the condition of equilibrium of forces. The equation presented 

by Paramasivam and Ravindrarajah [22] with the name Mechanism approach method is based on 

the plastic analysis. In this method, the neutral axis is assumed to be the highest cross-section. 

This method, the same as the previous method, has the drawback that the assumptions are very 

simplified. A non-dimensionalized regression equation was presented by Naaman and Homrich 

[23] to calculate the moment Mu. The equation was suggested by Gandomi et al. [6] for 

calculating the moment capacity of the ferrocement members based on Gene Expression 

Programming (GEP). Naderpour et al. [10], using the method of Group Method of Data 

Handling (GMDH), developed a formula to estimate the amount of flexural capacity. A typical 

cross-section of the ferrocement members can be seen in Fig. 1. 
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Table 1 
Analytical models for moment capacity of Ferrocement members. 

Models Mu (Moment capacity)  

Plastic analysis method [21] 𝑀𝑢 = 𝜎𝑡𝑢  × 𝑏(ℎ − 𝑋1)
ℎ

2
  (1) 

Mechanism approach method [22] 𝑀𝑢 = 𝜎𝑡𝑢  ×
𝑏ℎ2

2
  (2) 

Simplified method [23] 

𝑦 = −0.0772𝑥2 + 0.422𝑥 + 0.005  

𝑥 =
𝜐𝑓𝜎𝑦

𝑓′
𝑐

  

𝑦 =
𝑀𝑢

𝜂𝑜𝑓′
𝑐.𝑏ℎ2  

(3) 

GEP models [6] 𝑀𝑢,𝐺𝐸𝑃 =
𝑏(ℎ−11)(ℎ+𝑓𝑐𝑢)

5184
 
(𝑓𝑢𝜐𝑓)

0.6

√𝑓𝑐𝑢
  (4) 

GMDH models [10] 𝑀𝑢,𝐺𝑀𝐷𝐻 = 0.091 +
0.092ℎ𝑓𝑐𝑢

𝑏
−

0.042ℎ2

𝜐𝑓
+

𝑏𝜐𝑓(10.37ℎ2𝑓𝑢𝑙−0.021𝜐𝑓)

𝑓𝑢𝑙
  (5) 

 

 
Fig. 1. Cross section of ferrocement specimen. 

3. Model development 

3.1. Neural network model 

Artificial neural networks (ANN) consist of a set of neurons that have the duty of connecting the 

layers of the network, such as the role of synapses in the human brain. Each network has three 

layers: input, hidden, and output. Due to the complexity of the problem, it is possible to use two 

or more layers in the hidden layer of the network. The neural networks are trained to process by 

creating a weight matrix of numerical value and bias generated by each neuron and the transfer 

function used in the hidden and output layers. Back-propagation was used for neural network 

modeling in this study [24]. 

3.2. Database 

The authors used a database compiled by Mashrei et al. [5] For the ferrocement members of nine 

literature [5,21,22,25–30]. They used 74 data in this study and normalization of all parameters to 
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numbers in the range of 0.1 to 0.9 using Eq. (6). The input and output parameters used and the 

statistical details of these parameters can be seen in Table 2, Table 3 and Fig. 2, respectively. 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙 = 0.8 × (
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) + 0.1 (6) 

Table 2 
Definition of the considered parameters. 

Parameter Description 

b (mm) The width of specimens. 

h (mm) Total depth specimens. 

𝑓𝑐𝑢 (MPa) The compressive strength of ferrocement. 

𝑓𝑈𝑙(MPa) The ultimate strength of wire mesh. 

𝜈𝑓(%) Volume fraction of wire mesh. 

Mu (N.m) Moment capacity of ferrocement members. 

 

Table 3 
Database parameters range. 

Variables b (mm) h (mm) 𝑓𝑐𝑢(MPa) 𝑓𝑈𝑙(MPa) 𝜈𝑓(%) Mu (N.m) 

Mean 147.432 42.486 40.317 545.421 2.441 757.989 

Minimum 76 13 12.6 371 0.164 33 

Maximum 400 100 62 979 8.25 3937 

Standard deviation 86.819 22.067 12.872 139.752 1.809 914.293 

Coefficient of variation 58.88 51.94 31.92 25.62 74.11 120.62 

 

 
Fig. 2. Parameter histograms of using the database for methods. 
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3.3. Proposed MLP models 

The Multi-Layer Perceptron neural network trained based on 74 experimental data that assigned 

randomly 52 data to the training set, 7 data to the validation set, and 15 data to test set. It can be 

seen in Fig. 3 the structure of this network. 

This network has one hidden layer and has 7 neurons that used the activation functions Tangent 

Sigmoid and Purelin function in the hidden and output layers, respectively. The results obtained 

from the network for the training, validation and testing sets can be seen in Figs. 4-7, 

respectively. As shown in Figs. 4-7, the correlation coefficient R
2
 all sets are higher than 98%, 

and the test set error is less than 0.05%. This description, which means the trained neural 

network is good and accurate. 

 
Fig. 3. Schematic diagram of ANN models. 
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Fig. 4. Regressions of training, validation and test data simulated by the model. 

 
Fig. 5. Train results. 
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Fig. 6. Validation results. 

 
Fig. 7. Test results. 

3.4. An equation for predicting moment of ferrocement members for capacity based on 

ANN 

Given the approach proposed by Naderpour et al. [20], which presents an approach for find a 

relationship based on trained neural networks, after a reliable neural network model an equation 

for the moment capacity of ferrocement members was proposed. The most effective parameter 

among the input data was the width of specimens b which had the largest influence on the output 

parameters. The neural network was utilized to simulate the b value based on the new database 
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with different values of parameter b between 76mm and 400mm and the reference value for the 

other four parameters, presented in Table 4. Fig. 8 shows the fitting curve. The Eq. (7) obtained 

from the curve is as follows: 

Table 4 
Corresponding reference values of input parameters. 

Inputs parameters b h 𝑓𝑐𝑢 𝑓𝑈𝑙 𝜈𝑓 

Reference value 147.432 42.486 40.317 545.42 2.441 

 

 
Fig. 8. Variations of b against Mu regarding other input parameters to be in their reference value. 

𝑀𝑢
′ = 0.0001 × (𝑏)3 − 0.0432 × (𝑏)2 + 10.152(𝑏) − 50.49 (7) 

Since the obtained equation cannot directly estimate the moment capacity of the ferrocement 

members, the correction coefficient for the other 4 parameters should be calculated and their 

values were given in Eq. (8). 

𝐹𝑜𝑟𝑚𝑢𝑙𝑎 = 𝑀𝑢  = 𝑀𝑢′ × 𝐶(ℎ) × 𝐶(𝑓𝑐𝑢) × 𝐶(𝑓𝑢𝑙) × 𝐶(𝜈𝑓) (8) 

Full explanations on how to calculate correction coefficients can be found in the articles [20,31]. 

The correction coefficients of this study are presented for the other 4 parameters in Eq. (9)-(12). 

only the curves for C(h) and C(𝜈𝑓) are presented due to limitation of space and are shown in Figs 

9-14. 

𝐶(ℎ) = −0.4732 (
ℎ

42.486
)

3

+ 2.3677 (
ℎ

42.486
)

2

− 1.2726 (
ℎ

42.486
) + 0.3794 (9) 
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𝐶(𝑓𝑐𝑢) = 1.2116 (
𝑓𝑐𝑢

40.317
)

4

− 4.427 (
𝑓𝑐𝑢

40.317
)

3

+ 6.2701 (
𝑓𝑐𝑢

40.317
)

2

− 3.4063 (
𝑓𝑐𝑢

40.317
) + 1.3486

 (10) 

C(ful) = −1.8762 (
ful

545.42
)

3

+ 7.1545 (
ful

545.42
)

2

− 7.349 (
ful

545.42
) + 3.064 (11) 

C(νf) = 0.0946 (
νf

2.441
)

3

− 0.4173 (
νf

2.441
)

2

+ 1.2787 (
νf

2.441
) + 0.0175 (12) 

 

 
Fig. 9. Correction factor C(h) with various values of 𝑓𝑐𝑢. 

 
Fig. 10. Correction factor C(h) with various values of 𝑓𝑢𝑙. 
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Fig. 11. Correction factor C(h) with various values of 𝜈𝑓. 

 

 
Fig. 12. Correction factor C(𝜈𝑓) with various values of h. 
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Fig. 13. Correction factor C(𝜈𝑓) with various values of fcu. 

 

 
Fig. 14. Correction factor C(𝜈𝑓) with various values of ful. 

4. Results and discussion 

A comparison of the results of the trained Multi-Layer Perceptron neural network and the results 

obtained by the general equation presented in this study with the experimental data results were 

presented in Figs. (15)-(16). These figures show that with low and acceptable error ratios, these 

two models can estimate the moment capacity of ferrocement members. 
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Among that, model performance evaluated by RMSE, MAPE, and MAE (Eqs. (13)-(15)), was 

compared with the models presented in this paper with the models proposed by other researchers 

(Table 5). According to results presented in Table 5, the formula and the MLP presented in this 

study have a more effective and more appropriate evaluation performance than the experimental 

equations (such as plastic analysis, mechanism, and nonlinear regression approaches) proposed. 

The calculated error values, such as Root Mean Square Error (RMSE) of the MLP presented, 

have lower than the GEP method and higher than the GMDH method. The calculated coefficient 

of detection (R
2
) for the MLP has 98%, which is higher than both the GEP and GMDH methods. 

But since this method produced the general equation (formula) from the equations obtained from 

the graphs, the calculated error values have slightly higher than the proposed MLP. It can be 

concluded that the prediction performance of the proposed models has much better than the 

experimental models, and the results obtained from these two models have comparable to the 

methods presented with soft computing. This method has proposed a general equation (presented 

as Eq. (8)) with less mathematical complexity and more explicit, which eases the calculation of 

moment capacity of the ferrocement members. Thus, researchers can be calculation Mu more 

quickly and easily and with appropriate accuracy. 

RMSE = √
1

n
∑ (Mu(actual) − Mu(model))n

i=1  (13) 

𝑀𝐴𝑃𝐸 =
1

𝑛
(

∑ |𝑀u(actual)−𝑀u(𝑚𝑜𝑑𝑒𝑙)|𝑛
𝑖=1

∑ (𝑀u(actual))𝑛
𝑖=1

) (14) 

𝑀𝐴𝐸 =
1

𝑛
(∑ |𝑀u(actual) − 𝑀u(model)|𝑛

𝑖=1 ) (15) 

 

 
Fig. 15. Verification of predicted by formula against experimental data. 
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Fig. 16. Verification of predicted by formula against experimental data. 

Table 5 
Evaluation of the exiting and proposed model. 

Statistical 

Parameter 

BPNN 

[5] 

ANFIS 

[5] 

Plastic 

[21] 

Mechanism 

[22] 

Simplified 

method 

[23] 

GEP 

[6] 

GMDH 

[10] 

MLP-

ANN 
Formula 

Mean 0.2167 0.2162 0.1791 0.2026 0.1444 0.2196 0.2179 0.2533 0.2491 

MAE 0.0045 0.0034 0.0403 0.0388 0.0734 0.0204 0.0157 0.0174 0.0315 

RMSE 0.0072 0.0072 0.0842 0.0774 0.1309 0.0298 0.0232 0.0255 0.052 

MAPE 2.40% 1.70% 12.65% 12.69% 23.50% 8.88% 6.81% 7.80% 14.73% 

R
2
 0.9979 0.9980 0.8427 0.7637 0.7570 0.9641 0.9780 0.9835 0.9369 

Correlation 

Coefficient (R) 
0.9990 0.9990 0.9180 0.8739 0.8701 0.9819 0.9890 0.9917 0.9667 

 

5. Conclusion 

In this study, the authors presented two models with five input variables to predict the moment 

capacity of ferrocement members. One of the models for prediction of moment capacity by 

Artificial neural network and the other is based on neural network trained and using the process 

described in this article that finally to a general equation for estimation moment capacity of 

ferrocement members. The regression values of the chosen network trained for training and 

testing were 0.9961 and 0.9894 respectively and the best validation performance was 0.0010. 

RMSE, MAE, and MAPE were calculated as 0.0255, 0.0174, 7.80% and 0.0522, 0.0315, 

14.738%, for MLP neural network trained and formula, respectively. 
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