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Estimation of the seismic retrofit cost (SRC) is a complicated 
task in construction projects. In this study, the performance 
of four machine learning algorithms (MLAs), including 
Random Forest (RF), Extreme Learning Machine (ELM), 
Classification and Regression Tree (CART), and 
Multivariate Adaptive Regression Spline (MARS), was 
examined in estimating SRC values. The total floor area 
(TFA), number of stories (NS), seismic weight (SW), 
seismicity (S), soil type (ST), plan configuration (PC), and 
structural type (STT) were considered as structural input 
variables. To achieve the best performance of applied MLAs, 
twenty-two scenarios based on different combinations of 
input variables were considered. The correlation coefficient 
(r), Root Mean Squared Error (RMSE), Adjusted R-squared, 
and Nash-Sutcliffe efficiency (NSE) metrics together with 
the Taylor diagram were used to compare the accuracy of 
applied models. A sensitivity analysis using the RReliefF 
algorithm showed that TFA, SW, and PC are the most 
influential parameters, whereas the ST and STT have 
negative influences on SRC values. Comparison analysis 
results indicated that the ELM model with r of 0.896, RMSE 
of 0.081, and NSE of 0.758 had the best performance among 
other employed MLAs. Also, the RF regression achieved the 
second rank. In conclusion, the ELM model with single-layer 
feedforward neural network was superior to other data-
driven models; therefore, it can be applied as an efficient tool 
for estimating SRC values using structural input parameters. 
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1. Introduction 

Prediction of seismic retrofit cost (SRC) of structures is a complex task because of different 

effective parameters in each building. Finding a reliable tool for estimating SRC in construction 

projects is one of the concerns of project managers due to limited resources. Steel belts, 

Shotcrete, and fiber-reinforced polymer (FRP) are common retrofit actions that can be 

implemented for any masonry earthquake-prone buildings to improve structural performance, 

e.g., increasing the amount of the lateral strength for mitigating the corresponding risks [1]. Also, 

it can be mentioned that, before any decision-making regarding the establishment of a strategy 

for earthquake-prone buildings, the SRC value should be accurately predicted to decrease the 

risk level for unreinforced structures in the high seismic regions. 

Previous studies developed SRC estimation models using different data-driven approaches [1–6]. 

All the reported methods that applied to estimate SRC may suffer from different limitations, e.g., 

uncertainties in the tuning of effective parameters and linear nature of the applied models that 

may result in overtraining and other problems that can take place in the training phase. To 

overcome the mentioned shortcoming, this study suggested a novel training model, a single 

hidden layer feedforward neural network (SHLFFNN)-based Extreme Learning Machine (ELM) 

that has several advantages compared with existing regression models. Results of previous works 

verify that the ELM model can be successfully applied in parameter estimation in different fields 

[7–10]. Alizamir et al. (2019) [7] applied several machine learning models, including ELM, 

multi-layer perceptron artificial neural network (MLPANN), and radial basis function (RBF), in 

modeling groundwater level fluctuations. They found that the ELM model provides better results 

than other compared models. Yaseen et al. (2019) [8] compared the performance of support 

vector regression (SVR) and ELM models for river flow forecasting. They concluded that the 

ELM as an intelligent expert system could be used effectively to forecast flow in rivers. Al-

Shamiri et al. (2019) [9] compared the ability of ELM and MLPANN models for predicting high-

strength concrete compressive strength and showed that ELM performed better than the 

MLPANN. More recently, Nayak et al. (2021) developed an ELM-based model for assessing the 

compressive strength of concrete [10]. 

In the last decade, data-driven approaches, including Random Forest (RF) regression [11–13], 

ELM [7–10,14–17], Multivariate Adaptive Regression Spline (MARS) [13,18–20], Classification 

and Regression Tree (CART) [21–24], and Extreme Gradient Boosting (XGBoost) method 

[11,13,18] have been successfully applied in different fields [25]. Regarding estimation of SRC, 

several studies have also been conducted using artificial intelligence models. 

Chen and Huang [2] have investigated the performance of linear regression and ANN to estimate 

retrofit costs and duration of reconstruction projects for schools in Taiwan due to reconstruction 

following earthquake damage. The results showed that ANN yields better prediction results than 

the regression model, and the floor area provides a good basis for estimating the cost and 

duration of school reconstruction projects. Jafarzadeh et al. [3] provided a comprehensive dataset 

for SRC prediction from 158 public school buildings with a framed structure in Iran. Jafarzadeh et 

al. (2014) have suggested a series of nonparametric artificial neural network (ANN) models for 
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SRC prediction of earthquake-prone school buildings with a framed structure [4]. They 

performed a sensitivity analysis for finding the most effective structural parameters in SRC and 

introduced the total area of building as the key predictor of SRC. Jafarzadeh et al. [5] applied a 

multi-linear regression (MLR) model to estimate the SRC. In this study, fourteen independent 

influential variables were considered for training and testing MLR models. Based on the 

backward elimination (BE) regression analysis, they concluded that building age and compliance 

with seismic design code are insignificant predictors of SRC, whereas building total plan area, 

number of stories, structural type, seismicity, soil type, weight, and plan irregularity are the most 

statistically influential variables on SRC [5].  

In another study, Jafarzadeh et al. (2015) [6] have investigated a retrofit cost predictive model for 

confined masonry structures using statistical regression analysis. A series of stepwise regression 

models have been developed using reliable data collected from 183 masonry school buildings in 

Iran. The mortar quality and concrete quality of confinement elements have been considered as 

input parameters for SRC. Similar to framed buildings, the total floor area was defined as the 

most important factor in estimating SRC for confined masonry structures [6]. Nasrazadani et al. 

(2017) [1] have presented a probabilistic cost model for SRC prediction as a continuous function 

of the desired retrofit level (or performance gain) using linear Bayesian regression based on their 

own collected database from 167 retrofits of masonry school buildings in Iran. They claimed that 

the proposed model by quantifying the significant uncertainties in SRC modeling using Bayesian 

regression could be employed for risk and reliability analysis. The pre-retrofit building value and 

the increase in lateral strength were also determined as the most important predictors of SRC [1].  

Fung et al. (2017) have developed a standard linear regression-based model to estimate SRC by 

considering only the interaction between seismicity and performance objective and showed that a 

simple model with different combinations of predictors has better accuracy and lower error than 

the FEMA 156 model [26]. The training process in [26] was based on the “hold-out” method. In 

another study, Fung et al. (2018) [27] have developed a model to estimate structural SRC for 

typical federal buildings by considering the building construction type and square footage as 

essential factors affecting SRC. More recently, Fung et al. (2020) [28] employed a Generalized 

Linear Model (GLM) to predict SRC in terms of structural parameters based on the historical 

data provided by FEMA 156. The nested K-fold cross-validation was applied to not only use all 

of the data during the training phase but also to perform both model selection and model 

evaluation. The developed GLM-based framework is able to provide a fast approximation of the 

SRC especially for decision-makers with large building portfolios. 

It can be concluded from the previously studies that the ELM model has not yet been applied in 

estimating SRC. This research is the first study that applies ELM to estimate SRC values in order 

to implement an efficient policy analysis for risk mitigation. The main objectives of this research 

are: (1) to investigate the influence of different sets of input parameters for predicting structural 

SRC, (2) to investigate the performance of ELM, CART, MARS, and RF algorithms for 

estimating SRC, and (3) to evaluate the models' uncertainty and sensitivity analysis.  
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Fig. 1. Workflow of the proposed predictive models for SRC estimation. 

A general workflow of the implementation of the proposed data-driven techniques is shown in 

Fig. 1. 

The rest of this paper is structured as follows: An overview of different employed machine 

learning algorithms is presented in Section 2. The experimental dataset is presented in Section 3. 

Performance evaluation of different approaches and the uncertainty and sensitivity analysis 

results using the RReliefF algorithm is presented in Section 4. Finally, Section 5 discusses the 

concluding remarks. 
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2. Overview of different machine learning algorithms 

2.1. Extreme learning machine (ELM) 

The training process in traditional ANNs is based on an iterative approach using a gradient 

descent algorithm to tuning weights and biases that may result in slow training speed and/or local 

minima problems. ELM is one of the newly developed training algorithms for SHLFFNN. The 

main feature of the new training process in ELM is that it can randomly assign weights and 

biases. Also, the output weights in the ELM model can be analytically calculated using 

generalized inverse mathematical operation. The high learning speed is one of the crucial 

properties of ELM that leads to better generalization capability compared with traditional ANNs. 

 
Fig. 2. A general structure of an ELM model used in this study for SRC estimation. 

A typical SHLFFNN having 𝐿 hidden nodes, activation function ℎ(𝑥), and 𝑀 samples can be 

expressed as [29]: 

𝑓𝐿(𝑋𝑗) = ∑ 𝛽𝑖ℎ(𝑊𝑖𝑋𝑖 + 𝑏𝑖) = 𝑡𝑖               𝑗 = 1,2, … , 𝑀

𝐿

𝑖=1

     (1) 

where 𝑊𝑖 and 𝑏𝑖 denote input weights and biases, respectively. 

By applying the least-square (LS) technique, ELM determines input weights (𝑊𝑖) and biases (𝑏𝑖) 

in order to compute the output weights 𝛽. In addition, activation function is defined as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: ||𝐻𝛽 − 𝑇||2 𝑎𝑛𝑑 ||𝛽|| (2) 
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where H is the hidden layer output matrix defined in Eq. (3). 

𝐻 = [
ℎ(𝑥1)

∶
ℎ(𝑥𝑁)

] = [
ℎ1(𝑥1) … ℎ𝐿(𝑥1)

∶ ∶ ∶
ℎ1(𝑥𝑁) ∶ ℎ𝐿(𝑥𝑁)

]  (3) 

The main aim of ELM is minimizing ||𝛽|| that is equal to maximization of 
2

||𝛽||
. By applying the 

least square method, the relation between the Moore–Penrose generalized inverse (H
+
) and the 

output weights (𝛽) for SHLFFNN can be obtained as:  

𝛽 =  𝐻+ 𝑌 (4) 

The general architecture of the ELM model for SRC estimation is shown in Fig. 2. More details 

about ELM can be found in [30,31]. 

2.2. Classification and regression tree (CART)  

CART is a type of the recursive data-driven approach that is applicable for both categorical and 

continuous variables [32]. For the first one, a classification tree for classifying such classes using 

some exogenous rules is employed. For the latter, a regression tree for prediction problems using 

predictors (input variables) and responses can be established [21]. Three main stages of CART 

are as follows [22,23]: 

1. Establishing maximum tree via squared residuals minimization (SRM) approach.  

2. Finding best parameters for tree size using cross-validation and optimization techniques. The 

complexity element (cp) can be considered to improve the procedure of selecting the best tree 

size. 

3. Generating or classifying new data using established rules and trees. After completing this 

step, new outputs can be calculated for each of the new predictors. 

CART algorithm divides the independent variables dataset from parent nodes using a binary-

dividing process to generate child nodes based on their purity. For minimizing impurity of the 

samples, impurity measure can be defined as [24]: 

∆𝑖(𝑠, 𝑡) =  𝑖(𝑡) − 𝑝𝐿
𝑖 (𝑡𝐿) − 𝑝𝑅

𝑖 (𝑡𝑅) (5) 

where 𝑖(𝑡), 𝑝𝐿
𝑖 (𝑡𝐿), and 𝑝𝑅

𝑖 (𝑡𝑅) denote impurity before dividing process, left child node, and 

right child node, respectively. Also, in CART model the Gini index (𝐼𝐺) is applied to choose the 

best split as follows: 

𝐼𝐺(𝑡𝑋(𝑥𝑖)) =  1 − ∑ 𝑓(𝑡𝑋(𝑥𝑖), 𝑗)
2

𝑚

𝑗=1

 (6) 

where 𝑓(𝑡𝑋(𝑥𝑖), 𝑗) is the subset of the observed values by considering leave j at node t. 
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In this study, a regression tree constructed to estimate SRC values using structural input 

parameters.  

2.3. Multivariate adaptive regression spline (MARS) 

MARS is one of the nonlinear approaches that can be applied to estimate numeric parameters by 

considering complex properties of inputs and output parameters [33]. This method is based on a 

divide-and-conquer strategy and divides the training data into separate splines of varying slopes 

[20]. MARS implements a mathematical relationship between effective parameters using basis 

functions (BFs), without any assumption regarding predictors and responses. BFs can be 

generated by stepwise searching through possible univariate candidate knots. The two main steps 

of MARS are the forward phase and the backward phase. By using the first one, appropriate 

input parameters can be identified and in the second phase, the unnecessary samples will be 

removed to enhance the model performance by using the Generalized Cross-Validation (GCV) 

approach. The GCV for N samples of the training set can be calculated as: 

𝐺𝐶𝑉 =

1

𝑁
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2𝑁
𝑖=1

(1 −
𝑀+𝑑×(𝑀−1)/2

𝑁
)

2  (7) 

where M is the number of BFs, d denotes the penalty for each BF. 

For a given target variable 𝑦 and the predictor variable 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑝], a general MARS 

model can be defined as: 

𝑦 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑝) + e = 𝑓(𝑋) + 𝑒 (8) 

where 𝑓(𝑥) denotes the predicted response, and e is error of fitting. By considering a linear 

combination of BFs, Equation 8 is generally expressed as [20]: 

𝑓(𝑋) = 𝛽0 + ∑ 𝛽𝑚

𝑀

𝑚=1

𝜆𝑚(𝑋) (9) 

where 𝛽𝑚 and 𝜆𝑚(𝑚 = 1,2, … , 𝑀) denote constant coefficients that can be calculated using least 

square method. Two types of BFs are used the MARS model for mapping from parameter Xp
 

(input parameters) to response 𝑌. 

𝑌 = 𝑚𝑎𝑥(0, 𝑋 − 𝑐), 

𝑌 = 𝑚𝑎𝑥(0, 𝑐 − 𝑋) 
(10) 

where c denotes the threshold value. More details about MARS can be found in [20,33–35]. 

2.4. Random forest (RF) 

Breiman [36] suggested the RF technique as one of the types of decision trees using different 

subsets of data. RF by applying an ensemble learning approach enhances weak learners by using 
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a voting scheme. In the first step, RF generates tree samples using the original training elements 

by employing bootstrap sampling [37,38]. Then, the generated trees grow at each node, and 

parameters of the RF methodology are tuned to find the optimal ones. At the next step, ensemble 

averaging is applied to estimate responses. Finally, Out-of-bag (OOB) error estimation is 

calculated by using the data [39]. In this stage, two statistical parameters, coefficients of 

determination and mean square error (MSE) of the OOB, are calculated to investigate the 

established model.  

𝑀𝑆𝐸𝑂𝑂𝐵 =
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

𝑛
 

 

(11) 

𝑅𝑅𝐹
2 = 1 −

𝑀𝑆𝐸𝑂𝑂𝐵

𝜎𝑦
2

 (12) 

where 𝑛 is the number of samples, 𝜎𝑦 is the variance of OOB, and 𝑦𝑖 and 𝑦̅ denote the observed 

and estimated values, respectively. Different steps of the applied RF are shown in Fig. 3. 

error rate
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(m × n )

InBag 2

(2/3)
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........
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........
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Fig. 3. Flowchart of the RF algorithm in estimating SRC values. 
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2.5. Model assessment criteria 

In this study, the Nash–Sutcliffe model efficiency (NSE) coefficient, root mean square error 

(RMSE), the correlation coefficient (𝑟), and the Adjusted R-squared (𝑅𝑎𝑑𝑗
2 ) as standard 

statistical indices are utilized for performance comparison of the applied models. These 

indicators are expressed as follows: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑((𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶)𝑖𝑝)

2
;

𝑛

𝑖=1

 0 ≤ 𝑅𝑀𝑆𝐸 < ∞ 
 

(13) 

𝑁𝑆𝐸 = 1 −
∑ ((𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶)𝑖𝑝)

2𝑛
𝑖=1

∑ ((𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑜)2𝑛
𝑖=1

;   −∞ < 𝑁𝑆𝐸 ≤ 1 (14) 

𝑟 =
∑ ((𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑜) ((𝑆𝑅𝐶)𝑖𝑝 − (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑝)𝑛

𝑖=1

√∑ ((𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑜)2𝑛
𝑖=1 ∑ ((𝑆𝑅𝐶)𝑖𝑝 − (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑝)

2𝑛
𝑖=1

;   0 < 𝑟 ≤ 1 
(15) 

𝑅𝑎𝑑𝑗
2 = 1 − [

(1 − 𝑅2)(𝑛 − 1)

(𝑛 − 𝑘 − 1)
] ;   (16) 

where (𝑆𝑅𝐶)𝑖𝑜 and (𝑆𝑅𝐶)𝑖𝑝 denote the observed and predicted SRC values, respectively. 

(𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑜 and (𝑆𝑅𝐶̅̅ ̅̅ ̅̅ )𝑖𝑝 are the average of the observed and predicted SRC values, respectively. 

Also, n and 𝑘 indicate the number of samples in the dataset and the number of independent 

variables used in the model, respectively. The RMSE metric (0 ≤ 𝑅𝑀𝑆𝐸 < ∞) with an optimum 

value of 0 is utilized for comparing the accuracy of the applied models. The 𝑟 index (0 < 𝑟 ≤ 1) 

with an ideal value of 1 indicates the competence of the employed predictors for SRC prediction. 

The NSE index (−∞ < 𝑁𝑆𝐸 ≤ 1) is used to evaluate the goodness of fit of the devolved 

models. For a perfect fit between observed and predicted SRC (i.e., in the situation with a zero 

error variance), the resulting NSE equals 1 (𝑁𝑆𝐸 = 1). Actually, the 𝑁𝑆𝐸 = 0 denotes the model 

has the same predictive power as the mean of observed SRC, whereas negative values (NSE < 0) 

indicate that the observed mean performs better than the developed SRC model. It is also worth 

mentioning that, when applied for regression analysis, the NSE is equivalent to the coefficient of 

determination (𝑅2). The 𝑅𝑎𝑑𝑗
2  indicator takes into account the number of independent variables 

used for predicting the target variable. If R-squared does not increase significantly on the 

addition of a new independent variable, the value of Adjusted R-squared will actually decrease. 

On the other hand, if on adding a new independent variable we see a significant increase in R-

squared value, then the Adjusted R-squared value will also increase. 

3. Experimental dataset 

The dataset used in this study consists of 158 data points, provided by Jafarzadeh et al. [3], 

which were collected from earthquake-prone public school buildings with a framed structure in 

Iran. The general dataset includes information about fourteen variables influencing SRC that are 
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reflected in construction tender documents. Based on the previous studies by Jafarzadeh et al. [3–

5], the total floor area (TFA), number of stories (NS), seismic weight (SW), seismicity (S), soil 

type (ST), plan configuration (PC), and structural type (STT) are considered as the influential 

input variables. The total SRC values comprising structural costs and the costs of architecture 

and finishes (also known as “restoration cost”) are considered as output variables.  

The statistical properties of the used dataset for estimating SRC are listed in Table 1. Because the 

parameters have different dimensions, converging the models may be difficult. Moreover, to 

show better generalization performance of the applied models, data were normalized between the 

range of 0 and 1. These data were randomly divided into training and testing subsets. It should be 

mentioned that 80% of the data (126 samples) was applied as a training subset and the remaining 

20% (32 samples) was used for the testing subset. Besides, the “hold-out” method was used for 

both model evaluation and model selection, where a subset of the data is held out during the 

training procedure for all applied models. Moreover, the size of the training and testing subsets is 

also equal for all employed models. More details about this dataset can be found in [3]. 

Table 1 

Basic statistical properties of the dataset. 

Data set Variable  Average Min. Max. St. Dev. 

 TFA (m
2
) 1832.8 260 6100 826.41 

 NS 3.23 1 5 0.91 

 SW (ton) 2080.7 15 7801 1052.9 

Training data PC 2.76 1 3 0.45 

(126 samples) S 2.66 2 4 0.50 

 ST 0.79 0 1 0.40 

 STT 3.84 1 6 2.27 

 SRC (10
3
 U.S.$) 95.40 11.23 293.32 46.78 

 TFA (m
2
) 1982.5 187 4035 816.82 

 NS 3.18 1 5 0.93 

 SW (ton) 2091.8 170 6357 1041.7 

Testing data PC 2.87 2 3 0.33 

(32 samples) S 2.62 2 3 0.49 

 ST 0.68 0 1 0.47 

 STT 3.62 1 6 2.33 

 SRC (10
3
 U.S.$) 92.87 11.28 252.60 49.32 

 

4. Results and discussion 

In this section, the results of the SRC values predicted from ELM, CART, MARS, and RF were 

compared with the observed SRC values to investigate the accuracy of suggested models. The 

MATLAB 2014b is utilized to implement the applied data-driven techniques.  

4.1. Performance evaluation of different approaches 

Based on the several input parameters (TFA, NS, SW, S, ST, PC, and STT), seven different 

scenarios are investigated to estimate SRC using structural parameters with the minimum RMSE 
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value for the test dataset. In the first and second scenarios, only one and two variables are 

considered as input parameters, respectively. The number of the selected input parameters is 

subsequently increased such that all input variables are considered in the last scenario. Moreover, 

for each scenario, different combinations of the input variables are also investigated to find the 

most influential combination of the input variables on the target. Finally, twenty-two different 

cases based on the different combinations of input parameters have been investigated. The 

performance of the employed models has been assessed for each scenario in terms of the 

correlation coefficient 𝑟, RMSE, 𝑅𝑎𝑑𝑗
2 , and NSE indices. It is worth mentioning that, the most 

influential parameters for each scenario are defined based on the correlation analysis.  

Table 2 

Results of ELM models for estimation of retrofit cost. 

Input combination 
Training Testing 

RMSE NSE r 𝑹𝒂𝒅𝒋
𝟐  RMSE NSE r 𝑹𝒂𝒅𝒋

𝟐  

One input (scenario 1)  

TFA 0.0985 0.615 0.784 0.6119 0.0988 0.643 0.821 0.6311 

NS 0.1434 0.185 0.431 0.1784 0.1424 0.259 0.517 0.2343 

SW 0.0986 0.615 0.784 0.6119 0.1348 0.336 0.625 0.3139 

S 0.1514 0.091 0.302 0.0837 0.1646 0.011 0.168 < 0 

ST 0.1565 0.029 0.172 0.0212 0.1635 0.023 0.158 < 0 

PC 0.1483 0.128 0.359 0.1210 0.155 0.122 0.378 0.0927 

STT 0.1582 0.008 0.094 <0.001 0.1655 <0.001 0.062 < 0 

Two inputs (scenario 2)  

TFA, NS 0.0962 0.633 0.796 0.6270 0.0946 0.673 0.839 0.6504 

TFA, SW 0.0968 0.629 0.793 0.6230 0.0956 0.666 0.84 0.6430 

NS, SW 0.1101 0.519 0.72 0.5112 0.1373 0.311 0.569 0.2635 

TFA, PC 0.0961 0.633 0.796 0.6270 0.0971 0.655 0.843 0.6312 

NS, PC 0.1317 0.313 0.559 0.3018 0.1265 0.415 0.652 0.3747 

SW, PC 0.1063 0.552 0.743 0.5447 0.1266 0.415 0.651 0.3747 

Three inputs (scenario 3)  

TFA, NS, SW 0.0974 0.624 0.79 0.6148 0.0985 0.645 0.818 0.6070 

TFA, NS, PC 0.0916 0.667 0.817 0.6588 0.0962 0.662 0.837 0.6258 

NS, SW, PC 0.094 0.649 0.806 0.6404 0.0904 0.701 0.868 0.6690 

Four inputs (scenario 4)  

TFA, NS, SW, PC 0.09 0.679 0.824 0.6684 0.0893 0.708 0.897 0.6647 

TFA, NS, SW, S 0.093 0.65 0.808 0.6384 0.0905 0.699 0.859 0.6544 

Five inputs (scenario 5)  

TFA, NS, SW, PC, S 0.0902 0.677 0.823 0.6635 0.09 0.704 0.887 0.6471 

TFA, NS, SW, PC, ST 0.0945 0.647 0.803 0.6323 0.973 0.654 0.839 0.5875 

Six inputs (scenario 6)  

TFA, NS, SW, PC, S, ST 0.0895 0.682 0.826 0.6660 0.0843 0.74 0.893 0.6776 

Seven inputs (scenario 7)  

TFA, NS, SW, PC, S, ST, STT 0.0904 0.676 0.822 0.6568 0.0814 0.758 0.896 0.6874 

 

The results of the three performance evaluation indicators (RMSE, NSE, and r) for the employed 

data-driven techniques, namely the ELM, CART, MARS, and RF, are provided in Tables 2-5, 

respectively. According to Tables 2-5, it can be seen that, in the first scenario (only one input 
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variable), all employed models achieved the best performance (r, NSE, 𝑅𝑎𝑑𝑗
2 , and RMSE) for the 

TFA parameter for both training and testing data. However, the performance of the ELM model 

(RMSE=0.0988, NSE=0.643, r=0.821, and 𝑅𝑎𝑑𝑗
2 =0.6311) is better than other compared models 

for testing data (Table 2). Based on the obtained results in the in the first scenario (Tables 2-5), 

the TFA variable was chosen as the most effective parameter to estimate SRC values. Similar 

results were reported by Jafarzadeh et al. [4–6]. 

Table 3 

Results of CART models for estimation of retrofit cost. 

Input combination 
Training Testing 

RMSE NSE r 𝑹𝒂𝒅𝒋
𝟐  RMSE NSE r 𝑹𝒂𝒅𝒋

𝟐  

One input (scenario 1)  

TFA 0.0763 0.769 0.877 0.7671 0.1214 0.461 0.712 0.4430 

NS 0.1415 0.207 0.454 0.2006 0.1442 0.241 0.497 0.2157 

SW 0.0858 0.708 0.841 0.7056 0.1387 0.297 0.563 0.2736 

S 0.1514 0.091 0.302 0.0837 0.1646 0.011 0.168 < 0 

ST 0.1565 0.029 0.172 0.0212 0.1635 0.023 0.158 < 0 

PC 0.1483 0.128 0.359 0.1210 0.155 0.122 0.378 0.0927 

STT 0.1582 0.008 0.094 < 0.001 0.1657 -0.002 0.062 < 0 

Two inputs (scenario 2)  

TFA, NS 0.0662 0.826 0.909 0.8232 0.1173 0.497 0.759 0.4623 

TFA, SW 0.0518 0.893 0.945 0.8913 0.125 0.429 0.702 0.3896 

NS, SW 0.0754 0.775 0.88 0.7713 0.1549 0.123 0.426 0.0625 

TFA, PC 0.0762 0.77 0.877 0.7663 0.1216 0.46 0.711 0.4228 

NS, PC 0.1269 0.361 0.601 0.3506 0.1287 0.395 0.642 0.3533 

SW, PC 0.09 0.679 0.824 0.6738 0.1508 0.169 0.457 0.1117 

Three inputs (scenario 3)  

TFA, NS, SW 0.0491 0.904 0.951 0.9016 0.1081 0.573 0.773 0.5273 

TFA, NS, PC 0.0661 0.827 0.909 0.8227 0.1175 0.495 0.758 0.4409 

NS, SW, PC 0.0514 0.895 0.946 0.8924 0.12 0.474 0.739 0.4176 

Four inputs (scenario 4)  

TFA, NS, SW, PC 0.0487 0.906 0.951 0.9029 0.1027 0.614 0.804 0.5568 

TFA, NS, SW, S 0.0511 0.896 0.947 0.8926 0.128 0.425 0.699 0.3398 

Five inputs (scenario 5)  

TFA, NS, SW, PC, S 0.0501 0.9 0.948 0.8958 0.1033 0.61 0.8 0.5350 

TFA, NS, SW, PC, ST 0.6 0.835 0.912 0.8281 0.112 0.512 0.762 0.4182 

Six inputs (scenario 6)  

TFA, NS, SW, PC, S, ST 0.0497 0.902 0.949 0.8971 0.0979 0.649 0.825 0.5648 

Seven inputs (scenario 7)  

TFA, NS, SW, PC, S, ST, STT 0.0763 0.769 0.877 0.7553 0.1214 0.461 0.712 0.3038 

 

In the second scenario with combinations of two input variables, the combination of the TFA and 

NS variables (TFA, NS) has provided better results than other input combinations in the ELM 

(Table 2), CART (Table 3), and RF (Table 5) models during the testing phase. However, it is 

obviously seen from the results of the second scenario in Tables 2-5 that the ELM model 

(RMSE=0.0946, NSE=0.673, r=0.839, and 𝑅𝑎𝑑𝑗
2 =0. 6504) provided better results than the other 

compared algorithms for the test data. In this scenario, MARS model (Table 4) achieved the best 
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performance during testing period in the case of combination of the TFA and PC as input 

variables. Also, it should be mentioned that the MARS model with RMSE=0.0992, NSE=0.64, 

and r=0.824, and 𝑅𝑎𝑑𝑗
2 =0. 6152 achieved the second rank in the second scenario (Table 4). 

In the third scenario, the best combination of input variables in each model is different from the 

others. However, as can been from Table 2, the combination of the NS, SW, and PC variables 

yielded better output than other combinations in the ELM model. In this case, the ELM model 

(RMSE=0.0904, NSE=0.701, r=0.868, and 𝑅𝑎𝑑𝑗
2 =0.669) showed better performance than the 

CART, MARS, and RF models for the test subset. In this scenario, the RF model with a 

combination of the TFA, NS, and PC variables in Table 5 achieved the second rank 

(RMSE=0.092, NSE=0.688, and r=0.853) after the ELM model during the testing phase. 

Table 4 
Results of MARS models for estimation of retrofit cost. 

Input combination 
Training Testing 

RMSE NSE r 𝑹𝒂𝒅𝒋
𝟐  RMSE NSE r 𝑹𝒂𝒅𝒋

𝟐  

One input (scenario 1)  

TFA 0.1004 0.6 0.775 0.5968 0.1053 0.595 0.796 0.5815 

NS 0.1415 0.207 0.454 0.2006 0.1442 0.241 0.497 0.2157 

SW 0.1086 0.532 0.729 0.5282 0.1421 0.262 0.538 0.2374 

S 0.1515 0.091 0.301 0.0837 0.1646 0.011 0.168 < 0 

ST 0.1589 0 <0.001 < 0 0.1657 -0.002 <0.001 < 0 

PC 0.1483 0.128 0.359 0.1210 0.155 0.122 0.378 0.0927 

STT 0.1589 0 <0.001 < 0 0.1657 <0.001 <0.001 < 0 

Two inputs (scenario 2)  

TFA, NS 0.0887 0.688 0.829 0.6829 0.1057 0.592 0.792 0.5639 

TFA, SW 0.1007 0.597 0.773 0.5904 0.1113 0.547 0.76 0.5158 

NS, SW 0.1107 0.514 0.717 0.5061 0.1385 0.299 0.561 0.2507 

TFA, PC 0.0976 0.622 0.789 0.6159 0.0992 0.64 0.824 0.6152 

NS, PC 0.135 0.278 0.527 0.2663 0.133 0.354 0.609 0.3094 

SW, PC 0.1069 0.547 0.74 0.5396 0.1267 0.413 0.651 0.3725 

Three inputs (scenario 3)  

TFA, NS, SW 0.096 0.634 0.796 0.6250 0.1188 0.484 0.722 0.4287 

TFA, NS, PC 0.1008 0.597 0.722 0.5871 0.1075 0.578 0.785 0.5328 

NS, SW, PC 0.1016 0.591 0.768 0.5809 0.1105 0.554 0.776 0.5062 

Four inputs (scenario 4)  

TFA, NS, SW, PC 0.1007 0.598 0.773 0.5847 0.1078 0.575 0.785 0.5120 

TFA, NS, SW, S 0.112 0.517 0.718 0.5010 0.125 0.429 0.701 0.3444 

Five inputs (scenario 5)  

TFA, NS, SW, PC, S 0.0936 0.652 0.807 0.6375 0.0984 0.646 0.816 0.5779 

TFA, NS, SW, PC, ST 0.1091 0.538 0.735 0.5188 0.1121 0.511 0.763 0.4170 

Six inputs (scenario 6)  

TFA, NS, SW, PC, S, ST 0.0959 0.635 0.797 0.6166 0.1 0.63 0.815 0.5412 

Seven inputs (scenario 7)  

TFA, NS, SW, PC, S, ST, STT 0.0995 0.608 0.779 0.5847 0.1079 0.574 0.797 0.4497 
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The results of the fourth scenario in Tables 2-5 indicate that all models have shown the best 

performance for SRC prediction in the case of the combination of TFA, NS, SW, and PC as input 

variables. Results of Table 3 show that the CART model has the best performance indices among 

all other compared algorithms during the training procedure. However, comparing the results of 

developed models during the testing phase indicate that the CART model achieved the third rank 

among other compared algorithms. In this scenario, the ELM model significantly enhanced the 

accuracy of the CART, MARS, and RF models during the testing period. Also, the RF algorithm 

(RMSE=0.092, NSE=0.689, r=0.852, and 𝑅𝑎𝑑𝑗
2 =0.6429) showed the second optimum model for 

this case.  

Table 5. 

Results of RF models for estimation of retrofit cost. 

Input combination 
Training Testing 

RMSE NSE r 𝑹𝒂𝒅𝒋
𝟐  RMSE NSE r 𝑹𝒂𝒅𝒋

𝟐  

One input (scenario 1)  

TFA 0.065 0.830 0.915 0.8286 0.115 0.515 0.727 0.4988 

NS 0.141 0.206 0.454 0.1996 0.144 0.240 0.499 0.2147 

SW 0.067 0.819 0.909 0.8175 0.146 0.221 0.518 0.1950 

S 0.151 0.091 0.302 0.0837 0.164 0.010 0.168 < 0 

ST 0.156 0.029 0.172 0.0212 0.163 0.023 0.158 < 0 

PC 0.148 0.128 0.359 0.1210 0.154 0.124 0.378 0.0948 

STT 0.158 0.008 0.094 <0.001 0.165 <0.001 0.057 < 0 

Two inputs (scenario 2)  

TFA, NS 0.058 0.865 0.933 0.8628 0.105 0.593 0.785 0.5649 

TFA, SW 0.052 0.889 0.947 0.8872 0.110 0.554 0.751 0.5232 

NS, SW 0.067 0.821 0.911 0.8181 0.144 0.238 0.544 0.1854 

TFA, PC 0.063 0.838 0.917 0.8354 0.106 0.585 0.779 0.5564 

NS, PC 0.127 0.360 0.600 0.3496 0.132 0.359 0.616 0.3148 

SW, PC 0.064 0.835 0.918 0.8323 0.133 0.352 0.604 0.3073 

Three inputs (scenario 3)  

TFA, NS, SW 0.053 0.887 0.947 0.8842 0.102 0.616 0.791 0.5749 

TFA, NS, PC 0.062 0.844 0.924 0.8402 0.092 0.688 0.853 0.6546 

NS, SW, PC 0.068 0.812 0.909 0.8074 0.128 0.398 0.632 0.3335 

Four inputs (scenario 4)  

TFA, NS, SW, PC 0.055 0.878 0.943 0.8740 0.092 0.689 0.852 0.6429 

TFA, NS, SW, S 0.065 0.83 0.914 0.8244 0.112 0.513 0.761 0.4409 

Five inputs (scenario 5)  

TFA, NS, SW, PC, S 0.061 0.852 0.931 0.8458 0.093 0.683 0.855 0.6220 

TFA, NS, SW, PC, ST 0.067 0.817 0.911 0.8094 0.0988 0.641 0.833 0.5720 

Six inputs (scenario 6)  

TFA, NS, SW, PC, S, ST 0.059 0.858 0.936 0.8508 0.096 0.662 0.840 0.5809 

Seven inputs (scenario 7)  

TFA, NS, SW, PC, S, ST, STT 0.061 0.851 0.936 0.8422 0.098 0.649 0.838 0.5466 

 

Comparing the results of the fifth scenario reveal that all employed models have achieved the 

best performance in both the training and testing phases for the combination of the TFA, NS, 

SW, PC, and S variables. In this case, the CART model has shown superior performance 
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compared to other algorithms during the training phase (Table 3). However, according to Table 5, 

the RF algorithm with RMSE=0.093, NSE=0.683, and r=0.855 presented better results than both 

CART and MARS approaches. Again, the ELM model (RMSE=0.09, NSE=0.704, r=0.887, and 

𝑅𝑎𝑑𝑗
2 =0.6471) had the best accuracy among other compared algorithms. 

In the sixth scenario, the capability of employed models for SRC prediction has been 

investigated by considering the combination of the TFA, NS, SW, PC, S, and ST as input 

variables. For this case, the CART and RF algorithms showed better performance than the ELM 

model in the training phase. Nevertheless, it is quite apparent from the results of this scenario in 

Tables 2-5 that the ELM model (RMSE=0.0843, NSE=0.74, and r=0.893) has yielded better SRC 

values than the other models for the testing subset. The RF algorithm with RMSE=0.096, 

NSE=0.6662, r=0.840, and 𝑅𝑎𝑑𝑗
2 =0.5809 could also be ranked as the second-best model for this 

case. 

Finally, results of Tables 2-5 in the last scenario with the TFA, NS, SW, PC, S, ST, and STT 

variables, confirm that the ELM approach (RMSE=0.0814, NSE=0.758, and r=0.896) has 

superiority to CART, MARS, and RF approaches. Again the RF algorithm achieved the second 

rank in terms of all performance indices for the test subset. It can be seen from Table 3 that the 

CART model with RMSE=0.1214, NSE=0.461, and r=0.712 presented the worst results for this 

case among all compared algorithms. 

Table 6 

Comparison the results of the best models for estimation of the retrofit cost. 

Model Input combination 
Training Testing 

RMSE NSE r RMSE NSE r 

ELM TFA, NS, SW, PC, S, ST, STT 0.0904 0.676 0.822 0.0814 0.758 0.896 

RF TFA, NS, SW, PC 0.055 0.878 0.943 0.092 0.689 0.852 

CART TFA, NS, SW, PC, S, ST 0.0497 0.902 0.949 0.0979 0.649 0.825 

MARS TFA, NS, SW, PC, S 0.0936 0.652 0.807 0.0984 0.646 0.816 

MLP [4]
*
 TFA, NS, SW, PC, S, ST, STT 0.2 0.831 - 0.247 0.734 - 

* MLP: R
2
 = 0.831, and MSE = 0.040 for train data, and R

2
 = 0.734, and MSE = 0.061 for test data. 

 

In Table 6, the best performance achieved by each model among different investigated scenarios 

and the corresponding input combinations is presented. For comparison purposes, results of the 

multilayer perceptron (MLP) neural network for SRC prediction, reported by Jafarzadeh et al. 

[4], are also presented in Table 6. As can be seen, in accordance with the ELM model, the best 

results of the MLP neural network have also been obtained in the last scenario [4]. Results of 

Table 6 verify that the ELM model had the best accuracy compared with the MLP and other 

proposed models for estimating the SRC values. As can be seen, while the CART model has the 

best training performance, the ELM model has better accuracy than other compared algorithms 

with regard to all performance indices (RMSE, NSE, and r) during the testing phase.  

Fig. 4 illustrates the scatterplots of the predicted and the observed SRC values for the training 

dataset. These results are presented for the best scenario corresponding to each of the employed 
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models (defined in Table 6). It can be concluded from the reported regression coefficients in Fig. 

4 that the CART prediction yielded better results than other developed models the training data. 

Also, it should be mentioned that the MARS model estimated SRC values with the highest error.  

   

 
 

Fig. 4. Observed vs. predicted scatter plot for best SRC prediction models during the training phase. 

The scatterplots between the observed and estimated SRC values for the testing subset are 

presented in Fig. 5. Comparison of regression coefficients of different models indicates that the 

ELM model achieved better performance than the CART, MARS, and RF models. Again, the 

MARS algorithm yielded the worst results in the estimation of the SRC values. 
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Fig. 5. Observed vs. predicted scatter plot for best SRC prediction models during the testing phase. 

 

 

   

a) RMSE b) NSE c) r 

Fig. 6. The Radar charts for the RMSE, NSE and r of the best developed SRC prediction models. 
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Fig. 7. Box plots of residual error of the best models for testing dataset. 

 
Fig. 8. Variation of the observed and estimated SRC values for the testing dataset. 
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Fig. 6 shows the radar chart for assessing three employed performance indices, including the 

RMSE, correlation coefficient r, and NSE values corresponding to the best developed SRC 

prediction models. In this figure, the results are depicted for both the training and testing data. 

According to Fig. 6, the ELM model had the best NSE and r values and the lowest RMSE during 

the testing phase. The RF model can also be ranked as the second optimal model for SRC 

prediction. 

Fig. 7 shows the boxplots of standardized residual error values of the best models during the 

testing phase. The variations of the observed and predicted SRC values for the test dataset are 

also presented in Fig. 8. Comparing the residual error of different models in Fig. 7 indicate that 

the proposed ELM-based model for SRC prediction showed the lowest length compared with 

other employed algorithms. It is also obvious from Fig. 8 that the estimated SRC values of the 

ELM model thoroughly follow the corresponding observed ones. These results verify the 

superior performance of the proposed ELM model for prediction of the SRC values. 

The histogram of the residual error of the best models is also presented in Fig. 9. These results 

are provided by considering the mean (μ) and standard deviation (σ) (SD) of the residual error 

corresponding to the testing dataset. As it is quite evident from Fig. 9, the ELM and the MARS 

models have yielded the lowest and highest value for the SD measure, respectively. It is in 

harmony with the trend of the RMSE values reported in Table 6. 

  

  
Fig. 9. Histogram of residual error for best models in estimation of retrofit cost. 

ELM CART 

MARS RF 
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Fig. 10 depicts the Taylor diagram for identifying the performance of different approaches in the 

last scenario, whereby the distance from the observed SRC values is a quantity of the centered 

RMS error in the simulated field. In this figure, the azimuth angle denotes to the correlation (r) 

between the predicted and observed SRC values while the radial distance from the origin 

signifies the ratio of the normalized SD of the simulation to that of the observation [40]. It is 

evident from Fig. 10 that the ELM model agrees best with observations while having the least 

RMS error (less than 0.08) and the highest correlation with observations among all other 

algorithms. The normalized SD of all models (radial distance from the origin) is clearly lower 

than that of the observed SRC values. However, the SD of the ELM and CART models 

(indicated by the dashed contour at approximately radial distance 0.14) are closer to the observed 

values. Moreover, the ELM model has a lower distance from the observed SRC values compared 

with the CART, MARS, and RF models. Therefore, it can be concluded that the proposed ELM 

model with TFA, NS, SW, PC, S, ST, and STT variables provided more accurate results 

compared with other employed machine learning algorithms. Fig. 10 also indicates that the RF 

model has a higher correlation with observations as well as a lower centered RMS error than 

both MARS and CART algorithms.   

 
Fig. 10. Taylor diagram for the estimated SRC values in the last scenario. 

4.2. Uncertainty analysis 

Since the influential variables may have stochastic nature, uncertainty is inevitable in the applied 

models. Therefore, an uncertainty analysis is conducted to determine which model is more 

efficient during the testing period. For this purpose, the prediction error (PE), an average of the 

PE (APE), the SD of the PE (SDPE), the width of uncertainty band (WUB), and 95% PE interval 

(95% PEI) have been calculated in this study to quantify uncertainty. These parameters can be 

expressed as follows: 
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𝑃𝐸𝑖 = (𝑆𝑅𝐶)𝑖𝑜 − (𝑆𝑅𝐶)𝑖𝑝 (17) 

𝐴𝑃𝐸 =
1

𝑛
∑ 𝑃𝐸𝑖

𝑛

𝐼=1

 (18) 

𝑆𝐷𝑃𝐸 = √∑
1

𝑛 − 1
(𝑃𝐸𝑖 − 𝐴𝑃𝐸)2

𝑛

𝐼=1

 (19) 

The results of the uncertainty analysis for the best model of each algorithm are provided in Table 

7. It should be mentioned that the WUB and 95% PEI can be computed using ±1.96 𝑆𝐷𝑃𝐸 and 

𝑃𝐸 ± (𝐴𝑃𝐸 + 𝑊𝑈𝐵), respectively. As can be seen from Table 7, the values of the APE (0.013) 

and SDPE (0.075) for the ELM are the lowest value compared with other models. In addition, 

the WUB for the ELM (± 0.148) is the lowest value compared with the RF (± 0.181), CART (± 

0.190), and MARS (± 0.191) models. These results verify the efficiency of the ELM as an 

accurate data-driven technique to enhance estimation accuracy of the SHLFFNN. 

Table 7 

Uncertainty analysis results for the applied models for prediction of the SRC in the best scenario. 

Method APE SDPE WUB 95% PEI 

ELM 0.013 0.075 ± 0.148 (-0.037, 0.349) 

RF 0.014 0.092 ± 0.181 (-0.140, 0.360) 

CART 0.022 0.096 ± 0.190 (-0.091, 0.506) 

MARS 0.020 0.097 ± 0.191 (-0.028, 0.456 ) 

 

4.3. Sensitivity analysis 

In this section, sensitivity analysis is performed using the RReliefF algorithm to identify the rank 

importance of different predictors affecting the SRC value. RReliefF algorithm uses intermediate 

weights to determine final weight of each predictor by penalizing predictors that provide 

different values for samples with the same outputs. The predictors that give different values to 

neighbors with different outputs are also rewarded. RReliefF algorithm works by analyzing the 

attribute (A) parameters and identifies related random (Ri) samples by finding the two nearest 

neighbors from two different classes (nearest hit H and nearest miss M). Based on the mentioned 

elements, the quality estimation (𝑊[𝐴]) is then calculated. A considerable difference between the 

two samples can result in lower quality estimation which is not acceptable. By considering the 

mentioned procedure for all samples, the quality estimation 𝑊[𝐴] can be computed as follows 

[41,42]: 

𝑊[𝐴] =
𝑃𝑑𝑖𝑓𝑓𝐶\𝑑𝑖𝑓𝑓𝐴 𝑃𝑑𝑖𝑓𝑓𝐴

𝑃𝑑𝑖𝑓𝑓𝐶
−

(1 − 𝑃𝑑𝑖𝑓𝑓𝐶\𝑑𝑖𝑓𝑓𝐴) 𝑃𝑑𝑖𝑓𝑓𝐴

1 − 𝑃𝑑𝑖𝑓𝑓𝐶
 (20) 

where 𝑃𝑑𝑖𝑓𝑓𝐴 denotes the difference of attribute A and the nearest instances, and 𝑃𝑑𝑖𝑓𝑓𝐶 indicates 

the difference of the estimated and nearest instances.  
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Fig. 11. The relative importance of predictors on the target variable using the RReliefF algorithm. 

Results of the RReliefF algorithm-based sensitivity analysis, including the relative importance of 

predictors on the target SRC values, are presented in Fig. 11. Similar to the results of previous 

studies [2–6], it can be concluded from the weights presented in Fig. 11 that the TFA is the most 

effective parameter in SRC prediction. The SW parameter achived the secound rank of 

importance after TFA. An increase in the TFA and SW values considerably increases the SRC 

values for a given building. Therefore, several policies should be implemented to mitigating the 

risk by applying reliability analysis. The rank of input variables based on the RReliefF 

importance analysis is also presented in Table 8. It can be mentioned that the SW and the PC 

found also to be significant (positive effect) in process of SRC estimation. Moreover, the results 

of Table 8 demonstrate that the parameter S has the least influence in retrofit actions. 

Table 8 

Sensitivity analysis of influence of input parameters using the RReliefF algorithm and Gamma test. 

Input parameter 
Rank 

RReliefF algorithm 

TFA 1 

NS 4 

SW 2 

S 7 

ST 5 

PC 3 

STT 6 

 

5. Conclusion 

One of the main goals of this research was to estimate the SRC using the relevant structural 

parameters and to identify the most influential variables in the retrofit cost. For this purpose, four 

different machine learning algorithms (MLAs), including the extreme learning machine (ELM), 

classification and regression tree (CART), multivariate adaptive regression spline (MARS), and 
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random forest (RF) regression, were employed to estimate the SRC values in the construction 

projects by considering the total floor area (TFA), number of stories (NS), seismic weight (SW), 

seismicity (S), soil type (ST), plan configuration (PC), and structural type (STT) as input 

variables affecting SRC values. The best prediction models for employed MLAs were 

determined by investigating several scenarios based on the different combinations of the input 

variables. The performances of the employed MLAs were compared in terms of four statistical 

indices including the correlation coefficient r, root mean square error (RMSE), Nash–Sutcliffe 

efficiency (NSE), Adjusted R-squared (𝑅𝑎𝑑𝑗
2 ) indicator, and also the Taylor diagram. Data of the 

employed structural parameters were prepared and 80% of them was selected randomly and 

applied as a training subset using the hold-out method and the remaining 20% of the data was 

used as a testing subset. 

Performance comparisons of different employed MLAs shown that the best ELM model with a 

combination set of all input variables provided the most accurate prediction for the SRC values 

among other compared algorithms. Furthermore, the RF regression with a combination set of the 

TFA, NS, SW, and PC as input variables achieved the second-rank best model. The results of the 

present study can be summarized as follows: 

 This study suggested a reliable and efficient method based on the extreme learning 

machine to estimate SRC values using related structural parameters. 

 The uncertainty analysis results for the best models of the applied MLAs indicated that the 

proposed ELM-based model for prediction of the SRC values has the lowest amount of 

uncertainty compared with other employed algorithms. Moreover, the RF regression was 

achieved the second rank in terms of the average, standard deviation, and width of the 

uncertainty band of the prediction error. 

 A sensitivity analysis was also conducted using the RReliefF algorithm to investigate the 

importance of different effective variables on the SRC estimation. The RReliefF algorithm-

based sensitivity results proved that the TFA, SW, and PC are the most influential input 

parameters, whereas the seismicity parameter (S) has the least influence in the retrofit 

actions. Moreover, both the soil type ST and structural type STT have shown a negative 

influence on the SRC value, while the effect of ST is also relatively higher than the effect 

of STT. 

Results of this study verified that the developed ELM model with random weights outperforms 

traditional ANN and other compared algorithms in terms of error measures for estimating SRC. 

However, in general, designers should consider that there are different factors influencing the 

accuracy/efficiency of the model, including data quality and algorithm parameters. In addition, 

despite the high capability of MLAs, they might be subject to some inherent shortcomings due to 

different sources of uncertainties and external disturbances when applying in complex practical 

applications. The reliability-based analysis is a common approach that could be employed to deal 

with external disturbances and uncertainties in the input/output data. Finally, the boosting 

machine learning algorithms such as the least-square boosting could also be implemented to test 

their performance in order to enhance the accuracy of SRC prediction in future works. 
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