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Expansive soils (ES) have a long history of being difficult to work 

with in geotechnical engineering. Numerous studies have examined 

how bagasse ash (BA) and lime affect the unconfined compressive 

strength (UCS) of ES. Due to the complexities of this composite 

material, determining the UCS of stabilized ES using traditional 

methods such as empirical approaches and experimental methods is 

challenging. The use of artificial neural networks (ANN) for 

forecasting the UCS of stabilized soil has, however, been the subject 

of a few studies. This paper presents the results of using rigorous 

modelling techniques like ANN and multi-variable regression model 

(MVR) to examine the UCS of BA and a blend of BA-lime (BA + 

lime) stabilized ES. Laboratory tests were conducted for all dosages of 

BA and BA-lime admixed ES. 79 samples of data were gathered with 

various combinations of the experimental variables prepared and used 

in the construction of ANN and MVR models. The input variables for 

two models are seven parameters: BA percentage, lime percentage, 

liquid limit (LL), plastic limit (PL), shrinkage limit (SL), maximum 

dry density (MDD), and optimum moisture content (OMC), with the 

output variable being 28-day UCS. The ANN model prediction 

performance was compared to that of the MVR model. The models 

were evaluated and contrasted on the training dataset (70% data) and 

the testing dataset (30% residual data) using the coefficient of 

determination (R
2
), Mean Absolute Error (MAE), and Root Mean 

Square Error (RMSE) criteria. The findings indicate that the ANN 

model can predict the UCS of stabilized ES with high accuracy. The 

relevance of various input factors was estimated via sensitivity 

analysis utilizing various methodologies. For both the training and 

testing data sets, the proposed model has an elevated R
2
 of 0.9999. It 

has a minimal MAE and RMSE value of 0.0042 and 0.0217 for 

training data and 0.0038 and 0.0104 for testing data. As a result, the 

generated model excels the MVR model in terms of UCS prediction. 
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1. Introduction 

Soil stabilization is a technique for enhancing the behaviour of soil under applied stresses. 

Recently, a variety of soil improvement approaches, classified as mechanical and chemical, have 

been applied. The most prevalent mechanical method for improving expansive soil deposits is 

soil reinforcement. Chemical supplements are also employed as an enhancement approach [1]. 

Due to their efficiency in lowering expansive qualities, boosting strength, lowering the plasticity 

index, limiting the possibility for swell and shrinkage, and regulating volume change, lime and 

cement are frequently employed in chemical treatments of cohesive soils with expansive 

properties [2]. Bagasse ash is a waste product that is normally disposed of in pits but is also 

utilized as a soil amendment in some regions due to its high pozzolona content [3]. 

The review of the literature finds that there has been minimal study on soil stabilization by BA 

and lime. In recent years, the use of BA and lime in expansive soil has attracted the attention of 

soil scientists. Researchers examined the effects of BA and lime on improving the properties of 

clayey soil. The study conducted by Osinubi et al., [4] concentrated on the impact of BA from 0 

to 12% at 2% intervals by weight of dry soil on the geotechnical characteristics of the weak 

lateritic soil. Lateritic soil treated with 2% bagasse ash exhibited peak 7-day UCS and California 

Bearing Ratio (CBR) readings of 836 kN/m
2
 and 16%. Nethravathi et al., [5] investigated on the 

impact of BA and lime on the ES. The BA ranges from 10 to 60% at 10% intervals by dry soil 

weight, while the lime ranges from 1 to 5% at 1% intervals by dry soil weight. The strength has 

been increased to the optimum BA dosage of 20%. When 20% BA and 4% lime were added to 

the soil, the strength improved even more for different curing intervals. Similar work has been 

reported by Dang et al., [6] conducted a study to explore the effects of bagasse fibres on the 

engineering properties of ES, 0.5%, 1.0%, and 2.0% randomly oriented bagasse material was 

added to ES, and hydrated lime-ES combined with varied bagasse fibre fractions was also tested. 

The results of this test indicate that bagasse fibre reinforcement combined with hydrated lime 

enhanced the compressive strength of ES, as curing period and supplement amount enhanced. 

James et al., [7] perfomed a work on stabilization procedure supplemented with 3% lime and 

various concentrations of BA (viz., 0.25%, 0.5%, 1%, and 2%) and coconut shell powder (CSP) 

individually was performed, and the effectiveness of the amendment on the UCS, plasticity, and 

swell-shrinkage of the ES was evaluated. According to the study's findings, BA modification of 

lime stabilization worked better than CSP in terms of enhancing UCS, plasticity, and swell-

shrink. Reddy et al., [8] studied on black cotton soil (BCS) blended with lime in varying 

concentrations of 2%, 4%, and 6%. According to soaked CBR studies on BCS, 4% lime 

concentration is considered optimal. The inclusion of 4% lime in BCS for stabilization did not 

produce the requisite result of CBR for subbase. As a consequence, brick powder is supplied in 

the range of 20 to 80% at 20% increments by dry weight of soil. As compared to 4% lime-

stabilized soil, a 20% brick powder combination increased the soaked CBR value by roughly 

135%. The literatures mentioned above supports the argument that adding BA and lime to ES 

increases its strength. The investigations by other researchers [9–11] reported the same 

outcomes. An accurate model to forecast the strength of BA-lime treated soils is required due to 

the remarkable growth in the usage of BA and lime to enhance cohesive soils and their successful 

implementation in earlier research. 
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Alavi et al. [12] worked on the use of ANN to forecast the MDD and OMC of a soil-stabilizer 

combination was investigated in this study. Five ANN models are built, utilizing various input 

variable pairs. A parametric analysis was also carried out to assess the adaptability of MDD and 

OMC to changes in the most influential input factors. The findings show that the suggested 

models reliability is good in contrast to the data from experiments. Mozumder et al. [13] have 

studied on the materials such as ground granulated blast furnace slag (GGBS), fly ash (FA), and 

a mixture of GGBS and FA. With varied combinations of the test factors, a 28-day UCS of 283 

stabilized samples was obtained. Additionally, a neural interpreting diagram (NID) to visualize 

the influence of input factors on UCS is illustrated. Salahudeen et al. [14] carried out a research 

on ANN as a soft computing technique, trained with the feed-forward back-propagation 

technique, to simulate the OMC and MDD of cement kiln dust-stabilized BCS. All of the 

simulated findings are favourable, and there was a significant agreement between the actual 

OMC and MDD values acquired from testing in the laboratory and the anticipated values 

obtained using ANN. Bahmed et al. [15] have construct three models based on ANNs that 

forecast all of the plasticity index (PI), OMC, and MDD values of subgrade soil improved with 

lime using fundamental soil data that are always accessible to engineers. Three distinct models 

are established, each pertaining to the optimal architecture for the three attributes, and each of 

them may be used as a reliable method to forecast the PI, OMC, and MDD of lime-stabilized ES. 

Nazeer and Dutta [16] carried out research that employs machine learning approaches to estimate 

the bearing capacity formula of an E-shaped foundation exposed to a vertical concentric force 

and positioned on layered sand. The data used in the computation was taken from the finite 

element modelling of a similar footing. Two models have been developed, and both of them were 

shown to be capable of predicting the bearing capacity of the E-shaped foundation with sufficient 

precision. Dutta et al. [17] report their work on the free swell index of ES using an ANN. The 

ANN model's input variables were the PI and shrinkage index, while its outcome was the free 

swell index (FSI). The study discovered that, after implementing an ANN model, the forecasting 

accuracy of the FSI of ES was fairly excellent. Soft computing techniques have been effectively 

used in the past several decades as a robust tool to solve and evaluate a variety of geotechnical 

engineering challenges [18,19]. The issues relating to soil deposition are typically quite 

complicated. Additionally, a variety of factors determine how soils stabilized with chemical 

additions behave. 

The current research aims to stabilize clayey soil using BA and lime. The source ingredients such 

as BA and a mixture of BA + lime were also included in the current study to assess the 

stabilization effect among them, and the test findings were reported using a 28-day UCS value. 

An ANN-based UCS prediction model was developed for optimal and effective stabilization. The 

suggested ANN model's prediction effectiveness was contrasted to that of the MVR model. The 

influence of various input factors on the predicted UCS of stabilized specimens was investigated 

and measured using sensitivity analysis. The prediction model was developed to predict the UCS 

value of a BA-lime stabilized ES and will be helpful for researchers and geotechnical engineers 

in determining the strength capacity of the soil. Traditional experimental approaches are labour 

and time intensive in determining the UCS. The predictive model can also be used to calculate 

the ideal amounts of BA and lime to deploy in an ES with known Atterberg's limits and 

compaction properties. 
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2. Methods 

2.1. Experimental data 

The expansive soil utilized in the investigations was obtained at a depth of 1.5 m below ground 

in Kadur, Chikkamagaluru district, India. To ensure that the BA was mixed equally, the soil was 

pulverised (to a size smaller than 4.75 mm) using a hammer and then sundried to reduce the 

moisture content to around 0%. The engineering features of air-dried expansive soil as 

determined experimentally using conventional test approaches are summarised in Table 1. 

According to grain size analysis IS 2720 [20], 61.2% of the particles are clay size and 20.8% are 

silt size. The soil is classified as highly compressible clay, CH according to IS 1498 [21]. The 

lime utilized in the study was laboratory grade hydrated lime produced by Nandi. BA was 

obtained from Mugulavalli Sugar Mills Pvt. Ltd. in the Karnataka city of Chikkamagaluru, India. 

The chemical content of the compounds used in the investigation is listed in Table 2. 

Table 1 

Soil classification and properties of ES. 
Sl. No. Property of soil Values 

1.  Specific gravity 2.63 

2.  Fine sand fraction (%) 18.0 

3.  Silt fraction (%) 20.8 

4.  Clay fraction (%) 61.2 

5.  Liquid Limit (%) 65 

6.  Plastic Limit (%) 27 

7.  Plasticity index (%) 38 

8.  Shrinkage Limit (%) 13 

9.  Optimum Moisture Content (%) 28 

10.  Dry Density (kN/m
3
) 13.3 

11.  Free swell index (%) 97 

12.  Soil Classification CH 

13.  UCS (kPa) 51.12 

Table 2 

Chemical composition of ES, lime, and BA. 
Type of 

Material 

SiO2 

(%) 

Al2O3 

(%) 

CaO 

(%) 

Fe2O3 

(%) 

K2O 

(%) 

MgO 

(%) 

MnO 

(%) 

Na2O 

(%) 

P2O5 

(%) 

TiO2 

(%) 

SO3 

(%) 

ES 64.71 17.12 2.40 7.89 2.15 1.68 0.03 1.53 0.03 0.99 0.30 

Lime 0.22 0.06 72.09 0.05 0.004 15.30 0.003 0.06 0.005 0.004 0.03 

BA 63.92 5.340 12.10 4.28 3.85 0.91 0.03 1.02 1.10 0.03 0.05 

 

As shown in Table 2, Energy Dispersive X-Ray investigation was also employed in this 

experiment to examine the stability of expanding soil as well as its chemical composition and 

constituent parts. The three main substances, which together make up around 84% of expansive 

soil, are SiO2, Al2O3, and Fe2O3. As a consequence, it is feasible to draw the conclusion that 

quartz mineral concentration in coarse mineral and aluminium silicate clay mineral amplification 

in fine mineral. According to ASTM D 653-03 [22], natural pozzolans are categorised as class-F 

pozzolans if the ratio of SiO2, Al2O3, and Fe2O3 to the overall mass is more than 70%. As a 

result, the BA employed in the present research is a pozzolan of class F. 
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The ES was weighed to the closest gramme and oven dried for 24 hours at 110 ± 5°C before 

being rigorously combined with the source materials in an appliance until a homogeneous blend 

was achieved. The quantity of stabilizers varies as a percentage of the dry weight of soil solids, 

ranging from 0 to 18% for BA and 0 to 6% for lime. With varying dosages of BA and lime, tests 

such as liquid limit [23], plastic limit [23], shrinkage limit [24], maximum dry density [25], 

optimum moisture content [25], and UCS [26] were performed. The Table 3 shows the test 

results of all the 79 samples of experimental findings. Fig. 1 shows the results of unconfined 

compressive strength.  

The choice of BA content ranging from 0 to 18% at an interval of 3% in the soil was made from 

the past research work carried out for the expansive soil. The pH test yielded a result of 3.5% for 

the minimal lime level necessary for current ES stabilization. Using UCS testing, the ideal lime 

concentration was found to be 4.5%. Therefore, the lime content has been varied from 0 to 6% at 

an interval of 0.5% with different percentages of BA content to understand the combined effect 

on the UCS test results. 

Table 3 

Experimental test results. 
Sample 

No. 

BA 

(%) 

Lime 

(%) 

LL 

(%) 

PL 

(%) 

SL 

(%) 

MDD 

(kN/m
3
) 

OMC 

(%) 

UCS 

(kPa) 

Remark 

1.  0 0 65 27 13 13.3 28 51.12 Training 

2.  3 0 58 30 13 12.5 28.5 78.68 Training 

3.  6 0 56 35 15 11.8 29.5 92.23 Training 

4.  9 0 54.5 37 16 11.5 30 109.25 Test 

5.  12 0 52 39 18 11 31 132 Training 

6.  15 0 51 39.5 21 10.7 32 112.58 Training 

7.  18 0 50 40 22 10.5 33 91.5 Training 

8.  3 0.5 57.61 29.61 12.61 12.11 28.11 78.29 Training 

9.  6 0.5 55.99 34.99 14.99 11.79 29.49 92.22 Test 

10.  9 0.5 54.68 37.18 16.18 11.68 30.18 109.43 Training 

11.  12 0.5 52.77 39.77 18.77 11.77 31.77 132.77 Training 

12.  15 0.5 51.37 39.87 21.37 11.07 32.37 112.95 Training 

13.  18 0.5 49.61 39.61 21.61 10.11 32.61 91.11 Training 

14.  3 1.0 57.23 29.23 12.23 11.73 27.73 77.91 Test 

15.  6 1.0 55.97 34.97 14.97 11.77 29.47 92.2 Training 

16.  9 1.0 54.86 37.36 16.36 11.86 30.36 109.61 Training 

17.  12 1.0 53.54 40.54 19.54 12.54 32.54 133.54 Test 

18.  15 1.0 51.74 40.24 21.74 11.44 32.74 113.32 Training 

19.  18 1.0 49.21 39.21 21.21 9.71 32.21 90.71 Test 

20.  3 1.5 56.84 28.84 11.84 11.34 27.34 77.52 Training 

21.  6 1.5 55.96 34.96 14.96 11.76 29.46 92.19 Training 

22.  9 1.5 55.03 37.53 16.53 12.03 30.53 109.78 Training 

23.  12 1.5 54.31 41.31 20.31 13.31 33.31 134.31 Test 

24.  15 1.5 52.11 40.61 22.11 11.81 33.11 113.69 Training 

25.  18 1.5 48.82 38.82 20.82 9.32 31.82 90.32 Test 

26.  3 2.0 61.7 31.1 22.9 12.4 29.8 68.55 Test 

27.  6 2.0 60.7 38.1 27.9 11.8 30.8 82.35 Training 

28.  9 2.0 59.2 42.1 31.9 11.5 32.3 148.37 Training 

29.  12 2.0 57.7 46.1 35.9 10.9 33.8 183.62 Training 
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30.  15 2.0 55.7 51.1 40.9 10.6 34.8 276.32 Test 

31.  18 2.0 55.7 53.1 44.9 10.4 36.3 209.32 Training 

32.  3 2.5 59.77 29.17 20.97 10.47 27.87 66.62 Training 

33.  6 2.5 60.63 38.03 27.83 11.73 30.73 82.28 Training 

34.  9 2.5 60.09 42.99 32.79 12.39 33.19 149.26 Training 

35.  12 2.5 61.54 49.94 39.74 14.74 37.64 187.46 Training 

36.  15 2.5 57.56 52.96 42.76 12.46 36.66 278.18 Test 

37.  18 2.5 53.73 51.13 42.93 8.43 34.33 207.35 Training 

38.  3 3.0 59.39 28.79 20.59 10.09 27.49 66.24 Training 

39.  6 3.0 60.61 38.01 27.81 11.71 30.71 82.26 Training 

40.  9 3.0 60.27 43.17 32.97 12.57 33.37 149.44 Test 

41.  12 3.0 62.31 50.71 40.51 15.51 38.41 188.23 Training 

42.  15 3.0 57.93 53.33 43.13 12.83 37.03 278.55 Training 

43.  18 3.0 53.33 50.73 42.53 8.03 33.93 206.95 Training 

44.  3 3.5 59 28.4 20.2 9.7 27.1 65.85 Training 

45.  6 3.5 60.6 38 27.8 11.7 30.7 82.25 Test 

46.  9 3.5 60.45 43.35 33.15 12.75 33.55 149.62 Training 

47.  12 3.5 63.08 51.48 41.28 16.28 39.18 189 Training 

48.  15 3.5 58.3 53.7 43.5 13.2 37.4 278.92 Training 

49.  18 3.5 52.94 50.34 42.14 7.64 33.54 206.56 Training 

50.  3 4.0 63 32 24 12.7 30 74.25 Test 

51.  6 4.0 62 39 29 12.1 31 88.05 Test 

52.  9 4.0 60.5 43 33 11.8 32.5 154.07 Training 

53.  12 4.0 59 47 37 11.2 34 189.32 Training 

54.  15 4.0 57 52 42 10.9 35 282.02 Training 

55.  18 4.0 57 54 46 10.7 36.5 215.02 Training 

56.  3 4.5 59.53 28.53 20.53 9.23 26.53 70.78 Training 

57.  6 4.5 61.87 38.87 28.87 11.97 30.87 87.92 Test 

58.  9 4.5 62.1 44.6 34.6 13.4 34.1 155.67 Training 

59.  12 4.5 65.92 53.92 43.92 18.12 40.92 196.24 Test 

60.  15 4.5 60.34 55.34 45.34 14.24 38.34 285.36 Test 

61.  18 4.5 53.45 50.45 42.45 7.15 32.95 211.47 Training 

62.  3 5.0 59.14 28.14 20.14 8.84 26.14 70.39 Training 

63.  6 5.0 61.86 38.86 28.86 11.96 30.86 87.91 Training 

64.  9 5.0 62.28 44.78 34.78 13.58 34.28 155.85 Test 

65.  12 5.0 66.69 54.69 44.69 18.89 41.69 197.01 Test 

66.  15 5.0 60.71 55.71 45.71 14.61 38.71 285.73 Training 

67.  18 5.0 53.05 50.05 42.05 6.75 32.55 211.07 Training 

68.  3 5.5 58.76 27.76 19.76 8.46 25.76 70.01 Training 

69.  6 5.5 61.84 38.84 28.84 11.94 30.84 87.89 Test 

70.  9 5.5 62.46 44.96 34.96 13.76 34.46 156.03 Test 

71.  12 5.5 67.45 55.45 45.45 19.65 42.45 197.77 Training 

72.  15 5.5 61.08 56.08 46.08 14.98 39.08 286.1 Training 

73.  18 5.5 52.66 49.66 41.66 6.36 32.16 210.68 Training 

74.  3 6.0 65.1 34.04 25.83 14.838 29.667 138.84 Test 

75.  6 6.0 64.1 41.04 30.83 14.238 30.667 164.65 Test 

76.  9 6.0 62.6 45.04 34.83 13.938 32.167 288.11 Test 

77.  12 6.0 61.1 49.04 38.83 13.338 33.667 354.02 Training 

78.  15 6.0 59.1 54.04 43.83 13.038 34.667 527.37 Training 

79.  18 6.0 59.1 56.04 47.83 12.838 36.167 402.08 Training 
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The UCS specimens were produced in a 38 mm x 76 mm fixed volume split mould. Defined 

amounts of soil, lime, and BA were placed in a pan and blended by hand in dry circumstances to 

reach the desired dry density. The specimens were right away sealed within a polythene cover so 

they could cure. Each of the combinations was tested on three specimens. To determine the 

strength of the stabilized soil, the specimens were allowed to cure at 28 ± 2°C for periods of 28 

days. The specimens were taken out of their sealed polythene wraps after the designated curing 

times and loaded until they fractured at a strain rate of 0.625 mm/min. 

 
Fig. 1. Collected laboratory data of stabilized ES specimens. 

2.2. ANN model development 

Numerous geotechnical engineering issues have been solved with ANN in the past. Due to this, 

and since it is possible to get more information in the literature, the present study refrains from 

describing ANN in detail [27,28]. 

A total of 79 samples of experimental findings of 28 day UCS of ES stabilized with BA and lime 

were collected for this investigation. BA-admixed cohesive soils and BA-lime combinations 

were used in the experiments. A predictive ANN model based on neural network technique was 

established. Input parameters for the ANN include the liquid limit (LL), plastic limit (PL), 

shrinkage limit (SL), percentage of BA (%), percentage of lime (%), MDD (kN/m
3
), and OMC 

(%). These input parameters have certain levels of effect on the UCS values of the ES soil. The 

change in these parameters will affect the end results. The output parameter is the 28-day UCS in 

kPa. With the help of the neural network toolkit, ANN modelling was implemented in the 

MATLAB R2014a environment. The recommended data split of the ANN model is used to 

obtain statistically constant training and testing data [28]. 30% of the experimental data was used 

to test the trained model, while the remaining 70% was used to train the model. Table 4 lists the 

statistical characteristics of the training and testing data. There is no set rule for determining the 
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number of concealed layers and nodes. Fig. 2 illustrates the flow path for developing a good 

ANN model. 

The model was created by combining the best mapping scheme, the back propagation network, 

and the Levengberg-Maquardt method for training, resulting in the quickest training technique 

for multilayer perceptron, the most common class of ANN that employ the feed-forward 

architecture [15]. Fig. 3 shows the architecture of the current ANN model for UCS prediction. 

After multiple trial and error procedures, the optimal performance was discovered to be seven 

hidden neurons in a single hidden layer, and this judgement was based on the value of squared 

regression and mean squared error (MSE). The output parameter UCS is represented by a single 

neuron. 

 
Fig. 2. ANN flow pattern. 
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Fig. 3. The ANN model's framework for UCS prediction. 

The efficacy of the ANN model was assessed using three statistical metrics: the root mean 

squared error (RMSE), mean absolute error (MAE), and coefficient of determination (R
2
) were 

computed using equations 1, 2 and 3. Table 5 depicts training parameters used in developing a 

ANN model. 

𝑅2 =
∑ (𝑌𝑚)2 − ∑  (𝑌𝑚− 𝑌𝑝)2

𝑁  𝑁 

∑ (𝑌𝑚)2
𝑁 

 (1) 

𝑀𝐴𝐸 =
∑ |𝑌𝑚− 𝑌𝑃|𝑁 

𝑁
 (2) 

𝑅𝑀𝑆𝐸 = √∑ (𝑌𝑚− 𝑌𝑝)
2

𝑁 

𝑁
 (3) 

where 𝑌𝑚 is experimentally determined values, 𝑌𝑃 is estimated values by ANN model, and the N 

represents the number of laboratory measurements. 
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Table 4 

Analysis of laboratory data using statistics for model construction. 
Input 

Parameter 

All data Training set Testing set 

Min Max Mean SD Min Max Mean SD Min Max Mean SD 

BA 0 18 10.36 5.22 6 18 10.85 5.41 3 18 9.25 4.57 

Lime 0 6 2.96 1.88 0 6 2.8 1.85 0 6 3.33 1.91 

LL 48.82 67.45 58.06 4.30 49.61 67.45 57.44 3.91 48.82 66.69 59.48 4.79 

PL 27 56.08 42.16 8.49 27 56.08 42.38 8.93 29.23 55.34 41.66 7.34 

SL 11.84 47.83 29.68 11.02 11.84 47.83 29.93 11.59 12.23 45.34 29.09 9.57 

MDD 6.36 19.65 11.94 2.36 6.36 19.65 11.52 2.33 9.32 18.89 12.91 2.14 

OMC 25.76 42.45 32.61 3.61 25.76 42.45 32.52 3.66 27.73 41.69 32.80 3.49 

UCS  51.12 527.37 155.75 87.30 51.12 527.37 160.02 93.26 68.55 288.11 145.96 70.84 

Min: Minimum, Max: maximum, SD: standard deviation 

The developed ANN model has an MSE value of 0.0001421 and a coefficient of determination  

value of 0.99990. These final outcomes are achieved after numerous training iterative attempts in 

which the amount of hidden neurons in the hidden layer and other network variables such as 

objective, epochs, and learning rate are varied. The network's efficiency is assessed by the 

amount of mistakes collected in the projected values. The best-trained model is the one that 

produces the fewest errors. Training is done for 1000 epochs, which implies the network can 

iterate for a maximum of 1000 rounds to ensure the model's appropriateness. The training has 

been stopped at the 461
th

 epoch. Fig. 4 and Fig. 5 provide network training state illustrations as 

well as efficiency graphs, respectively. Table 5 depicts training parameters used in developing a 

ANN model. Fig. 6 illustrates the regression plot of the projected UCS (Y) of ANN model versus 

experimental UCS (T) of training data. 

Table 5 

Training parameters used in a ANN model. 
Sl.No. Neural network characteristics MATLAB variables and 

designations 

1.  Train function  ‘trainlm’ (levenberg-Marquardt) 

2.  Transfer function ‘tansig’ (no linear function) 

3.  Performance function  ‘mse’ (mean square error) 

4.  Error after learning 0.001 

5.  Train epochs 1000 

6.  Input layer neurons count 07 

7.  Number of hidden layers 01 

8.  Number of neurons in the hidden layer 07 

9.  Number of output layer 01 

10.  Final architecture  7-7-1 
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Fig. 4. Network training state illustration. 

 
Fig. 5. Plot illustrating training network efficiency. 

 
Fig. 6. Regression plot comparing the training data set of ANN model's projected UCS against the 

experimental UCS. 
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2.2.1. Testing and validating the trained model 

Fig. 7 illustrates the regression plot of the projected UCS (Y) of ANN model versus experimental 

UCS (T) of testing data. Table 6 provides an overview of the statistical performance of the 

created ANN model. When using training and testing data, the MAE, RMSE, and R
2
 values of 

the ANN model were 0.0042, 0.0217, and 0.99990 & 0.0038, 0.0104, and 0.99999 respectively. 

The best-fitting line showed excellent agreement with the line of equality when R
2
 = 0.99990. As 

seen in Fig. 6, nearly all of the data points are located comfortably inside the 99% confidence 

interval range. 

 
Fig. 7. Regression plot comparing the testing data set of ANN model's projected UCS against the 

experimental UCS. 

Table 6 

Efficacy of ANN model. 

Model Name Group of data 
Statistical framework 

R
2
 MAE RMSE 

ANN 
Training 0.99990 0.0042 0.0217 

Testing 0.99999 0.0038 0.0104 

 

2.3. MVR model development 

In the current study, a multi-variable regression analysis (MVR) was also performed to forecast 

the UCS of soil stabilized using BA-lime. The MVR model was created using 70% of the entire 

dataset, just like the ANN model. The remaining 30% of the records were used to evaluate the 

model's predictive capability. The dependent variable and independent variables have a 

generalized linear relationship that appears as follows: 

𝑌 = 𝑎0 +  𝑎1𝑋1 +  𝑎2𝑋2 +  … … … … … . . + 𝑎𝑝𝑋𝑝  ±  𝑒 (4) 

Where, 𝑎0 is the Y intercept and Y is the dependent variable. The slopes connected to 𝑋1, 𝑋2, and 

𝑋𝑝 are 𝑎1, 𝑎2, and 𝑎𝑝. e is the error, while 𝑋1, 𝑋2, and 𝑋𝑝 are the results of the independent 

elements. Through the use of least square error optimization, "a" values are generated. UCS was 
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used as the dependent variable in the MVR model, whereas BA, lime, LL, PL, SL, MDD, and 

OMC were used as the independent elements. 

Table 7 

ANOVA of MVR model. 

Origin 
Degrees of 

freedom 
Sum square Mean square F P 

Regression 7 447781.7876 63968.8268 98.11023853 7.38729E-26 

Residual 47 30644.45571 652.0096961   

Total 54 478426.2433    

 

Table 8 

Statistical evidence on MVR model predictor variables. 
Determinant 

variable 
Coefficients Standard Error t-Stat P-value 

Lower 

95% 

Upper 

95% 

Intercept 1946.4 323.76 6.012 0 1295.08 2597.72 

BA 8.2 4.186 1.959 0.056 -0.221 16.621 

Lime -0.28 3.821 -0.07 0.942 -7.967 7.406 

LL -19.186 5.603 -3.42 0.001 -30.458 -7.914 

PL 10.441 2.721 3.837 0 4.966 15.916 

SL 16.49 3.01 5.478 0 10.434 22.546 

MDD 77.745 8.354 9.306 0 60.938 94.551 

OMC -80.067 7.127 -11.2 0 -94.405 -65.73 

 

Fig. 8 depicts the regression plot of the MVR model for the training data sets of UCS. Table 7 

and Table 8 exhibit the outcomes of the analysis of variance (ANOVA) and statistical data for the 

MVR model's predictor variables. The F-test and t-test were used to interpret the regression 

analysis data in Table 7 and Table 8 at a 95% confidence level. Table 7 shows that the P value 

(7.38729E-26) is exceptionally low, indicating that at least one of the MVR model coefficients is 

significant with a level of confidence (1 - P) of almost 100%. However, this F-test is insufficient 

to identify the crucial MVR model coefficients. Consequently, t-tests were additionally 

performed to ascertain the significance of particular coefficients. Individual coefficients, t-stats, 

and P values are shown in Table 8. The P values for the coefficients of the BA, and lime are 

observed to correlate to rather low levels of confidence (1 - P < 0.95), and they are not 

remarkable for the model MVR. The P value for the LL, PL, SL, MDD and OMC, on the other 

hand, is relatively low with a strong confidence level (1 - P > 0.95) and indicate that these 

coefficients are important for the MVR model. The lower and higher limits of the 95% 

confidence range are also shown in Table 8. The insignificance discovered via t-tests of these 

parameters is compatible with the fact that zero falls within this interval of lime, LL, and OMC 

with a 95% likelihood of occurring. Since the BA, PL, SL and MDD confidence intervals 

exclude zero, they agree with the impact of the t-tests. Evidently, the MVR model disregarded 

the importance of lime, LL, and OMC in UCS prediction, which prevented it from generalizing 

the BA-lime stabilization process in ES. 
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Fig. 8. Regression plot illustrating the variation of training data set of the MVR model. 

Table 9 

Efficacy of MVR model. 

Model Name Group of data 
Statistical framework 

R
2
 MAE RMSE 

MVR 
Training 0.941 14.4807 23.6045 

Testing 0.634 25.9416 57.3218 

 

Fig. 9 depicts the regression plot of the MVR model for the testing data sets of UCS. Table 9 

provides an overview of the statistical performance of the created MVR model. When using 

training and testing data, the MAE, RMSE, and R
2
 values of the MVR model were 14.4807, 

23.6045, and 0.941 & 25.9416, 57.3218, and 0.634 respectively. The statistical results in Table 6 

and Table 9 indicate that the ANN model learned and forecasted the experimental data far better 

than the MVR model. 

 
Fig. 9. Regression plot illustrating the variation of testing data set of the MVR model. 
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2.4. Sensitivity analysis 

A sensitivity analysis is carried out to ascertain how delicate a model is to a change in the 

model's parameter values. Sensitivity evaluation is performed by changing the value of an input 

variable and observing how the ANN model reacts to this change. It can also be used to identify 

the most effective parameter values for ANN models, and the sensitivity analysis delivers quite 

consistent outcomes as to which input element affects the model output [29]. 

For evaluating variable contributions in geotechnical engineering problems, several academics 

have had success with approaches like Garson's algorithm and the Connection weight technique. 

The two approaches mentioned above were employed in the current investigation to identify key 

input variables for UCS prediction [27]. Using the absolute values of connection weights, the 

Garson's algorithm divides hidden-output connection weights into components related to each 

input neuron, known as the "Weights" approach, and computed using equation 5 [27]. Using the 

equation 6, the Connection weight method computes the product of the actual input-hidden and 

hidden-output synaptic weights among each input neuron and output neuron, and then adds the 

products for all hidden neurons [30]. 

𝐼𝑛𝑝𝑢𝑡𝑥 = ∑  𝐺
𝑌=𝐴  

|𝐻𝑖𝑑𝑑𝑒𝑛𝑋𝑌|

∑  |𝐻𝑖𝑑𝑑𝑒𝑛𝑍𝑌|7
𝑍=1

 (5) 

𝐼𝑛𝑝𝑢𝑡𝑥 = ∑   𝐻𝑖𝑑𝑑𝑒𝑛𝑋𝑌
𝐺
𝑌=𝐴  (6) 

In the equations 5 & 6, the weights connecting each input neuron Z (where Z = 1 - 7) to each 

hidden neuron Y (where Y = A - G) to the single output neuron are used to calculate the variable 

relevance for predictor variable X (where X = 1 - 7). 

3. Results and discussion 

3.1. Validation of ANN model 

The acquired findings are nearly equal to the experiment data, with a maximum error of 0.0985% 

in forecasting the UCS values gathered. The mean absolute error (MAE) for the outputs 

generated with seven hidden neurons was 0.0042. The error histogram is depicted in Fig. 10. The 

percentage mistakes are classified into 20 groups. Because the error bins are closer to the zero 

line, it is evident that the constructed ANN model predicts substantial output values within the 

allowable error margin. As a result, this model can be used for testing and validation. Table 10 

shows the comparison of experimental data and ANN outcomes of test datasets. 

The absolute percentage errors are likewise within acceptable limits, indicating that the created 

model predicts outcomes that are similar to the experiment data. In projecting UCS, the greatest 

absolute percentage error of the test dataset is 0.0348% and the MAE is 0.0038. Fig. 11 depicts a 

graphical illustration of differences in the UCS's ANN projected outputs, along with experiment 

data. 
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Fig. 10. Error histogram for training data sets of ANN model. 

Table 10 

Comparison of experimental data and ANN outcomes of test datasets. 
Sample 

No. 

Exp.  ANN  Percent 

error 

Sample 

No. 

Exp.  ANN  Percent 

error 

Sample 

No. 

Exp.  ANN 

 

Percent 

error  

4 109.25 109.24 0.0016 30 276.32 276.34 0.009 60 285.36 285.35 2.68E-05 

9 92.22 92.21 0.0002 36 278.18 278.18 8E-05 64 155.85 155.85 4.98E-05 

14 77.91 77.91 3E-05 40 149.44 149.44 5E-07 65 197.01 197.01 0.000373 

17 133.54 133.56 0.0178 45 82.25 82.24 0.0042 69 87.89 87.85 0.034771 

19 90.71 90.71 6E-05 50 74.25 74.25 6E-05 70 156.03 156.03 0.000996 

23 134.31 134.33 0.0162 51 88.05 88.04 0.0005 74 138.84 138.84 1.06E-06 

25 90.32 90.32 0.0042 57 87.92 87.92 0.0005 75 164.65 164.65 3.26E-07 

26 68.55 68.54 0.0002 59 196.24 196.23 0.0002 76 288.11 288.11 2.96E-07 

Exp. = Experimental UCS values (kPa) 

ANN = Output values forecasted by the established ANN model (kPa) 

 
Fig. 11. Variations in UCS of experimental and ANN predicted test output. 
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3.2. Validation of MVR model 

The generated findings are expected to deviate more from the experiment data, with a maximum 

error of 124.03% in forecasting the UCS values. The mean absolute error (MAE) for the outputs 

was 14.4807. The error histogram is depicted in Fig. 12. The percentage mistakes are classified 

into 20 groups.  

 
Fig. 12. Error histogram for training data sets of MVR model. 

Table 11 shows the comparison of experimental data and MVR outcomes in test datasets. In 

projecting UCS, the greatest absolute percentage error of the test dataset is 114.084% and the 

MAE is 25.9416. Fig. 13 depicts a graphical illustration of differences in the UCS's MVR 

projected outputs, along with experiment data. 

Table 11 

Comparison of experimental data and MVR outcomes of test datasets. 
Sample 

No. 

Exp.  MVR  Percent 

error 

Sample 

No. 

Exp.  MVR Percent 

error 

Sample 

No. 

Exp.  MVR Percent 

error 

4 109.25 116.76 6.8803 30 276.32 245.90 11.0074 60 285.36 273.21 4.2548 

9 92.22 89.18 3.2963 36 278.18 255.84 8.02736 64 155.85 176.03 12.949 

14 77.91 71.25 8.5449 40 149.44 162.83 8.96581 65 197.01 202.43 2.7516 

17 133.54 132.32 0.9118 45 82.25 138.67 68.6052 69 87.89 147.69 68.046 

19 90.71 84.65 6.6789 50 74.25 76.37 2.86498 70 156.03 176.86 13.355 

23 134.31 136.35 1.5243 51 88.05 148.98 69.2039 74 138.84 279.88 101.587 

25 90.32 82.39 8.7723 57 87.92 148.13 68.4930 75 164.65 352.49 114.084 

26 68.55 67.03 2.2123 59 196.24 198.39 1.09859 76 288.11 370.16 28.4810 

Exp. = Experimental UCS values (kPa) 

MVR = Output values forecasted by the established MVR model (kPa) 
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Fig. 13. Variations in UCS of experimental and MVR predicted test output. 

From Fig. 13, it is evident that a slight deviation was observed in the MVR predicted values of 

the UCS for all the test datasets. The primary reason for this kind of behaviour is due to the low 

coefficient of determination value. This low R
2
 states that there is an improper correlation 

between the input test datasets and the output variable. As seen in Table 8, the MVR model 

ignored the significance of lime, LL, and OMC in UCS prediction.  

3.3. Sensitivity analysis of the developed ANN model 

Table 12 displays the ANN model's optimized weight vectors. The significance and relative 

ordering of various input variables for ANN utilizing Garson's algorithm and the Connection 

weight approach are displayed in Table 13 focused on the weights referenced there. Table 13 

shows that the Garson's algorithm ranked LL as the most crucial parameter and MDD, OMC as 

the least crucial. Similarly, the Connection weight approach ranked BA as the most important 

factor while PL represented the minimum effect. Due to the following factors, the ranking 

provided by the Garson's algorithm appears to be more realistic and acceptable: 

a. It is noted that from Table 3 that there has been a gradual increase in the PL value at all 

dosages of lime content added. This behaviour had reduced the plasticity index (PI) of the 

soil, giving it better workability. LL is very much essential to calculate the PI of the soil 

samples. The amount of water that the soil can absorb increases with the plasticity index, 

increasing the possibility for the soil to swell. Addition of lime to plastic soils, a colloidal 

reaction occurs that results in an boost in pH, a decrease in double layer water, and the 

substitution of naturally transported cations on clay surfaces with Ca
2+

 cations. Colloidal 

clay particles benefit from this by flocculating and aggregating, which lessens their 

plasticity. Thus, the vital influence was supported by the Garson's algorithm approach's 

rating of LL and lime as the first and second significant metric. 

b. Using the Garson's algorithm approach, SL was evaluated as the third most crucial metric 

after LL and lime. Because it is observed that raising the BA-lime content leads to an 

increase in SL and OMC and a slight improvement in MDD. The following causes are 
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probably what this behaviour is explained by; (1) The effective grading of the soils has 

been altered by utilizing lime, and this takes place by aggregating the particles to occupy 

larger spaces; (2) The rise in OMC is the result of a pozzolanic interaction between the 

soil's clay and the lime; and (3) Typically, lime has a lower specific gravity than the soil 

sampled. 

c. The replacement of BA in the soil mixture, which has a slightly lower specific gravity 

than soil and requires less compactive energy to achieve its maximum dry density, may 

be responsible for the little rise in maximum dry density. The interaction between the soil 

and bagasse ash, which increased the amount of water contained within the flocculent soil 

structure, and the mixture's higher water absorption due to its lower specific gravity, are 

likely to contribute to the increase in the ideal moisture content. 

d. According to the Garson's algorithm approach, lime is given around 1.468 times as much 

weight as BA. The UCS of BA-lime treated soil is much greater than that of BA 

stabilized soil when the mix proportions are same. The interface and interlock processes 

produced by compactive effort and ageing between clay particles, lime, and BA during 

the specimen preparation procedure may be responsible for the strength enhancement of 

BA-lime reinforced ES. The soluble silica and alumina from the clay mineral lattice 

combine with the calcium available in the lime to form distinct cementitious compounds 

such as calcium silicate hydrate (CSH) and calcium aluminate hydrate (CAH). With time, 

these substances solidify, increasing the UCS of the treated ES [6]. 

Table 12 

Weights and biases of ANN model. 
Hidden 

neuron (Y) 

A B C D E F G 

Weights  

BA  -0.39404 -0.00284 2.5874 -3.6785 -3.599 0.21373 1.1634 

Lime -0.38654 -3.7217 -1.1478 -1.0337 -0.23687 -0.15505 -2.3591 

LL -1.2529 -0.00321 -3.6621 0.99741 2.5453 6.4437 -6.6128 

PL -0.47651 0.002434 -0.73247 4.7897 -1.963 0.58269 -1.9006 

SL -2.9763 -0.00862 -3.246 0.69714 -1.6784 0.63773 2.4178 

MDD -2.2853 -0.04467 0.26626 1.2923 1.3491 -1.2334 0.79001 

OMC -0.24885 0.004418 -0.58344 -0.92545 -0.0437 -0.5026 0.92488 

Biases  

Hidden layer 0.45261 3.7014 0.17984 -2.4984 1.0179 -1.5345 -0.42015 

Output layer 0.80523             

 

Table 13 

Results of the sensitivity analysis. 
Name of a model variable BA Lime LL PL SL MDD OMC 

Garson's 

algorithm 

Importance 0.94 1.38 1.82 0.82 1.05 0.70 0.26 

Relative ranking 4 2 1 5 3 6 7 

Connection 

weight 

technique 

Importance 4.98 -10.58 -8.24 -14.39 -7.40 -1.44 2.44 

Relative ranking 1 6 5 7 4 3 2 
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Fig. 14. Plot showing the comparison of Garson's algorithm and Connection weight technique. 

Fig. 14 illustrates the comparison of both methods used to identify the importance of input 

variables in predicting and developing a reliable ANN model. 

4. Conclusions 

The potential of an artificial intelligence model and multi-variable regression model to forecast 

the unconfined compressive strength of BA-lime stabilized expansive soil was investigated in 

this research. From the present study, the following conclusions are drawn: 

1. Under equal mix proportions, BA-lime stabilized samples have significantly higher 

strengths than BA-based stabilized samples, making it is an efficient treatment option for 

expanding soil. 

2. The seven-node ANN model with one hidden layer demonstrates a reliable way to predict 

the UCS. Using BA, lime, LL, PL, SL, MDD, and OMC as input elements, in computing 

the 28-day UCS of BA-lime stabilized expansive soil, the ANN model with MLP feed-

forward network and back propagation training technique performed better than the MVR 

model. The value of R
2
 acquired by MATLAB programme was 0.99990 for training and 

0.99999 for testing, indicating that the ANN has an acceptable assessment capability to 

estimate the output UCS. 

3. According to the MVR model, the important parameters for UCS prediction are LL, PL, 

SL, MDD and OMC. 

4. In contrast to the Connection weight approach, Garson's technique can determine the 

input factor's actual significance for UCS prediction. The Garson's technique approach 

states that LL is the factor that has the greatest impact on the prediction of UCS, followed 

by lime, SL, BA, PL, MDD and OMC. 

5. The flexibility and adaptability of the ANN model in terms of data generation can be 

credited to its superiority over the MVR model in UCS prediction. Contributed data could 

be used to enhance this model. In future research, it appears to be highly interesting to 

compare the performance of the existing model and the new model with different 

activation functions and other learning methods. 
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